Skip to main content
Log in

Adsorptive removal of U(VI) from aqueous solution by hydrothermal carbon spheres with phosphate group

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The phosphorylated hydrothermal carbon spheres (HCS-PO4) were developed by functionalizing hydrothermal carbon spheres (HCS) with o-phosphoethanolamine, and the structure and textural property were characterized by SEM and FT-IR. The parameters that affect the uranium(VI) sorption, such as solution pH, initial U(VI) concentration, contact time, and temperature, had been investigated. The HCS-PO4 showed the highest uranium sorption capacity at initial pH 6.0 and contact time of 120 min. The adsorption kinetics was better described by the pseudo-second-order model, and the adsorption process could be well defined by the Langmuir isotherm and the maximum monolayer adsorption capacity increased from 80.00 to 434.78 mg/g after phosphorylation. The thermodynamic parameters, ∆ (298 K), ∆H° and ∆S°, demonstrated shown that the sorption process of U(VI) onto HCS-PO4 was feasible, spontaneous and endothermic in nature. The spent HCS-PO4 could be effectively regenerated by 0.1 mol/L EDTA solution for the removal and recovery of U(VI) and reused for ten cycles at least. Selective adsorption studies showed that the HCS-PO4 could selectively remove U(VI), and the selectivity coefficients of HCS in the presence of co-existing ions, Mg(II), Na(I), Zn(II), Mn(II),Co(II), Ni(II), Sr(II), Cs(I) and Hg(II) improved after functionalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mudd GM (2008) Radon releases from Australian uranium mining and milling projects: assessing the UNSCEAR approach. J Environ Radioact 99:288–315

    Article  CAS  Google Scholar 

  2. Rao TP, Metilda P, Gladis JM (2006) Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination: an overview. Talanta 68:1047–1064

    Article  CAS  Google Scholar 

  3. Anirudhan T, Bringle C, Rijith S (2010) Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay. J Environ Radioact 101:267–276

    Article  CAS  Google Scholar 

  4. Kumar S, Loganathan VA, Gupta RB, Barnett MO (2011) An assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization. J Environ Manag 92:2504–2512

    Article  CAS  Google Scholar 

  5. Takeda T, Saito K, Uezu K, Furusaki S, Sugo T, Okamoto J (1991) Adsorption and elution in hollow-fiber-packed bed for recovery of uranium from seawater. Ind Eng Chem Res 30:185–190

    Article  CAS  Google Scholar 

  6. Coleman SJ, Coronado PR, Maxwell RS, Reynolds JG (2003) Granulated activated carbon modified with hydrophobic silica aerogel-potential composite materials for the removal of uranium from aqueous solutions. Environ Sci Technol 37:2286–2290

    Article  CAS  Google Scholar 

  7. Zhao Y, Liu C, Feng M, Chen Z, Li S, Tian G, Wang L, Huang J, Li S (2010) Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon. J Hazard Mater 176:119–124

    Article  CAS  Google Scholar 

  8. Schierz A, Zänker H (2009) Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ Pollut 157:1088–1094

    Article  CAS  Google Scholar 

  9. Shao D, Jiang Z, Wang X, Li J, Meng Y (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2 2+ from aqueous solution. J Phys Chem B 113:860–864

    Article  CAS  Google Scholar 

  10. Xu Y, Zondlo JW, Finklea HO, Brennsteiner A (2000) Electrosorption of uranium on carbon fibers as a means of environmental remediation. Fuel Process Technol 68:189–208

    Article  CAS  Google Scholar 

  11. Starvin A, Rao TP (2004) Solid phase extractive preconcentration of uranium(VI) onto diarylazobisphenol modified activated carbon. Talanta 63:225–232

    Article  CAS  Google Scholar 

  12. Sun X, Li Y (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed 43:597–601

    Article  Google Scholar 

  13. Wang Q, Li H, Chen L, Huang X (2001) Monodispersed hard carbon spherules with uniform nanopores. Carbon 39:2211–2214

    Article  CAS  Google Scholar 

  14. Mi Y, Hu W, Dan Y, Liu Y (2008) Synthesis of carbon micro-spheres by a glucose hydrothermal method. Mater Lett 62:1194–1196

    Article  CAS  Google Scholar 

  15. Zheng M, Cao J, Chang X, Wang J, Liu J, Ma X (2006) Preparation of oxide hollow spheres by colloidal carbon spheres. Mater Lett 60:2991–2993

    Article  CAS  Google Scholar 

  16. Zhuang Z, Yang Z (2009) Preparation and characterization of colloidal carbon sphere/rigid polyurethane foam composites. J Appl Polym Sci 114:3863–3869

    Article  CAS  Google Scholar 

  17. Yao C, Shin Y, Wang LQ, Windisch CF, Samuels WD, Arey BW, Wang C, Risen WM, Exarhos GJ (2007) Hydrothermal dehydration of aqueous fructose solutions in a closed system. J Phys Chem C 111:15141–15145

    Article  CAS  Google Scholar 

  18. Ratchahat S, Viriya-empikul N, Faungnawakij K, Charinpanitkul T, Soottitantawat A (2010) Synthesis of carbon microspheres from starch by hydrothermal process. Sci J UBU 1:40–45

    Google Scholar 

  19. Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47:2281–2289

    Article  CAS  Google Scholar 

  20. Titirici M-M, Antonietti M (2010) Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem Soc Rev 39:103–116

    Article  CAS  Google Scholar 

  21. Geng J, Ma L, Wang H, Liu J, Bai C, Song Q, Li J, Hou M, Li S (2012) Amidoxime-grafted hydrothermal carbon microspheres for highly selective separation of uranium. J Nanosci Nanotechnol 12:7354–7363

    Article  CAS  Google Scholar 

  22. Song Q, Ma L, Liu J, Bai C, Geng J, Wang H, Li B, Wang L, Li S (2012) Preparation and adsorption performance of 5-azacytosine-functionalized hydrothermal carbon for selective solid-phase extraction of uranium. J Colloid Interface Sci 386:291–299

    Article  CAS  Google Scholar 

  23. Wang H, Ma L, Cao K, Geng J, Liu J, Song Q, Yang X, Li S (2012) Selective solid-phase extraction of uranium by salicylideneimine-functionalized hydrothermal carbon. J Hazard Mater 229–230:321–330

    Article  Google Scholar 

  24. Liu Y, Wang Y, Zhang Z, Cao X, Nie W, Li Q, Hua Q (2013) Removal of uranium from aqueous solution by a low cost and high-efficient adsorbent. Appl Surf Sci 273:68–74

    Article  CAS  Google Scholar 

  25. Zhang Z, Zhou Z, Cao X, Liu Y, Xiong G, Liang P (2013) Removal of uranium(VI) from aqueous solutions by new phosphorus-containing carbon spheres synthesized via one-step hydrothermal carbonization of glucose in the presence of phosphoric acid. J Radioanal Nucl Chem 299:1479–1487

    Google Scholar 

  26. Kabay N, Demircioglu M, Yayli S, Günay E, Yüksel M, Saglam M, Streat M (1998) Recovery of uranium from phosphoric acid solutions using chelating ion-exchange resins. Ind Eng Chem Res 37:1983–1990

    Article  CAS  Google Scholar 

  27. Chen Z, Ma L, Li S, Geng J, Song Q, Liu J, Wang C, Wang H, Li J, Qin Z (2011) Simple approach to carboxyl-rich materials through low-temperature heat treatment of hydrothermal carbon in air. Appl Surf Sci 257:8686–8691

    Article  CAS  Google Scholar 

  28. Nie W, Zhang Z, Cao X, Liu Y, Liang P (2013) Sorption study of uranium from aqueous solution on ordered mesoporous carbon CMK-3. J Radioanal Nucl Chem 295:663–670

    Article  CAS  Google Scholar 

  29. Fanning PE, Vannice MA (1993) A DRIFTS study of the formation of surface groups on carbon by oxidation. Carbon 31:721–730

    Article  CAS  Google Scholar 

  30. Edwards JC, Thiel CY, Benac B, Knifton JF (1998) Solid-state NMR and FT-IR investigation of 12-tungstophosphoric acid on TiO2. Catal Lett 51:77–83

    Article  CAS  Google Scholar 

  31. Preetha CR, Gladis JM, Rao TP, Venkateswaran G (2006) Removal of toxic uranium from synthetic nuclear power reactor effluents using uranyl ion imprinted polymer particles. Environ Sci Technol 40:3070–3074

    Article  CAS  Google Scholar 

  32. Bayramoğlu G, Çelik G, Arica MY (2006) Studies on accumulation of uranium by fungus Lentinus sajor-caju. J Hazard Mater 136:345–353

    Article  Google Scholar 

  33. Ghaemi A, Torab-Mostaedi M, Ghannadi-Maragheh M (2011) Characterizations of strontium(II) and barium(II) adsorption from aqueous solutions using dolomite powder. J Hazard Mater 190:916–921

    Article  CAS  Google Scholar 

  34. Psareva T, Zakutevskyy O, Chubar N, Strelko V, Shaposhnikova T, Carvalho JR, Correia M (2005) Uranium sorption on cork biomass. Colloids Surf A 252:231–236

    Article  CAS  Google Scholar 

  35. Anirudhan TS, Rijith S, Tharun AR (2010) Adsorptive removal of thorium(IV) from aqueous solutions using poly (methacrylic acid)-grafted chitosan/bentonite composite matrix: process design and equilibrium studies. Colloids Surf A 368:13–22

    Article  CAS  Google Scholar 

  36. Aytas S, Yurtlu M, Donat R (2009) Adsorption characteristic of U(VI) ion onto thermally activated bentonite. J Hazard Mater 172:667–674

    Article  CAS  Google Scholar 

  37. Anirudhan TS, Radhakrishnan PG (2009) Improved performance of a biomaterial-based cation exchanger for the adsorption of uranium(VI) from water and nuclear industry wastewater. J Environ Radioact 100:250–257

    Article  CAS  Google Scholar 

  38. Hazer O, Kartal Ş (2010) Use of amidoximated hydrogel for removal and recovery of U(VI) ion from water samples. Talanta 82:1974–1979

    Article  CAS  Google Scholar 

  39. Parab H, Joshi S, Shenoy N, Verma R, Lali A (2012) Uranium removal of aqueous solution by coir pith: equilibrium and kinetic studies. Bioresour Technol 96:1241–1248

    Article  Google Scholar 

  40. Aytas S, Turkozu DA, Gok C (2011) Biosorption of uranium(VI) by bi-functionalized low cost biocomposite adsorbent. Desalination 280:354–362

    Article  CAS  Google Scholar 

  41. Anirudhan T, Divya L, Suchithra P (2009) Kinetic and equilibrium characterization of uranium(VI) adsorption onto carboxylate-functionalized poly (hydroxyethylmethacrylate)-grafted lignocellulosics. J Environ Manag 90:549–560

    Article  CAS  Google Scholar 

  42. Gürboğa G, Tel H (2005) Preparation of TiO2–SiO2 mixed gel spheres for strontium adsorption. J Hazard Mater 120:135–142

    Article  Google Scholar 

  43. Donia A, Atia A, Moussa E, Elsherif A, Abdelmagied M (2009) Removal of uranium(VI) from aqueous solutions using glycidyl methacrylate chelating resins. Hydrometallurgy 95:183–189

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support provided by National Natural Science Foundation of China (Grant Nos. 21101024, 21201033,21301028), National Undergraduate Training Programs for Innovation and Entrepreneurship (Grant No. 201210405006), Key Project of Chinese Ministry of Education (Grant No. 211086), the Young Scientists Training Program of Jiangxi Province (Grant No. 20122BCB23023), Natural Science Foundation of Jiangxi Province (Grant Nos. 20114BAB203002, 20122BAB203012, 20132BAB203027), China Postdoctoral Science Foundation (Grant No. 20110490857), and Project of Jiangxi Provincial Department of Education (Grant No. GJJ13452) and Open Project Foundation of Fundamental Science on Radioactive Geology and Exploration Technology Laboratory (East China Institute of Technology) (Grant No. RGET1311).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Bin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, XF., Liu, YH., Zhou, ZW. et al. Adsorptive removal of U(VI) from aqueous solution by hydrothermal carbon spheres with phosphate group. J Radioanal Nucl Chem 300, 1235–1244 (2014). https://doi.org/10.1007/s10967-014-3081-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3081-6

Keywords

Navigation