Skip to main content
Log in

The study of agronomical traits determining the productivity of the Triticum aestivum/Triticum timopheevii introgression lines with resistance to fungal diseases

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

The development of resistant cultivars is one of the effective ways to protect common wheat T. aestivum L. from fungal pathogens. The gene pool of wild and cultivated wheat relatives is often used for widening the genetic diversity of the resistance genes. However, the alien genetic material introgressed into the wheat genome can contain genetic factors negatively affecting agronomically important traits. The T. aestivum/T. timopheevii introgression lines originating from different common wheat cultivars have characteristically good resistance to leaf rust and powdery mildew. A comparative assessment of these lines and the initial wheat varieties during four field seasons revealed the significant effect of environmental factors on the phenotypic differences between traits relevant to productivity. The averaged data obtained for individual introgression lines and for cross combinations revealed both positive and negative tendencies in the variations of the agronomical traits. The positive effects include a significant increase in the numbers of tillers and spikelets per spike of the lines originating from cv. Skala. A reduction in spike productivity was found in the groups of lines originating from cv. Tselinnaya 20 and cv. Novosibirskaya 67. However, no significant differences in the 1000-grain weight were found between most lines and the original wheat cultivars. The analysis of the data obtained showed no apparent correlation between the reduction of agronomic traits and the amount of alien genetic material introgressed into the common wheat genome. T. aestivum/T. timopheevii introgression lines can be used as a source of resistance genes without reducing the yield of wheat cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afanasenko, O.S., Problems of creation of cultivars with durable resistance to diseases, Zashch. Karantin Rast., 2010, vol. 3, pp. 4–10.

    Google Scholar 

  • Belan, I.A., Rosseeva, L.P., Rosseev, V.M., Badaeva, E.D., Zelenskii, Yu.I., Blokhina, N.P., Shepelev, S.S., and Pershina, L.A., Study of adaptive and agronomic characters in lines of common wheat Omskaya 37 carrying 1RS.1BL and 7DL-7Ai translocations, Vavilovskii Zh. Genet. Sel., 2012, vol. 16, pp. 178–186.

    Google Scholar 

  • Belan, I.A., Rosseeva, L.P., Rosseev, V.M., Badaeva, E.D., Zelenskiy, Y.I., Blokhina, N.P., Shepelev, S.S., and Pershina, L.A., Study of adaptive and agronomic characters in lines of common wheat Omskaya 37 carrying 1RS.1BL and 7DL-7Ai translocations, Russ. J. Genet.: Appl. Res., 2015, vol. 5, pp. 41–47. doi 10.1134/S2079059715010037

    Article  CAS  Google Scholar 

  • Belan, I.A., Rosseeva, L.P., Trubacheeva, N.V., Osadchaya, T.S., Dorogina, O.V., Zhmud’, E.V., Kolmakov, Yu.V., Blokhina, N.P., Kravtsova, L.A., and Pershina, L.A., Features of commercially valuable traits of the spring soft wheat cultivar Omskaya 37 carrying the wheat-rye translocation 1RS.1BL, Inf. Vestn. VOGiS, 2010, vol. 14, pp. 632–640.

    Google Scholar 

  • Budashkina, E.B. and Kalinina, N.P., Development and genetic analysis of common wheat introgressive lines resistant to leaf rust, Acta Phytopathol. Entomol. Hung., 2001, vol. 36, pp. 61–65.

    Article  Google Scholar 

  • Ehdaie, B., Whitkus, R.W., and Waines, J.G., Root biomass, water-use efficiency, and performance of wheat-rye translocations of chromosomes 1 and 2 in spring bread wheat ‘Pavon’, Crop Sci., 2003, vol. 43, pp. 710–717.

    Article  Google Scholar 

  • Friebe, B., Jiang, J., Raupp, W.J., McIntosh, R.A., and Gill, B.S., Characterization of wheat-alien translocation conferring resistance to diseases and pests: current status, Euphytica, 1996, vol. 91, pp. 59–87.

    Article  Google Scholar 

  • Hoffmann, B., Alteration of drought tolerance of winter wheat caused by translocation of rye chromosome segment 1R, Cer. Res. Commun., 2008, vol. 36, pp. 269–278.

    Article  Google Scholar 

  • Kim, W., Jonson, P.S., Baenziger, P.S., Lukaszewski, A.J., and Gaines, C.S., Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources, Crop Sci., 2004, vol. 44, pp. 1254–1258.

    Article  Google Scholar 

  • Koishybaev, M., Boltybaeva, L.A., and Kopirova, G.I., Wheat germplasm with group resistance to diseases with droplet infection, Agromeridian, 2008, vol. 3, pp. 34–42.

    Google Scholar 

  • Kravchenko, N.S. and Ionova, E.V., Parameters of adaptability of soft winter wheat cultivars for the 1000-grain weight trait against the provocative background “zasushnik,” Zernovoe Khoz. Ross., 2015, vol. 2, pp. 25–28. http://zhros.ru/num38(2)_2015/2Krav.html.

    Article  Google Scholar 

  • Krupnov, V.A. and Sibikeev, S.N., Chuzherodnye geny dlya uluchsheniya myagkoi pshenitsy. Identifitsirovannyi genofond rastenii i selektsiya (Foreign Genes for Wheat Improvement. The Identified Gene Pool of Plants and Breeding), Rigin, B.V and Gaevskaya, E.I., Eds., St. Petersburg, 2005, pp. 740–758.

  • Laikova, L.I., Arbuzova, V.S., Khristov, Yu.A., Popova, O.M., Efremova, T.T., and Ermakova, M.F., The study of the elements of productivity and quality of grain of immune wheat lines Saratovskaya 29 at the infectious field, Sib. Vestn. S-kh. Nauk, 2010, vol. 4, pp. 11–18.

    Google Scholar 

  • Laikova, L.I., Belan, I.A., Badaeva, E.D., Rosseeva, L.L., Shepelev, S.S., Shumnyi, V.K., and Pershina, L.A., Development and study of spring bread wheat variety Pamyati Maystrenko with introgression of genetic material from synthetic hexaploid Triticum timopheevii Zhuk. × Aegilops tauschii Coss., Genetika, 2013, vol. 49, pp. 103–112.

    CAS  PubMed  Google Scholar 

  • Laikova, L.I., Belan, I.A., Badaeva, E.D., Rosseeva, L.L., Shepelev, S.S., Shumny, V.K., and Pershina, L.A., Development and study of spring bread wheat variety Pamyati Maystrenko with introgression of genetic material from synthetic hexaploid Triticum timopheevii Zhuk. × Aegilops tauschii Coss., Russ. J. Genet., 2013, vol. 49, pp. 89–97. doi 10.1134/S1022795413010067

    Article  CAS  Google Scholar 

  • Leonova, I.N., Budashkina, E.B., Kalinina, N.P., Roder, M.S., Borner, A., and Salina, E.A., Triticum aestivumTriticum timopheevii introgression lines as a source of pathogen resistance genes, Czech J. Genet. Plant Breed., 2011, vol. 47, pp. S49–S55.

    CAS  Google Scholar 

  • Leonova, I.N., Röder, M.S., Budashkina, E.B., Kalinina, N.P., and Salina, E.A., Molecular analysis of leaf rust introgression resistance lines obtained by crossing of hexaploid wheat Triticum aestivum with tetraploid wheat Triticum timopheevii, Genetika, 2002, vol. 38, pp. 1648–1655.

    CAS  PubMed  Google Scholar 

  • Leonova, I.N., Röder, M.S., Budashkina, E.B., Kalinina, N.P., and Salina, E.A., Molecular analysis of leaf rust introgression resistance lines obtained by crossing of hexaploid wheat Triticum aestivum with tetraploid wheat Triticum timopheevii, Russ. J. Genet., 2002, vol. 38, pp. 1397–1403.

    Article  CAS  Google Scholar 

  • Leonova, I.N., Röder, M.S., Kalinina, N.P., and Budashkina, E.B., Genetic analysis and localization of loci controlling leaf rust resistance of Triticum aestivum × Triticum timopheevii introgression lines, Russ. J. Genet., 2008, vol. 44, p. 1431.

    Article  CAS  Google Scholar 

  • Leonova, I.N., Röder, M.S., Kalinina, N.P., and Budashkina, E.B., Genetic analysis and localization of loci controlling leaf rust resistance of Triticum aestivum × Triticum timopheevii introgression lines, Genetika, 2008, vol. 44, pp. 1652–1659.

    CAS  PubMed  Google Scholar 

  • Li, G., Chen, P., Zhang, S., Wang, X., He, Z., Zhang, Y., Zhao, H., Huang, H., and Zhou, X., Effects of the 6VS.6AL translocation on agronomic traits and dough properties of wheat, Euphytica, 2007, vol. 155, pp. 305–313. doi 10.1007/s10681-006-9332-z

    Article  Google Scholar 

  • Mains, E.B. and Jackson, H.S., Physiological specialization in the leaf rust of wheat, Puccinia triticina Erikss, Phytopathology, 1926, vol. 16, pp. 89–120.

    Google Scholar 

  • McIntosh, R.A., Wellings, C.R., and Park, R.F., Wheat Rust: An Atlas of Resistance Genes, CSIRO Publ., 1995.

    Book  Google Scholar 

  • McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., Rogers, J., Morris, C., Appels, R., and Xia, X.C., Catalogue of Gene Symbols for Wheat, 2013. http://www.shigen.nig.ac.jp/ wheat/komugi/genes/.

    Google Scholar 

  • Obukhova, L.V., Budashkina, E.B., Ermakova, M.F., Kalinina, N.P., and Shumnyi, V.K., The quality of grain and flour in introgression spring wheat lines with resistance genes to leaf rust from Triticum timopheevii Zhuk., S-kh. Biol., 2008, vol. 5, pp. 38–42.

    Google Scholar 

  • Ortelli, S., Winzeler, H., Fried, P.M., Nosberger, J., and Winzeler, M., Leaf rust resistance gene Lr9 and winter wheat yield reduction. I. Yield and yield components, Crop Sci., 1996, vol. 36, pp. 1590–1595.

    Article  Google Scholar 

  • Paull, J.G., Pallotta, M.A., and Langridge, P., The T.T. RFLP markers associated with Sr22 and recombination between chromosome 7A of bread wheat and the diploid species Triticum boeoticum, Theor. Appl. Genet., 1994, vol. 89, pp. 1039–1045.

    CAS  PubMed  Google Scholar 

  • Rokitskii, P.F., Biologicheskaya statistika (Biological Statistics), Minsk: Vysheish. shk., 1967.

    Google Scholar 

  • Sanin, S.S. and Nazarova, A.N., Phytosanitary situation in wheat fields in the Russian Federation (1991–2008), Zashch. Karantin Rast., 2010, vol. 2, pp. 70–78.

    Google Scholar 

  • Shamanin, V.P., Morgunov, A.I., Manes, Ya., Zelenskii, Yu.I., Chursin, A.S., Levshunov, M.A., Pototskaya, I.V., Likhenko, I.N., Man’ko, T.A., Karakoz, I.I., Tabachenko, A.V., and Petukhovskii, S.L., Selection and genetic evaluation of populations of common spring wheat of the Siberian shuttle breeding nursery SIMMIT, Vavilovskii Zh. Genet. Sel., 2012, vol. 16, no. 2, pp. 21–32.

    Google Scholar 

  • Šliková, S., Gregová, E., Bartoš, P., and Kraic, J., Markerassisted selection for leaf rust resistance in wheat by transfer of gene Lr19, Plant Protect. Sci., 2003, vol. 39, pp. 13–17.

    Google Scholar 

  • Strizheva, F.M. and Belyaninova, L.V., The role of varietal characteristics of spring soft wheat in the formation of the 1000-grain weight trait, Vestn. Altai. Gos. Agrar. Univ., 2012, vol. 4, pp. 19–20.

    Google Scholar 

  • Thomas, J., Nilmalgoda, S., Hiebert, C., McCallum, B., Humphreys, G., and DePauw, R., Genetic markers and leaf rust resistance of the wheat gene Lr32, Crop Sci., 2010, vol. 50, pp. 2310–2317.

    Article  Google Scholar 

  • Timonova, E.M., Leonova, I.N., Röder, M.S., and Salina, E.A., Marker-assisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome, Mol. Breed., 2013, vol. 31, pp. 123–136. doi 10.1007/s11032-012-9776-x

    Article  Google Scholar 

  • Ukhinova, E.P., Pyl’nev, V.V., and Rubets, V.S., Cytogenetic analysis of hybrid wheat (Triticum aestivum L.) with Timopheevi wheat (Triticum timopheevii Zhuk.), Izv. Timiryazevsk. S-Kh. Akad., 2009, vol. 2, pp. 131–137.

    Google Scholar 

  • Vasil’eva, L.A., Statisticheskie metody v biologii (Statistical Methods in Biology), Novosibirsk: ITsiG SO RAN, 2004.

    Google Scholar 

  • Villareal, R.L., Banuelos, O., Mujeeb-Kazi, A., and Rajaram, S., Agronomic performance of chromosome 1B and T1BL.1RS near-isolines in the spring bread wheat Seri M82, Euphytica, 1998, vol. 103, pp. 195–202.

    Article  Google Scholar 

  • Zakharenko, V.A., Medvedev, A.M., Erokhina, S.A., Dobrovol’skaya, G.V., and Mikhailov, A.A., Metodika po otsenke ustoichivosti sortov polevykh kul’tur na infektsionnykh i provokatsionnykh fonakh (Methodology for Evaluating the Resitance of Field Crops Cultivars against Infectious and Provocative Backgrounds), Moscow: Rossel’khozakademiya, 2000.

    Google Scholar 

  • Zakharenko, V.A., Potential of phytosanitary and its implementation based on the use of pesticides in integrated pest management in agro-ecosystems of Russia, Agrokhimiya, 2013, vol. 7, pp. 3–15.

    Google Scholar 

  • Zhang, W., Lukaszewski, A.J., Kolmer, J., Soria, M.A., Goyal, S., and Dubcovsky, J., Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum, Theor. Appl. Genet., 2005, vol. 111, pp. 573–582. doi 10.1007/s00122-005-2048-y

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Leonova.

Additional information

Original Russian Text © I.N. Leonova, E.B. Budashkina, 2016, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2016, Vol. 20, No. 3, pp. 311–319.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonova, I.N., Budashkina, E.B. The study of agronomical traits determining the productivity of the Triticum aestivum/Triticum timopheevii introgression lines with resistance to fungal diseases. Russ J Genet Appl Res 7, 299–307 (2017). https://doi.org/10.1134/S2079059717030091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059717030091

Keywords

Navigation