Skip to main content
Log in

Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The ability of biochar produced by hydrothermal carbonization (HTC) has been explored for the removal and recovery of uranium from aqueous solutions. The micro-morphology and structure of HTC were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The influences of different experimental parameters such as solution pH, initial concentration, contact time, ionic strength and temperature on adsorption were investigated. The HTC showed the highest uranium sorption capacity at initial pH of 6.0 and contact time of 50 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir isotherm. The thermodynamic parameters, △(298 K), △ and △ were determined to be −14.4, 36.1 kJ mol−1 and 169.7 J mol−1 K−1, respectively, which demonstrated the sorption process of HTC towards U(VI) was feasible, spontaneous and endothermic in nature. The adsorbed HTC could be effectively regenerated by 0.05 mol/L HCl solution for the removal and recovery of U(VI). Complete removal (99.9 %) of U(VI) from 1.0 L industry wastewater containing 15.0 mg U(VI) ions was possible with 2.0 g HTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sakr K, Sayed MS, Hafez MB (2003) J Radioanal Nucl Chem 256:179–184

    Article  CAS  Google Scholar 

  2. Özdemir T, Usanmaz A (2009) Prog Nucl Energy 51:240–245

    Article  Google Scholar 

  3. Djedidi Z, Bouda M, Souissi MA, Ben Cheikh R, Mercier G, Tyagi RD, Blais JFJ (2009) Hazard Mater 172:1372–1382

    Article  CAS  Google Scholar 

  4. Abdel-Khalek AA, Ali MM, Ashour RM, Abdel-Magied AFJ (2011) Radioanal Nucl Chem 290:353–359

    Article  CAS  Google Scholar 

  5. Kumari N, Prabhu DR, Pathak PN, Kanekar AS, Manchanda VKJ (2011) Radioanal Nucl Chem 289:835–843

    Article  CAS  Google Scholar 

  6. Cojocaru C, Zakrzewska-Trznadel G, Jaworska AJ (2009) Hazard Mater 169:599–609

    Article  CAS  Google Scholar 

  7. Cojocaru C, Zakrzewska-Trznadel G, Miskiewicz AJ (2009) Hazard Mater 169:610–620

    Article  CAS  Google Scholar 

  8. Rao TP, Metilda P, Gladis JM (2006) Talanta 68:1047–1064

    Article  CAS  Google Scholar 

  9. Coleman SJ, Coronado PR, Maxwell RS, Reynold JG (2003) Environ Sci Technol 37:2286–2290

    Article  CAS  Google Scholar 

  10. Zhao YS, Liu CX, Feng M, Chen Z, Li SQ, Tian G, Wang L, Huang JB, Li SJ (2010) J Hazard Mater 176:119–124

    Article  CAS  Google Scholar 

  11. Schierz A, Zanker H (2009) Environ Pollut 157:1088–1094

    Article  CAS  Google Scholar 

  12. Shao DD, Jiang ZQ, Wang XK, Li JX, Meng YD (2009) J Phys Chem B 113:860–864

    Google Scholar 

  13. Xu Y, Zondlo JW, Finklea HO, Brennsteiner A (2000) Fuel Process Technol 68:189–208

    Article  CAS  Google Scholar 

  14. Cao N, Darmstadt H, Roy C (2001) Energy Fuels 15:1263–1269

    Article  CAS  Google Scholar 

  15. Liu Z, Zhang FS (2011) Desalination 267:101–106

    Article  CAS  Google Scholar 

  16. Kumar S, Loganathan VA, Gupta RB, Barnett MO (2011) J Environ Manage 92:2504–2512

    Article  CAS  Google Scholar 

  17. Titirici MM, Thomas A, Yu SH, Müller JO, Antonietti M (2007) Chem Mater 19:4205–4212

    Article  CAS  Google Scholar 

  18. Wu ZX, Webley PA, Zhao DY (2010) Langmuir 26:10277–10286

    Article  CAS  Google Scholar 

  19. Kim DJ, Lee HI, Yie JE, Kim SJ, Kim JM (2005) Carbon 43:1868–1873

    Article  CAS  Google Scholar 

  20. He J, Ma K, Jin J, Dong ZP, Wang JJ, Li R (2009) Microporous Mesoporous Mat 121:173–177

    Article  CAS  Google Scholar 

  21. Li HF, Xi HA, Zhu SM, Wen ZY, Wang RD (2006) Microporous Mesoporous Mat 96:357–362

    Article  CAS  Google Scholar 

  22. Bayramoglu G, Celik G, Arica MJ (2006) Hazard Mater 136:345–353

    Article  CAS  Google Scholar 

  23. Aytas S, Yurtlu M, Donat RJ (2009) Hazard Mater 172:667–674

    Article  CAS  Google Scholar 

  24. Hazer O, Kartal Ş (2010) Talanta 82:1974–1979

    Article  CAS  Google Scholar 

  25. Parab H, Joshi S, Shenoy N, Verma R, Lali A, Sudersanan M (2005) Bioresour Technol 96:1241–1248

    Article  CAS  Google Scholar 

  26. Ghaemi A, Torab-Mostaedi M, Ghannadi-Maragheh MJ (2011) Hazard Mater 190:916–921

    Article  CAS  Google Scholar 

  27. Psareva T, Zakutevskyy O, Chubar N, Strelko V, Shaposhnikova T, Carvalho J, Correia M (2005) Colloids Surf A 252:231–236

    Article  CAS  Google Scholar 

  28. Anirudhan TS, Rijith S, Tharun AR (2010) Colloids Surf A 368:13–22

    Article  CAS  Google Scholar 

  29. Anirudhan TS, Divya L, Suchithra PS (2009) J Environ Manage 90:549–560

    Article  CAS  Google Scholar 

  30. Donat RJ (2009) Chem Thermodyn 41:829–835

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Grant No. 21101024), Key Project of Chinese Ministry of Education (Grant No. 211086), Natural Science Foundation of Jiangxi Province (No. 2010GQH0015), Sci. & Tech. Project of Jiangxi Provincial department of education (No. GJJ11139), Open Project Foundation of the Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense (East China Institute of Technology) (2010RGET08), Open Project Foundation of the Engineering Research Center of Nano-Geomaterials of Ministry of Education (China University of Geosciences) (CUGNGM201205), and Open Project Foundation of the State Key Laboratory of Biogeology and Environmental Geology (China University of Geosciences) (BGEG201105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-hai Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Zb., Cao, Xh., Liang, P. et al. Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization. J Radioanal Nucl Chem 295, 1201–1208 (2013). https://doi.org/10.1007/s10967-012-2017-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2017-2

Keywords

Navigation