Skip to main content
Log in

Highly Developed Surface Area Thiosemicarbazide Biochar Derived from Aloe Vera for Efficient Adsorption of Uranium

  • Published:
Radiochemistry Aims and scope

Abstract

Uranium(VI) was removed from the aqueous environment using Aloe vera shell ash modified with thiosemicarbazide. The adsorbent was characterized by several methods, including Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), BET isotherm, and elemental analysis. The absorption of uranium (VI) onto this adsorbent was studied in relation to pH (2−7), adsorbent dose (0.01−0.5 g), U(VI) concentration (50, 100, 200, 300, 500, 700, and 1000 mg L–1), and exposure time (5−100 min). The highest efficiency of U(VI) removal was achieved under optimum conditions (30 min, pH 4). The optimum adsorbent dose was 0.8 g (in 20 mL of 250 mg L–1 U(VI) solution); it ensured 98.3% removal efficiency. The maximum monolayer adsorption capacity based on the Langmuir isotherm was 336.05 mg g–1. The negative sign of ΔG° and positive signs of ΔH° and ΔS° show that the adsorption is spontaneous and endothermic and is accompanied by an increase in the randomness. The experimental data were fitted well with the Langmuir isotherm model. The synthesized adsorbent has the desired surface area and adsorption capacity for uranium(VI) adsorption from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Dabbs, D.M. and Aksay, I.A., JOM, 2012, vol. 64, pp. 226–233. https://doi.org/10.1007/s11837-012-0236-1

    Article  CAS  Google Scholar 

  2. Liu, W.J., Jiang, H., and Yu, H.Q., Chem. Rev., 2015, vol. 115, pp. 12251−12285. https://doi.org/10.1021/acs.chemrev.5b001

    Article  CAS  PubMed  Google Scholar 

  3. Khalil, H.P.S.A., Bhat, A.H., and Yusra, A.F.I., Carbohydr. Polym., 2012, vol. 87, pp. 963–979. https://doi.org/10.1016/j.carbpol.2011.08.078

    Article  CAS  Google Scholar 

  4. Michalak, I., Chojnacka, K., and Witek-Krowiak, A., Appl. Biochem. Biotechnol., 2013, vol. 170, pp. 1389–1416. https://doi.org/10.1007/s12010-013-0269-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liatsou, I., Constantinou, P., and Pashalidis, I., Water Air Soil Pollut., 2017, vol. 228, p. 255. https://doi.org/10.1007/s11270-017-3411-8

    Article  CAS  Google Scholar 

  6. Liatsou, I., Michail, G., Demetriou, M., and Pashalidis, I., J. Radioanal. Nucl. Chem., 2017, vol. 311, pp. 871–875. https://doi.org/10.1007/s10967-016-5063-3

    Article  CAS  Google Scholar 

  7. Hadjittofi, L., Prodromou, M., and Pashalidis, I., Bioresource Technol., 2014, vol. 159, pp. 460–464. https://doi.org/10.1016/j.biortech.2014.03.073

    Article  CAS  Google Scholar 

  8. Gado, M.A. and Morsy, A.M.A., Radiochemistry, 2017, vol. 59, no. 5, pp. 500–506. https://doi.org/10.1134/s1066362217050101

    Article  CAS  Google Scholar 

  9. Liatsou, I., Christodoulou, E., and Pashalidis, I., J Radioanal. Nucl. Chem., 2018, vol. 311, pp. 871–875. https://doi.org/10.1007/s10967-018-5959-1

    Article  CAS  Google Scholar 

  10. Gado, M.A., Atia, B.M., Cheira, M.F., and Abdou, A.A., Int. J. Environ. Anal. Chem., 2019. https://doi.org/10.1080/03067319.2019.1683552

    Article  Google Scholar 

  11. Abdel-halim, E. and Al-Deyab, S.S., Carbohydr. Polym., 2011, vol. 84, pp. 454−458. https://doi.org/10.1016/j.carbpol.2010.12.001

    Article  CAS  Google Scholar 

  12. Bulgariu, D. and Bulgariu, L., Bioresource Technol., 2012, vol. 103, pp. 489−493. https://doi.org/10.1016/j.biortech.2011.10.016

    Article  CAS  Google Scholar 

  13. Celis, R., Hermosin, M.C., and Cornejo, J., Environ. Sci. Technol., 2000, vol. 34, pp. 4593−4599. https://doi.org/10.1021/es000013c

    Article  CAS  Google Scholar 

  14. Amer, T.E., El-Sheikh, E.M., Gado, M.A., AbuKhoziem, H.A., and Zaki, S.A., Sep. Sci. Technol., 2017, vol. 53, no. 10, pp. 1522–1530. https://doi.org/10.1080/01496395.2017.1405039

    Article  CAS  Google Scholar 

  15. Ji, F., Li, C., Tang, B., Xu, J., Lu, G., and Liu, P., Chem. Eng. J., 2012, vol. 209, p. 325. https://doi.org/10.1016/j.cej.2012.08.014

    Article  CAS  Google Scholar 

  16. Kobya, M., Bioresource Technol., 2005, vol. 96, pp. 1518−1521. https://doi.org/10.1016/j.biortech.2004.12.005

    Article  CAS  Google Scholar 

  17. Gado, M., Atia, B., and Fathy, W., Int. J. Environ. Anal. Chem., 2019. https://doi.org/10.1080/03067319.2019.1636040

    Article  Google Scholar 

  18. Sizmur, T., Fresno, T., Akgül, G., Frost, H., and Moreno-Jiménez, E., Bioresource Technol., 2017, vol. 246, pp. 34–47. https://doi.org/10.1016/j.biortech.2017.07.082

    Article  CAS  Google Scholar 

  19. Vithanage, M., Herath, I., Joseph, S., Bundschuh, J., Bolan, N., Ok, Y.S., Kirkham, M.B., and Rinklebe, J., Carbon, 2017, vol. 113, pp. 219–230. https://doi.org/10.1016/j.carbon.2016.11.032

    Article  CAS  Google Scholar 

  20. Yang, G. and Jiang, H., Water Res., 2014, vol. 48, pp. 396–405. https://doi.org/10.1016/j.watres.2013.09.050

    Article  CAS  PubMed  Google Scholar 

  21. Hadjittofi, L., Prodromou, M., and Pashalidis, I., Bioresource Technol., 2017, vol. 159, pp. 460–464. https://doi.org/10.1016/j.biortech.2014.03.073

    Article  CAS  Google Scholar 

  22. Zhao, L., Zheng, W., Mašek, O., Chen, X., Gu, B., Sharma, B.K., and Cao, X., J. Environ. Qual., 2017, vol. 46, pp. 393–401. https://doi.org/10.2134/jeq2016.09.0344

    Article  CAS  PubMed  Google Scholar 

  23. Chu, G., Zhao, J., Huang, Y., Zhou, D., Liu, Y., Wu, M., Peng, H., Zhao, Q., Pan, B., and Steinberg, C.E.W., Environ. Pollut., 2018, vol. 240, pp. 1–9. https://doi.org/10.1016/j.envpol.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  24. Peng, H., Gao, P., Chu, G., Pan, B., Peng, J.H., and Xing, B.S., Environ. Pollut., 2017, vol. 229, pp. 846–853. https://doi.org/10.1016/j.envpol.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  25. Puziy, A.M., Poddubnaya, O.I., Socha, R.P., Gurgul, J., and Wisniewski, M., Carbon, 2008, vol. 46, pp. 2113–2123. https://doi.org/10.1016/j.carbon.2008.09.010

    Article  CAS  Google Scholar 

  26. Mustafa, S., Nair, V., Chittoor, J., and Krishnapillai, S., Mini-Rev. Org. Chem., 2004, vol. 1, no. 4, p. 375. https://doi.org/10.2174/1570193043403082

    Article  CAS  Google Scholar 

  27. Metwally, M.A., Bondock, S., El-Azap, H., and Kandeel, E.-E.M., J. Sulfur Chem., 2011, vol. 32, no. 5, pp. 489–519. https://doi.org/10.1080/17415993.2011.601869

    Article  CAS  Google Scholar 

  28. Manos, M.J. and Kanatzidis, M.G., J. Am. Chem. Soc., 2012, vol. 134, p. 16441. https://doi.org/10.1021/ja308028n.

    Article  CAS  PubMed  Google Scholar 

  29. Gado, M., Atia, B., and Morcy, A., Int. J. Environ. Anal. Chem., 2019, vol. 99, no. 10, pp. 996–1015. https://doi.org/10.1080/03067319.2019.1617283

    Article  CAS  Google Scholar 

  30. Chen, C.L. and Wang, X.K., Appl. Geochem., 2007, vol. 22, p. 436. https://doi.org/10.1016/j.apgeochem.2006.11.010

    Article  CAS  Google Scholar 

  31. Chen, C. and Wang, X., Appl. Radiat. Isot., 2007, vol. 65, p. 155. https://doi.org/10.1016/j.apradiso.2006.07.003

    Article  CAS  PubMed  Google Scholar 

  32. Kuribayashi, H., Kosbiba, Y., Suzuki, K., and Shibuya, M., Proc. Waste Manag, 1987, vol. 3, pp. 89–96.

    Google Scholar 

  33. Liu, S., Li, S., Zhang, H., Wu, L., Sun, L., and Ma, J., J. Radioanal. Nucl. Chem., 2016, p. 607. https://doi.org/10.1007/s10967-015-4654-8

    Article  CAS  Google Scholar 

  34. Vassileva, P., Tzvetkova, P., Lakov, L., and Peshev, O., J. Porous Mater., 2008, vol. 15, p. 593. https://doi.org/10.1007/s10934-007-9138-y

    Article  CAS  Google Scholar 

  35. Negm, S.H., Abd El-Hamid, A.A.M., Gado, M.A., and El-Gendy, H.S., J. Radioanal. Nucl. Chem., 2019, vol. 319, pp. 327–337. https://doi.org/10.1007/s10967-018-6356-5

    Article  CAS  Google Scholar 

  36. Sun, Y., Yu, I.K.M., Tsang, D.C.W., Cao, X., Lin, D., Wang, L., Graham, N.J.D., Alessi, D.S., Komarek, M., Ok, Y.S., Feng, Y., and Li, X.D., Environ. Int., 2019, vol. 124, p. 521. https://doi.org/10.1016/j.envint.2019.01.047

    Article  CAS  PubMed  Google Scholar 

  37. Wen, J., Han, X., Lin, H., Zheng, Y., and Chu, W., Chem. Eng. J., 2010, vol. 164, pp. 29–36. https://doi.org/10.1016/j.cej.2010.07.068

    Article  CAS  Google Scholar 

  38. El-Sonbati, A.Z., Diab, M.A., Morgan, S.M., and Seyam, H.A., J. Mol. Struct., 2018, vol. 1154, p. 354. https://doi.org/10.1016/j.molstruc.2017.10.020

    Article  CAS  Google Scholar 

  39. Shao, D., Hou, G.S., Li, J.X., Tao, W., Ren, X.M., and Wang, X.K., Chem. Eng. J., 2014, vol. 255, p. 604.

    Article  CAS  Google Scholar 

  40. Fang, J., Gao, B., Chen, J., and Zimmerman, A.R., Chem. Eng. J., 2015, vol. 267, p. 253. https://doi.org/10.1016/j.cej.2015.01.026

    Article  CAS  Google Scholar 

  41. Kim, K., Zhu, P., Li, N., Ma, X., and Chen, Y., Carbon, 2011, vol. 49, p. 1745. https://doi.org/10.1016/j.carbon.2010.12.060

    Article  CAS  Google Scholar 

  42. Trompowsky, P.M., de Melo Benites, V., and Madari, B.F., Org. Geochem., 2005, vol. 36, p. 1480. https://doi.org/10.1016/s0140-6701(06)81518-3

    Article  CAS  Google Scholar 

  43. Jin, J., Li, S., Peng, X., Liu, W., Zhang, C., Yang, Y., Han, L., Du, Z., Sun, K., and Wang, X., Bioresource Technol., 2018, vol. 256, p. 247. https://doi.org/10.1016/j.biortech.2018.02.022

    Article  CAS  Google Scholar 

  44. Yu, X., Liu, Y., Zhou, Z., Xiong, G., Cao, X., Li, M., and Zhang, Z., J. Radioanal. Nucl. Chem., 2014, vol. 300, p. 1235. https://doi.org/10.1007/s10967-014-3081-6

    Article  CAS  Google Scholar 

  45. Gao, Y., Hou, D., He, D.X., Jiang, M., Yang, X.C., Liao, S., Zhang, W., Yan, X.M., and Tan, N., J. Radioanal. Nucl. Chem., 2017, vol. 314, p. 1915. https://doi.org/10.1007/s10967-017-5544-z

    Article  CAS  Google Scholar 

  46. Liu, D., Liu, Z., Wang, C., and Lai, Y., J. Radioanal. Nucl. Chem., 2016, vol. 310, p. 1131. https://doi.org/10.1007/s10967-016-4892-4

    Article  CAS  Google Scholar 

  47. Rouhi Broujeni, B., Nilchi, A., Hassani, A.H., and Saberi, R., Int. J. Environ. Sci. Technol., 2019, vol. 16, pp. 4069–4082. https://doi.org/10.1007/s13762-018-1824-6

    Article  CAS  Google Scholar 

  48. Atkins, P. and de Paula, J., Physical Chemistry, Oxford: Oxford Univ. Press, 2010.

    Google Scholar 

  49. Ilaiyaraja, P., Deb, A.K.S., Ponraju, D., Ali, S.M., and Venkatraman, B., J. Hazard Mater, 2017, vol. 328, p. 1. https://doi.org/10.1016/j.jhazmat.2017.01.001

    Article  CAS  PubMed  Google Scholar 

  50. Kumar, S., Loganathan, V.A., Gupta, R.B., and Barnett, M.O., J. Environ. Manag., 2011, vol. 92, p. 2504. https://doi.org/10.1016/j.jenvman.2011.05.013

    Article  CAS  Google Scholar 

  51. Zhang, Z., Cao, X., and Liang, P., J. Radioanal. Nucl. Chem., 2014, vol. 295, p. 1201. https://doi.org/10.1007/s10967-012-2017-2

    Article  CAS  Google Scholar 

  52. Mishra, V., Sureshkumar, M.K., and Gupta, N., Water Air Soil Pollut., 2017, vol. 228, p. 309. https://doi.org/10.1007/s11270-017-3480-8

    Article  CAS  Google Scholar 

  53. Wang, S., Guo, W., Gao, F., Wang, Y., and Gao, Y., RSC Adv., 2018, vol. 8, no. 24, p. 13205. https://doi.org/10.1039/c7ra13540h

    Article  CAS  Google Scholar 

  54. Li, M., Liu, H., Chen, T., Dong, C., and Sun, Y., Sci. Total Environ., 2019, vol. 651, pp. 1020–1028. https://doi.org/10.1016/j.scitotenv.2018.09.259

    Article  CAS  PubMed  Google Scholar 

  55. Mahmoud, M.E., Khalifa, M.A., El Wakeel, Y.M., Header, M.S., El-Sharkawy, R.M., Kumar, S., and Abdel-Fattah, T.M., Bioresource Technol., 2019, vol. 278, pp. 124–129. https://doi.org/10.1016/j.biortech.2019.01.052

    Article  CAS  Google Scholar 

  56. Sun, Y., Wu, Z.Y., Wang, X., Ding, C., Cheng, W., Yu, S.H., and Wang, X., Environ. Sci. Technol., 2016, vol. 50, no. 8, p. 4459. https://doi.org/10.1021/acs.est.6b00058

    Article  CAS  PubMed  Google Scholar 

  57. Wang, Y.Q., Zhang, Z.B., Liu, Y.H., Cao, X.H., Liu, Y.T., and Li, Q., Chem. Eng. J., 2012, vol. 198, p. 246. https://doi.org/10.1016/j.cej.2012.05.112

    Article  CAS  Google Scholar 

  58. Sun, Y., Yang, S., Chen, Y., Ding, C., Cheng, W., and Wang, X., Environ. Sci. Technol., 2015, vol. 49, no. 7, p. 4255. https://doi.org/10.1021/es505590j

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gado.

Ethics declarations

The authors state that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gado, M., Rashad, M., Kassab, W. et al. Highly Developed Surface Area Thiosemicarbazide Biochar Derived from Aloe Vera for Efficient Adsorption of Uranium. Radiochemistry 63, 353–363 (2021). https://doi.org/10.1134/S1066362221030139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362221030139

Keywords:

Navigation