Skip to main content
Log in

Mapping of the leaf rust resistance gene Lr38 on wheat chromosome arm 6DL using SSR markers

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Leaf rust caused by the fungus Puccinia triticina is one of the most important diseases of wheat (Triticum aestivum) worldwide. The use of resistant wheat cultivars is considered the most economical and environment-friendly approach in controlling the disease. The Lr38 gene, introgressed from Agropyron intermedium, confers a stable seedling and adult plant resistance against multiple isolates tested in Europe. In the present study, 94 F2 plants resulting from a cross made between the resistant Thatcher-derived near-isogenic line (NIL) RL6097, and the susceptible Ethiopian wheat cultivar Kubsa were used to map the Thatcher Lr38 locus in wheat using simple sequence repeat (SSR) markers. Out of 54 markers tested, 15 SSRs were polymorphic between the two parents and subsequently genotyped in the population. The P. triticina isolate DZ7-24 (race FGJTJ), discriminating Lr38 resistant and susceptible plants, was used to inoculate seedlings of the two parents and the segregating population. The SSR markers Xwmc773 and Xbarc273 flanked the Lr38 locus at a distance of 6.1 and 7.9 cM, respectively, to the proximal end of wheat chromosome arm 6DL. The SSR markers Xcfd5 and Xcfd60 both flanked the locus at a distance of 22.1 cM to the distal end of 6DL. In future, these SSR markers can be used by wheat breeders and pathologists for marker assisted selection (MAS) of Lr38-mediated leaf rust resistance in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang SY, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Ashikari M, Matsuoka M (2006) Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci 11:344–350

    Article  PubMed  CAS  Google Scholar 

  • Dehne HW, Oerke E-C (1998) Impact of diseases and disease control on crop production. In: Hutson DH, Miyamoto J (eds) Fungicidal activity: chemical and biological approaches to plant protection. Wiley and Sons, Chichester, New York, pp 1–21

    Google Scholar 

  • Driscoll CJ, Sears ER (1965) Mapping of a wheat-rye translocation. Genetics 51:439–443

    PubMed  CAS  Google Scholar 

  • Dvorak J (1977) Transfer of leaf rust resistance from Aegilops speltoides to Triticum aestivum. Can J Genet Cytol 19:133–141

    Google Scholar 

  • Dvorak J, Knott DR (1977) Homoeologous chromatin exchange in radiation-induced gene transfer. Can J Genet Cytol 19:125–131

    Google Scholar 

  • Dvorak J, Knott DR (1980) Chromosome location of two leaf rust resistance genes transferred from Triticum speltoides to T. aestivum. Can J Genet Cytol 22:281–289

    Google Scholar 

  • Dvorak J, Knott DR (1990) Location of a Triticum speltoides chromosome segment conferring resistance to leaf rust in Triticum aestivum. Genome 33:892–897

    Google Scholar 

  • Dyck PL, Friebe B (1993) Evaluation of leaf rust resistance from wheat chromosomal translocation lines. Crop Sci 33:687–690

    Article  Google Scholar 

  • Faris JD, Gill BS (2002) Genomic targeting and high-resolution mapping of the domestication gene Q in wheat. Genome 45:706–718

    Article  PubMed  CAS  Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258

    Article  PubMed  CAS  Google Scholar 

  • Friebe B, Zeller FJ, Mukai Y, Forster BP, Bartos P, McIntosh RA (1992) Characterization of rust-resistant wheat-Agropyron intermedium derivatives by C-banding, in situ hybridization and isozyme analysis. Theor Appl Genet 83:775–782

    CAS  Google Scholar 

  • Friebe B, Jiang J, Gill BS, Dyck PL (1993) Radiation-induced nonhomoelogous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theor Appl Genet 86:141–149

    Article  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390

    Article  CAS  Google Scholar 

  • Gupta SK, Charpe A, Prabhu KV, Haque QMR (2006) Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theor Appl Genet 113:1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Guyomarc’h H, Sourdille P, Charmet G, Edwards KJ, Bernard M (2002) Characteristics of polymorphic microsatellite markers from T. tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104:1164–1172

    Article  PubMed  CAS  Google Scholar 

  • Haen KM, Lu HJ, Friesen TL, Faris JD (2004) Genomic targeting and high-resolution mapping of the Tsn1 gene in wheat. Crop Sci 44:951–962

    Article  CAS  Google Scholar 

  • Huang L, Brooks SA, Li WL, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    PubMed  CAS  Google Scholar 

  • Kattermann G (1937) Zur Zytologie halmbehaarter Stämme aus Weizenroggenbastardierung. Der Züchter 9:196–199

    Google Scholar 

  • Kattermann G (1938) Über konstante halmbehaarte Stämme aus Weizenroggenbastardierung mit 2n = 42 Chromosomen. Z Induk Abst und Vererbungsl 74:354–375

    Article  Google Scholar 

  • Kerber ER, Dyck PL (1990) Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides × Triticum monococcum. Genome 33:530–537

    CAS  Google Scholar 

  • Khan RR, Bariana HS, Dholakia BB, Naik SV, Lagu MD, Rathjen AJ, Bhavani S, Gupta VS (2005) Molecular mapping of stem and leaf rust resistance in wheat. Theor Appl Genet 111:846–850

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina KE, Than MHM, Pestsova EG, Röder MS, Malyshev SV, Korzun V, Boerner A (2004) Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor Appl Genet 109:725–732

    Article  PubMed  CAS  Google Scholar 

  • Knott DR (1968) Translocations involving Triticum chromosomes and Agropyron chromosomes carrying rust resistance. Can J Genet Cytol 10:695–696

    Google Scholar 

  • Kolmer JA (1996) Genetics of resistance to wheat leaf rust. Annu Rev Phytopathol 34:435–455

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Annu Eugen 12:172–175

    Google Scholar 

  • Kovalenko ED, Zhemchuzina AI, Kryazheva NN (2002) Virulence of Puccinia triticina in the Russian Federation in 2000. Annu Wheat Newsl 48:120–122

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lind V, Gultyaeva E (2007) Virulence frequences of Puccinia triticina in Germany and the European regions of the Russian Federation. J Phytopathol 155:13–21

    Article  Google Scholar 

  • Long DL, Kolmer JA (1989) A North American system of nomenclature for Puccinia recondita f. sp. tritici. Phytopathology 79:525–529

    Article  Google Scholar 

  • McIntosh RA, Dyck PL, Green GJ (1977) Inheritance of leaf rust and stem rust resistance in wheat cultivars Agent and Agatha. Aust J Agric Res 28:37–45

    Article  Google Scholar 

  • McIntosh RA, Miller TE, Chapman V (1982) Cytological studies in wheat XII. Lr28 for resistance to Puccinia recondita and Sr34 for resistance to P. graminis tritici. Z Pflanzenzüchtg 89:295–306

    Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO Publications, Victoria, Australia

    Google Scholar 

  • McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Anderson OA (2005) Catalogue of gene symbols for wheat. Annu Wheat Newsl 51:250–285

    Google Scholar 

  • Mebrate SA, Cooke BM (2001) Response of wheat cultivars to infection by Stagonospora nodorum isolates/mixture on detached and intact seedling leaves. Euphytica 122:263–268

    Article  Google Scholar 

  • Mesterházy A, Batos P, Goyeau H, Niks RE, Csösz M, Andersen O, Casulli F, Ittu M, Jones E, Manisterski J, Manninger K, Pasquini M, Rubiales D, Schachermayr G, Strzembicka A, Szunics L, Todorova M, Unger O, Vanco B, Vida G, Walther U (2000) European virulence survey for leaf rust in wheat. Agronomie 20:793–804

    Article  Google Scholar 

  • Mukade K, Kamio M, Hosoda K (1970) The transfer of leaf rust resistance from rye to wheat by intergeneric addition and translocation. Gamma Field Symp. No. 9. ‘Mutagenesis in Relation to Ploidy Level’, pp 69–87

  • Naik S, Gill KS, Prakasa Rao VS, Gupta VS, Tamhankar SA, Pujar S, Gill BS, Ranjekar PK (1998) Identification of a STS marker linked to the Aegilops speltoides-derived leaf rust resistance gene Lr28 in wheat. Theor Appl Genet 97:535–540

    Article  CAS  Google Scholar 

  • Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242

    Article  PubMed  CAS  Google Scholar 

  • Pasquini M, Casulli F, Sereni L, Casini F (1998) Pathogenicity of Puccinia recondita f.sp. tritici in Italy during 1997. Annual wheat newsletter 44: items from Italy. http://grain.jouy.inra.fr/ggpages/awn/44/Textfiles/ITALY.html. Accessed 21 Nov 2007

  • Pillen K, Binder A, Kreuzkam B, Ramsay L, Waugh R, Foerster J, Léon J (2000) Mapping new EMBL-derived barley microsatellites and their use in differentiating German barley cultivars. Theor Appl Genet 101:652–660

    Article  CAS  Google Scholar 

  • Riley R, Chapman V, Johnson R (1968) The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet Res Camb 12:198–219

    Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Schachermayr G, Feuillet C, Keller B (1997) Molecular markers for the detection of the wheat leaf rust resistance gene Lr10 in diverse genetic backgrounds. Mol Breed 3:65–74

    Article  CAS  Google Scholar 

  • Sears ER (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol 9:1–22

    Google Scholar 

  • Sears ER (1973) Agropyron-wheat transfers induced by homoelogous pairing. In: Sears ER, Sears LMS (eds) Proceedings of the fourth international wheat genetics symposium, Agricultural Research Station, University of Missouri, Columbia, MO, USA, pp 191–199

  • Sears ER (1977) Analysis of wheat-Agropyron recombinant chromosomes. In: Proceedings of the 8th Eucarpia Congress, Madrid, Spain, pp 63–72

  • Semagn K, Bjornstad A, Skinnes H, Maroy AG, Tarkegne Y, William M (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545–555

    Article  PubMed  CAS  Google Scholar 

  • Seyfarth R, Feuillet C, Schachermayr G, Winzeler M, Keller B (1999) Development of a molecular marker for the adult plant leaf rust resistance gene Lr35 in wheat. Theor Appl Genet 99:554–560

    Article  CAS  Google Scholar 

  • Sharma D, Knott DR (1966) The transfer of leaf-rust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol 8:137–143

    Google Scholar 

  • Smith EL, Schlehuber AM, Young HC, Edwards LH (1968) Registration of Agent wheat. Crop Sci 8:511–512

    Article  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • Urbanovich OY, Malyshev SV, Dolmatovich TV, Kartel NA (2006) Identification of leaf rust resistance genes in wheat (Triticum aestivum L.) cultivars using molecular markers. Russ J Genet 42:546–554

    Article  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wienhues A (1966) Transfer of rust resistance of Agropyron to wheat by addition, substitution and translocation. In: MacKey J (ed) Proceedings of the second International wheat genetic symposium, Lund, Sweden, Hereditas suppl Berlingska Boktryckeriet Lund, 19–24 August 1963, pp 328–341

  • Wienhues A (1973) Translocations between wheat chromosomes and an Agropyron chromosome conditioning rust resistance. In: Sears ER, Sears LMS (eds) Proceedings of the fourth International wheat genetic symposium, Columbia, MO, University of Missouri, Columbia, 6–11 August 1973, pp 201–207

Download references

Acknowledgements

The authors thank Dr. Pierre Sourdille (INRA, Clermont Ferrand, France) for providing primer aliquots of SSR markers from set II, Dr. Volker Lind (Federal Center for Breeding Research on Cultivated Plants, BAZ, Quedlinburg, Germany) for provision of seeds of the near-isogenic line RL6097 and Dr. Bedada Girma (Kulumsa Agricultural Research Center, Ethiopia) for providing seeds of cultivar Kubsa. We are also indebted to Ms Hedda von Quistorp for her excellent technical assistance on the SSR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pillen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mebrate, S.A., Oerke, E.C., Dehne, H.W. et al. Mapping of the leaf rust resistance gene Lr38 on wheat chromosome arm 6DL using SSR markers. Euphytica 162, 457–466 (2008). https://doi.org/10.1007/s10681-007-9615-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-007-9615-z

Keywords

Navigation