Skip to main content
Log in

Comparative adsorption study of Th4+ from aqueous solution by hydrothermally synthesized iron and aluminum oxide nanoparticles

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Comparative adsorption behaviors of synthesized iron nanoparticles (Fe-NPs) and aluminum nanoparticles (Al-NPs) on thorium(IV) (Th4+) ion from aqueous solution have been studied using batch system. Both Fe-NPs and Al-NPs were synthesized by hydrothermal method and characterized by X-ray diffraction, X-ray fluorescence, scanning electron microscopy, Brunauer–Emmett–Teller and Fourier transform infrared. The results showed that more than 90% of synthesized nanoparticles were in the size range of 7–100 nm, when the specific surface area of Fe-NPs and Al-NPs was found to be 126.1 and 37.4 m2 g−1, respectively. The influence of variables namely sorbent weight, contact time and pH on the adsorption of Th4+ ion was investigated. The pH dependence was observed in both Fe-NPs and Al-NPs adsorption processes, and the maximum adsorption occurred at pH 5 and 4, respectively. For both Fe-NPs and Al-NPs, kinetic data correspond well to the pseudo-second-order and the coefficient of determination (R2) indicates that the developed model is appropriate. In addition, for both Fe-NPs and Al-NPs, the adsorption data were well fitted by the Langmuir isotherm. The maximum adsorption percent and adsorption capacity for Fe-NPs and Al-NPs were found to be 98%; 595 mg g−1 and 95%; 602 mg g−1, respectively. In addition, thermodynamic parameters containing standard enthalpy, entropy, and Gibbs free energy were determined which point out the natural and endothermic nature of the reactions. Both nanoparticles show the good capability of Th4+ ion adsorption, although Fe-NPs is marginally better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Full width at half maximum.

References

  • Acharya J, Sahu J, Mohanty C, Meikap B (2009) Removal of lead(II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chem Eng J 149:249–262

    Article  CAS  Google Scholar 

  • Afkhami A, Saber-Tehrani M, Bagheri H (2010) Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine. J Hazard Mater 181:836–844

    Article  CAS  Google Scholar 

  • Ahmad T, Phul R (2015) Magnetic iron oxide nanoparticles as contrast agents: hydrothermal synthesis, characterization and properties. In: Solid state phenomena. Trans Tech Publ, Zürich, pp 111–145

  • Akbari B, Tavandashti MP, Zandrahimi M (2011) Particle size characterization of nanoparticles–a practical approach. Iran J Mater Sci Eng 8:48–56

    CAS  Google Scholar 

  • Anirudhan TS, Rejeena SR (2011) Thorium(IV) removal and recovery from aqueous solutions using tannin-modified poly (glycidylmethacrylate)-grafted zirconium oxide densified cellulose. Ind Eng Chem Res 50:13288–13298

    Article  CAS  Google Scholar 

  • Anirudhan TS, Rijith S, Tharun AR (2010) Adsorptive removal of thorium(IV) from aqueous solutions using poly (methacrylic acid)-grafted chitosan/bentonite composite matrix: process design and equilibrium studies. Colloids Surf A 368:13–22

    Article  CAS  Google Scholar 

  • Aydin FA, Soylak M (2007) A novel multi-element coprecipitation technique for separation and enrichment of metal ions in environmental samples. Talanta 73:134–141

    Article  CAS  Google Scholar 

  • Chen L, Gao X (2009) Thermodynamic study of Th(IV) sorption on attapulgite. Appl Radiat Isot 67:1–6

    Article  CAS  Google Scholar 

  • Chen C, Wang X (2007) Influence of pH, soil humic/fulvic acid, ionic strength and foreign ions on sorption of thorium(IV) onto γ-Al2O3. Appl Geochem 22:436–445

    Article  CAS  Google Scholar 

  • Chen Q, Yin D, Zhu S, Hu X (2012) Adsorption of cadmium (II) on humic acid coated titanium dioxide. J Colloid Interface Sci 367:241–248

    Article  CAS  Google Scholar 

  • Corbett JF (1972) Pseudo first-order kinetics. J Chem Educ 49:663

    Article  CAS  Google Scholar 

  • Dastbaz A, Keshtkar AR (2014) Adsorption of Th4+, U6+, Cd2+, and Ni2+ from aqueous solution by a novel modified polyacrylonitrile composite nanofiber adsorbent prepared by electrospinning. App Surf Sci 293:336–344

    Article  CAS  Google Scholar 

  • Dev K, Pathak R, Rao G (1999) Sorption behaviour of lanthanum (III), neodymium (III), terbium (III), thorium(IV) and uranium (VI) on Amberlite XAD-4 resin functionalized with bicine ligands. Talanta 48:579–584

    Article  CAS  Google Scholar 

  • Dietz ML, Horwitz EP, Sajdak LR, Chiarizia R (2001) An improved extraction chromatographic resin for the separation of uranium from acidic nitrate media. Talanta 54:1173–1184

    Article  CAS  Google Scholar 

  • Guo Z-J, Yu X-M, Guo F-H, Tao Z-Y (2005) Th(IV) adsorption on alumina: effects of contact time, pH, ionic strength and phosphate. J Colloid Interface Sci 288:14–20

    Article  CAS  Google Scholar 

  • Hameed B, Mahmoud D, Ahmad A (2008) Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: coconut (Cocos nucifera) bunch waste. J Hazard Mater 158:65–72

    Article  CAS  Google Scholar 

  • Höllriegl V, Greiter M, Giussani A, Gerstmann U, Michalke B, Roth P, Oeh U (2007) Observation of changes in urinary excretion of thorium in humans following ingestion of a therapeutic soil. J Environ Radioact 95:149–160

    Article  CAS  Google Scholar 

  • Hritcu D, Humelnicu D, Dodi G, Popa MI (2012) Magnetic chitosan composite particles: evaluation of thorium and uranyl ion adsorption from aqueous solutions. Carbohyd Polym 87:1185–1191

    Article  CAS  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331

    Article  CAS  Google Scholar 

  • Humelnicu D, Drochioiu G, Popa K (2004) Bioaccumulation of thorium and uranyl ions on Saccharomyces cerevisiae. J Radioanal Nucl Chem 260:291–293

    Article  CAS  Google Scholar 

  • Humelnicu D, Dinu MV, Drăgan ES (2011) Adsorption characteristics of UO2 2+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents. J Hazard Mat 185(1):447–455

    Article  CAS  Google Scholar 

  • Ilaiyaraja P, Deb AKS, Sivasubramanian K, Ponraju D, Venkatraman B (2013) Adsorption of uranium from aqueous solution by PAMAM dendron functionalized styrene divinylbenzene. J Hazard Mater 250:155–166

    Article  CAS  Google Scholar 

  • Jain V, Pandya R, Pillai S, Shrivastav P (2006) Simultaneous preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using a chelating calix [4] arene anchored chloromethylated polystyrene solid phase. Talanta 70:257–266

    Article  CAS  Google Scholar 

  • Jung Y, Kim S, Park S-J, Kim JM (2008) Application of polymer-modified nanoporous silica to adsorbents of uranyl ions. Colloids Surf A 313:162–166

    Article  CAS  Google Scholar 

  • Kuhu A (1972) Electrochemistry of cleaner environments. Plenum Press, New York

    Google Scholar 

  • Kütahyali C, Eral M (2010) Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects. J Nucl Mater 396:251–256

    Article  CAS  Google Scholar 

  • Leggett CJ, Rao L (2015) Complexation of calcium and magnesium with glutarimidedioxime: implications for the extraction of uranium from seawater. Polyhedron 95:54–59

    Article  CAS  Google Scholar 

  • Liu J, Luo M, Yuan Z, Ping A (2013) Synthesis, characterization, and application of titanate nanotubes for Th(IV) adsorption. J Radioanal Nucl Chem 298:1427–1434

    Article  CAS  Google Scholar 

  • Martin M, Rabanal M, Gomez L, Torralba J, Milosevic O (2008) Microstructural and morphological analysis of nanostructured alumina particles synthesized at low temperature via aerosol route. J Eur Ceram Soc 28:2487–2494

    Article  CAS  Google Scholar 

  • Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides—a review. Int J Eng Sci Technol 2:127–146

    Google Scholar 

  • Nazari K, Maragheh MG, Rad AJ (2004) Studies on extraction of uranium from phosphoric acid using PN-1200 extractant. Hydrometallurgy 71:371–377

    Article  CAS  Google Scholar 

  • Nilchi A, Dehaghan TS, Garmarodi SR (2013) Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles. Desalination 321:67–71

    Article  CAS  Google Scholar 

  • Pal B, Sharon M (2000) Preparation of iron oxide thin film by metal organic deposition from Fe(III)-acetylacetonate: a study of photocatalytic properties. Thin Solid Films 379:83–88

    Article  CAS  Google Scholar 

  • Pan N, Guan D, He T, Wang R, Wyman I, Jin Y, Xia C (2013) Removal of Th4+ ions from aqueous solutions by graphene oxide. J Radioanal Nucl Chem 298(3):1999–2008

    Article  CAS  Google Scholar 

  • Park D-W, Sinclair R, Lal BB, Malhotra SS, Russak MA (2000) Grain size analysis of longitudinal thin film media. J Appl Phys 87:5687–5689

    Article  CAS  Google Scholar 

  • Prasada Rao T, Metilda P, Mary Gladis J (2006) Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination: an overview. Talanta 68:1047–1064

    Article  CAS  Google Scholar 

  • Qiu G, Huang H, Genuino H, Opembe N, Stafford L, Dharmarathna S, Suib SL (2011) Microwave-assisted hydrothermal synthesis of nanosized α-Fe2O3 for catalysts and adsorbents. J Phys Chem C 115:19626–19631

    Article  CAS  Google Scholar 

  • Rahmati A, Ghaemi A, Samadfam M (2012) Kinetic and thermodynamic studies of uranium(VI) adsorption using Amberlite IRA-910 resin. Ann Nucl Energy 39:42–48

    Article  CAS  Google Scholar 

  • Rawle AF (2007) Micron sized nano-materials. Powder Technol 174:6–9

    Article  CAS  Google Scholar 

  • Sahoo S, Agarwal K, Singh A, Polke B, Raha K (2010) Characterization of γ-and α-Fe2O3 nano powders synthesized by emulsion precipitation–calcination route and rheological behaviour of α-Fe2O3. Int J Eng Sci Technol 2:118–126

    Google Scholar 

  • Savva I, Efstathiou M, Krasia-Christoforou T, Pashalidis I (2013) Adsorptive removal of U (VI) and Th (IV) from aqueous solutions using polymer-based electrospun PEO/PLLA fibrous membranes. J Radioanal Nucl Chem 298:1991–1997

    Article  CAS  Google Scholar 

  • Seyhan S, Merdivan M, Demirel N (2008) Use of o-phenylene dioxydiacetic acid impregnated in Amberlite XAD resin for separation and preconcentration of uranium(VI) and thorium(IV). J Hazard Mater 152:79–84

    Article  CAS  Google Scholar 

  • Sharma P, Sharma M, Tomar R (2013) Na-HEU zeolite synthesis for the removal of Th(IV) and Eu(III) from aqueous waste by batch process. J Taiwan Inst Chem Eng 44:480–488

    Article  CAS  Google Scholar 

  • Sheng G, Hu J, Wang X (2008) Sorption properties of Th(IV) on the raw diatomite—effects of contact time, pH, ionic strength and temperature. Appl Radiat Isot 66:1313–1320

    Article  CAS  Google Scholar 

  • Swanson HE, Morris MC, Evans EH (1966) Standard X-ray diffraction powder patterns. National Bureau of Standards Monograph 25-Section 4, United States, Department of Commerce

  • Talip Z, Eral M, Hiçsönmez Ü (2009) Adsorption of thorium from aqueous solutions by perlite. J Environ Radioact 100:139–143

    Article  CAS  Google Scholar 

  • Tan X, Wang X, Fang M, Chen C (2007) Sorption and desorption of Th(IV) on nanoparticles of anatase studied by batch and spectroscopy methods. Colloids Surf A 296:109–116

    Article  CAS  Google Scholar 

  • Vijayan PK, Dulera IV, Krishnani PD, Vaze KK, Basu S, Sinha RK (2016) Overview of the thorium programme in India. In: Revol JP, Bourquin M, Kadi Y, Lillestol E, de Mestral JC, Samec K (eds) Thorium energy for the world. Springer, Cham

    Google Scholar 

  • Wu F-C, Tseng R-L, Huang S-C, Juang R-S (2009) Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: a mini-review. Chem Eng J 151:1–9

    Article  CAS  Google Scholar 

  • Wu Y, Kim S-Y, Tozawa D, Ito T, Tada T, Hitomi K, Kuraoka E, Yamazaki H, Ishii K (2012) Equilibrium and kinetic studies of selective adsorption and separation for strontium using DtBuCH18C6 loaded resin. J Nucl Sci Technol 49:320–327

    Article  CAS  Google Scholar 

  • Yuh-Shan H (2004) Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59:171–177

    Article  Google Scholar 

  • Yusan S, Gok C, Erenturk S, Aytas S (2012) Adsorptive removal of thorium(IV) using calcined and flux calcined diatomite from Turkey: evaluation of equilibrium, kinetic and thermodynamic data. Appl Clay Sci 67:106–116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Nuclear Science and Technology Research Institute of Iran supported this research, under project PRI-C5-93-001. The authors would like to thank the institute for providing assistance with analysis of samples carried out through this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Hassani.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouhi Broujeni, B., Nilchi, A., Hassani, A.H. et al. Comparative adsorption study of Th4+ from aqueous solution by hydrothermally synthesized iron and aluminum oxide nanoparticles. Int. J. Environ. Sci. Technol. 16, 4069–4082 (2019). https://doi.org/10.1007/s13762-018-1824-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-1824-6

Keywords

Navigation