Skip to main content
Log in

High-priority research directions in genetics and the breeding of the sugar beet (Beta vulgaris L.) in the 21st century

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

High-priority research directions for the genetics and breeding of the sugar beet in the 21st century were developed with consideration of the available scientific achievements of domestic and foreign scholars. These directions unite the classical and molecular approaches to solving the problems of increasing the effectiveness of sugar beet breeding carried out on a genetic basis, and they correspond to the contemporary level of scientific research. Seven such directions are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Genetics and Breeding of Sugar Beet, Biancardi, E., Campbell, L.G., Skaracis, G.N., and De Biaggi, M., Eds., Enfield, NH: Science, 2005.

    Google Scholar 

  2. Draycott, A.P., Sugar Beet, Oxford: Blackwell, 2006.

    Book  Google Scholar 

  3. Entsiklopediya roda Beta (biologiya, genetika i selektsiya svekly) (Encyclopaedia of the Genus Beta (Biology, Genetics, and Breeding)), Maletskii, I.S., Ed., Novosibirsk: Sova, 2010.

    Google Scholar 

  4. Kornienko, A.V. and Butorina, A.K., Genetika i selektsiya sakharnoi svekly (B. vulgaris L.) (proshloe, nastoyashchee i budushchee) (Genetics and Breeding of Sugar Beet (B. vulgaris L.) (Past, Present, and Future)), Voronezh: Voronezhskii Tsentr Nauchno-Tekhnicheskoi Informacii, 2012.

    Google Scholar 

  5. Burenin, V.I., Geneticheskie resursy roda Beta L. (svekla) (Genetic Resources of the Genus Beta L. (Beet)), St. Petersburg, 2007.

    Google Scholar 

  6. Podvigina, O.A., Znamenskaya, V.V., and Zhuzhzhalova, T.P., Experimental production of sugar beet haploid lines, in Apomiksis u rastenii: sostoyanie problemy i perspektivy issledovanii (Apomixis in Plants: State-of-the-Art and Research Prospects), (Proc. All-Union Symp.), Saratov, 1994, pp. 123–124.

    Google Scholar 

  7. Podvigina, O.A., Theoretical basis and the use of biotechnology in breeding of sugar beet, Extended Abstract of Doctoral Dissertation, Vseross. Nauchno-Issled. Inst. Sakharnoy Svekly, Voronezh, 2003.

    Google Scholar 

  8. Maletskii, S.I. and Maletskaya, E.I., Self-fertility and agamospermy in sugar beet, Beta vulgaris L., Russ. J. Genet. 1996, vol. 32, no. 12, pp. 1431–1437.

    CAS  Google Scholar 

  9. Moritani, M., Taguchi, K., Kitazaki, K., et al., Identification of the predominant nonrestoring allele for owen-type cytoplasmic male sterility in sugar beet (Beta vulgaris L.): development of molecular markers for the maintainer genotype, Mol. Breed., 2013, vol. 32, pp. 91–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Herzog, E. and Frisch, M., Efficient-assisted backcross conversion of seed-parent lines to cytoplasmic male sterility, Mol. Life Plants, 2013, vol. 132, no. 1, pp. 33–41.

    Google Scholar 

  11. Zhuzhzhalova, T.P., Embryological characteristic of sugar beet forms with cytoplasmic male sterility, in Entsiklopediya roda Beta (biologiya, genetika i selektsiya svekly) (Encyclopaedia of the Genus Beta (Biology, Genetics, and Breeding)), Maletskii, I.S., Ed., Novosibirsk: Sova, 2010, pp. 217–227.

    Google Scholar 

  12. Zhuzhzhalova, T.P., Znamenskaya, V.V., Podvigina, O.A., and Yarmolyuk, G.I., Reproduktivnaya biologiya sakharnoi svekly (Reproductive Biology of Sugar Beet), Voronezh: Sotrudnichestvo, 2007.

    Google Scholar 

  13. Zhuzhzhalova, T.P., Embryology of sugar beet, in Entsiklopediya roda Beta (biologiya, genetika i selektsiya svekly) (Encyclopaedia of the Genus Beta (Biology, Genetics, and Breeding)), Maletskii, I.S., Ed., Novosibirsk: Sova, 2010, pp. 87–139.

    Google Scholar 

  14. Zhuzhzhalova, T.P., Influence of inbreeding on the formation of generative organs of sugar beet, in Entsiklopediya roda Beta (biologiya, genetika i selektsiya svekly) (Encyclopaedia of the Genus Beta (Biology, Genetics, and Breeding)), Maletskii, I.S., Ed., Novosibirsk: Sova, 2010, pp. 164–189.

    Google Scholar 

  15. Mazlumov, A.L., Selektsiya sakharnoi svekly (Breeding of Sugar Beet), Moscow: Kolos, 1970.

    Google Scholar 

  16. Kornienko, A.V. and Orlov, S.D., Metody selektsii sakharnoi svekly na geterozis (Techniques used in Sugar Beet Breeding for Heterosis), Moscow: Rodnik, 1996.

    Google Scholar 

  17. Kornienko, A.V., Apasov, I.V., Chekmarev, P.A., et al., Analiz i strategiya razvitiya sveklosakharnogo podkompleksa Rossii na period do 2020 goda (Analysis and Development Strategy of Sugar Beet Subcomplex of Russia for the period up to 2020), Kornienko, A.V., Ed., Voronezh: Istoki, 2009.

  18. Kornienko, A.V., Apasov, I.V., Butorina, A.K., and Zhuzhzhalova, T.P., Current state of foreign investigation on genetics and breeding of sugar beet, S-kh. Biol., 2011, no. 1, pp. 3–11.

    Google Scholar 

  19. Butorina, A.K. and Kornienko, A.V., Molecular genetic investigation of sugar beet (Beta vulgaris L.), Russ. J. Genet. 2011, vol. 47, no. 10, pp. 1141–1150.

    Article  CAS  Google Scholar 

  20. Zhimulev, I.F., Obshchaya i molekulyarnaya genetika: uchebnoe posobie dlya vuzov (General and Molecular Genetic: Handbook for Higher School), Novosibirsk: Izd. Sib. Univ., 2006.

    Google Scholar 

  21. Jung, C., Genome analysis: mapping in sugar beet, in Biotechnology in Agriculture and Forestry, 2004, pp. 121–133.

    Google Scholar 

  22. Panella, L., Utilizing genetic resources for prebreeding of stress resistant sugar beet germplasm: using molecular tools, in Conventional and Molecular Breeding of Field and Vegetable Crops, Novi Sad, 2008, pp. 107–111.

    Google Scholar 

  23. Li, J., Schulz, B., and Stich, B., Population structure and genetic diversity in elite sugar beet germplasm investigated with SSR markers, Euphytica, 2010, vol. 175, no. 1, pp. 35–42.

    Article  CAS  Google Scholar 

  24. Schaber, M.A. and Goldman, I.L., Visual versus marker-based selection of hybrid progeny in fertile x fertile beet and carrot crosses, Crop Sci., 2013, vol. 53, pp. 1419–1426.

    Article  Google Scholar 

  25. Levites, E.V., Genetics of isozymes in sugar beet, in Genetika sakharnoi svekly (Genetics of Sugar Beet), Maletskii, S.I., Ed., Novosibirsk: Nauka, 1984, pp. 45–60.

    Google Scholar 

  26. Levites, E.V. and Kotlyarovskii, D.I., The use of genetic markers for crosspollination control in self-incompatible sugar beet line, in Genetika sakharnoi svekly (Genetics of Sugar Beet), Maletskii, S.I., Ed., Novosibirsk: Nauka, 1984, pp. 145–150.

    Google Scholar 

  27. Fedulova, T.P., Theoretical and practical aspects of molecular genetic marking in selection of sugar beet (Beta vulgaris L.), Extended Abstract of Doctoral Dissertation, Ramon’, 2005.

    Google Scholar 

  28. Fedulova T.P., Mitin, S.N. and Kornienko, A.V., Study of genetic diversity in sugar beet lines by protein markers technique, in 67th IIRB Congress, Bruxelles, 1994, p. 03.

    Google Scholar 

  29. Fedulova, T.P., Bogacheva, N.N., Fedorin, D.N., et al., Molecular genetic study of parental forms of sugar beet hybrids, Sakharnaya Svekla, 2010, no. 8, pp. 8–10.

    Google Scholar 

  30. Eathington, S.R., Crosbie, T.M., Edwards, M.D., et al., Molecular markers in a commercial breeding program, Crop Sci., 2007, vol. 47, pp. 154–163.

    Article  Google Scholar 

  31. El-Mezawy, A., Dreyer, F., Jacobs, G., and Jung, C., High resolution mapping of the bolting gene B in sugar beet, Theor. Appl. Genet., 2002, vol. 105, pp. 100–105.

    Article  CAS  PubMed  Google Scholar 

  32. Pin, P.A., Zhang, W., Buettner, B., et al., The genetic control of early bolting in sugar beet, in Plant and Animal Genomes, (Proc. 19th Int. Conf.), San Diego: Town and Country Convention Center, 2011, W 568.

    Google Scholar 

  33. Abou-Elwafa, S.F., Buttner, B., Jung, C., and Muller, A.E., Novel genetic factors affecting bolting control in Beta vulgaris, in Plant and Animal Genomes, (Proc. 19th Int. Conf.), San Diego: Town and Country Convention Center, 2011, W 567.

    Google Scholar 

  34. Schneider, K., Schafer-Pregl, R., Borchardt, D.C., and Salamini, F., Mapping QTLs for sugar content, yield and quality in a sugar beet population fingerprinted by EST related markers, Theor. Appl. Genet., 2002, vol. 104, pp. 1107–1113.

    Article  CAS  PubMed  Google Scholar 

  35. Setiawan, A., Koch, G., Barnes, S.R., and Jung, C., Mapping quantitative trait loci (QTL) for resistance to Cercospora leaf spot disease (Cercospora beticola Sacc.) in sugar beet (Beta vulgaris L.), Theor. Appl. Genet., 2000, vol. 100, pp. 1176–1182.

    Article  CAS  Google Scholar 

  36. Grimmer, M., Bean, K., and Asher, M., Mapping of five resistant genes to sugar-beet powdery mildew using AFLP and anchored SNP markers, Theor. Appl. Genet., 2007, vol. 115, pp. 65–75.

    Article  Google Scholar 

  37. Stevanato, P., Trebbi, D., and Saccomani, M., Root traits and yield in sugar beet: identification of AFLP markers associated with root elongation rate, Euphytica, 2010, vol. 173, pp. 289–298.

    Article  Google Scholar 

  38. Schumacher, K., Schondelmaier, J., Barzen, E., et al., Combining different linkage maps in sugar beet (Beta vulgaris L.), Plant Breed., 1997, vol. 116, pp. 23–38.

    Article  Google Scholar 

  39. Paesold, S., Borchardt, D., Schmidt, T., and Dechueva, D., A sugar beet (Beta vulgaris L.) reference FISH karyotype for chromosome and chromosome-aim identification, integration of genetic linkage groups and analysis of major repeat family distribution, Plant J., 2012, vol. 72, pp. 60–611.

    Article  Google Scholar 

  40. Butterfass, T., Die Chloroplastenzahlen in verschiedenartigen zellentrisomer Zuckerruben (Beta vulgaris L.), Z. Bot., 1964, vol. 52, pp. 46–47.

    Google Scholar 

  41. Romagosa, I., Cistue, L., Tsuchiya, J.M., et al., Primary trisomics in sugar beet: 2. Cytological identification, Crop Sci., 1987, vol. 27, pp. 243–249.

    Article  Google Scholar 

  42. McGrath, J.M., Assisted breeding in sugar beets, Sugar Tech., 2010, vol. 12, nos. 3–4, pp. 187–193.

    Article  Google Scholar 

  43. Khavkin, E.E., Molecular markers in plant industry, S-kh. Biol., 1997, no. 5, pp. 3–18.

    Google Scholar 

  44. Xu, Y. and Crouch, J.H., Marker-assisted selection in breeding: from publication to practice, Crop Sci., 2008, vol. 48, no. 2, pp. 391–407.

    Article  Google Scholar 

  45. Choudhary, K., Choudhary, O.P., and Shekhawat, N.S., Marker assisted selection: novel approach for crop improvement, Am.-Eurasian J. Agron., 2008, vol. 1, no. 2, pp. 26–30.

    Google Scholar 

  46. Hospital, F., Challenges for effective marker-assisted selection in plant, Genetics, 2009, vol. 136, pp. 303–310.

    Google Scholar 

  47. Camerton, J.S., 21st century sugar beet breeding, Agric. Res., 2004. http://findarticles.com/p/articles/mi-m3741/

    Google Scholar 

  48. Kornienko, A.V. and Butorina, A.K., Molecular breeding of sugar beet, Sakharnaya Svekla, 2014, no. 1, pp. 12–15.

    Google Scholar 

  49. Fedulova, T.P., Identification and certification of sugar beet cultivars and hybrids, in Entsiklopediya roda Beta (biologiya, genetika i selektsiya svekly) (Encyclopaedia of the Genus Beta (Biology, Genetics, and Breeding)), Maletskii, I.S., Ed., Novosibirsk: Sova, 2010, pp. 514–524.

    Google Scholar 

  50. Bogacheva, N.N., The study of the genetic diversity of breeding material of sugar beet using molecular markers, Extended Abstract of Cand. Sci. Dissertation, Vseross. Nauchno-Issled. Inst. Sakharnoy Svekly, Voronezh, 2012.

    Google Scholar 

  51. Banzal, K.C., Lenka, S.K., and Mondal, T.K., Genomic resources for breeding crops with enhanced abiotic stress tolerance, Plant Breed., 2014, vol. 133, pp. 1–11.

    Article  Google Scholar 

  52. Taguchi, K., Okazaki, K., Takahashi, H., et al., Molecular mapping of a gene conferring resistance to Aphanomyces root rot (black root) in sugar beet (Beta vulgaris L.), Euphytica, 2010, vol. 173, pp. 409–418.

    Article  CAS  Google Scholar 

  53. Panella, L. and Lewellen, R.T., Broadening the genetic base of sugar beet: introgression from wild relatives, Euphytica, 2007, vol. 154, pp. 383–400.

    Article  CAS  Google Scholar 

  54. Gidner, S., Lennefors, B.L., and Nilsson, N.O., QTL mapping of BNYVV resistance from the WB41 source in sugar beet, Genome, 2005, vol. 48, pp. 279–285.

    Article  CAS  PubMed  Google Scholar 

  55. Grimmer, M., Trybush, S., Hanley, S., et al., An anchored linkage map for sugar beet based on AFLP, SNP and RAPD markers and QTL mapping of a new source of resistance to beet necrotic yellow vein virus, Theor. Appl. Genet., 2007, vol. 114, pp. 1151–1160.

    Article  CAS  PubMed  Google Scholar 

  56. Grimmer, M.R., Kraft, T., Francis, S.A., and Asher, M.J.C., QTL mapping of BNYVV resistance from the WB 258 source in sugar beet, Plant Breed., 2008, vol. 127, no. 6, pp. 650–652.

    Article  Google Scholar 

  57. Grimmer, M.R., Bean, K.M.R., Qi, A., et al., The action of three beet yellows virus resistance QTLs depend on alleles at a novel genetic locus that controls symptom development, Plant Breed., 2010, vol. 127, pp. 381–397.

    Google Scholar 

  58. Zhang, C.-L., Xu, D.-C., Jiang, X.-C., et al., Genetic approaches to sustainable pest management in sugar beet (Beta vulgaris), Ann. Appl. Biol., 2008, vol. 152, no. 2, pp. 143–156.

    Article  CAS  Google Scholar 

  59. Bogomolov, M.A., The use of wild species of beet from the section Corollinae in sugar beet (Beta vulgaris L.) breeding, in Trudy Vserossiskogo Instituta Rastenievodstva (Transections of All-Russian Institute of Plant Industry), St. Petersburg, 2007, pp. 419–420.

    Google Scholar 

  60. Bogomolov, M.A., Apomixis in sugar beet (Beta vulgaris L.), in Apomiksis i reproduktivnaya biologiya (Apomixis and Reproductive Biology), (Proc. All-Russ. Sci. Conf. in Memoriam 100th Anniversary S.S. Khokhlov, Saratov, 2010), Saratov: Saratov Univ., 2010, pp. 66–74.

    Google Scholar 

  61. Bogomolov, M.A., Agafonov, N.S., Zhuzhzhalova, T.P., et al., USSR Inventor’s Certificate no. 1708210, Byull. Izobret., 1991, no. 4, p. 6.

    Google Scholar 

  62. Zhuzhzhalova, T.P. and Vasil’chenko, E.N., Induction of GMO sugar beet plants resistant to pathogens, in V s“ezd Vavilovskogo obshchestva genetikov i selektsionerov: tezisy dokladov (5th Congress of the Vavilov Society of Geneticists and Breeders: Proceedings), Moscow, 2009, part 1, p. 228.

    Google Scholar 

  63. Dzhavakhiya, V.G., Bacterial proteins-inducers of plant nonspecific resistance to pathogens, in Sovremennye sistemy zashchity rastenii ot boleznei i perspektivy ispol’zovaniya dostizhenii biotekhnologii i gennoi inzhenerii (Modern Systems of Plant Protection against Diseases and Prospects for the Use of Achievements in Biotechnology and Genetic Engineering), (Proc. All-Russ. Conf., Golitsino, 2003), 2003, pp. 196–198.

    Google Scholar 

  64. Vasil’chenko, E.N. and Fedorin, D.N., Transformation of sugar beet plants using MF2 gene, in Biotekhnologiya v rastenievodstve, zhivotnovodstve i veterinarii (Biotechnology in Plant Industry, Animal Husbandry, and Veterinary Medicine), (Proc. Youth Sci. Conf., Moscow, 2010), Moscow, 2010, pp. 15–16.

    Google Scholar 

  65. McCallum, C.M., Comai, L., Greene, E.A., and Henikoff, S., Targeting induced local lesions in genomes (TILLING) for plant functional genomics, Plant Physiol., 2000, vol. 126, pp. 439–442.

    Article  Google Scholar 

  66. Comai, L. and Henikoff, S., TILLING: practical single-nucleotide mutation discovery, Plant J., 2006, vol. 45, pp. 684–694.

    Article  CAS  PubMed  Google Scholar 

  67. Tsai, H., Howell, T., Nitcher, R.V., et al., Discovery of rare mutations in populations: TILLING by sequencing, Plant Physiol., 2011, vol. 156, pp. 1257–1268.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Jung, C. and Hohmann, U., Establishment of a TILLING platform for sugar beet, in Plant and Animal Genomes (Proc. 14th Conf.), San Diego: Town and Country Convention Center, 2006, W 184.

    Google Scholar 

  69. Himmelbauer, H., Dohm, J., Lange, C., et al., Sugar beet genetics and genomics in the German plant genome program GABI, in Plant and Animal Genomes, (Proc. 17th Int. Conf.), San Diego: Town and Country Convention Center, 2009, W 483.

    Google Scholar 

  70. Hohmann, U., Jacobs, G., and Jung, C., An EMS mutagenesis protocol for sugar beet and isolation nonbolting mutants, Plant Breed., 2005, vol. 124, no. 4, pp. 317–321.

    Article  Google Scholar 

  71. Buttner, B., Abou-Elwafa, S.F., Zhang, W., et al., A survey of EMS-induced biennial Beta vulgaris mutants reveals a novel bolting locus with unlinked to the bolting gene B, Theor. Appl. Genet., 2010, vol. 121, no. 6, pp. 1117–1137.

    Article  PubMed  Google Scholar 

  72. Kornienko, A.V., Osnovy mutatsionnoi selektsii svekly (Bases of Mutation Breeding in Beet), Moscow: Agropromizdat, 1990.

    Google Scholar 

  73. Kornienko, A.V. and Butorina, A.K., Induced mutagenesis in sugar beet (Beta vulgaris L.): obtained results and prospects for use in development of TILLING project, Biol. Bull. Rev., 2012, vol. 3, no. 2, pp. 152–160.

    Article  Google Scholar 

  74. Frerichmann, S.L.M., Kirchhoff, M., Muller, A.E., et al., Eco-TILLING in Beta vulgaris reveals polymorphism in the FLC-like gene BvFL1 that associated with annuality and winter hardiness, BMC Plant Biol., 2013, vol. 13, pp. 52–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Stich, B., Melchinger, A.E., Heckenbergerm, M., et al., Association mapping in multiple segregation populations of sugar beet (Beta vulgaris L.), Theor. Appl. Genet., 2008, vol. 117, pp. 1167–1179.

    Article  PubMed  Google Scholar 

  76. Reif, J.C., Liu, W., Gowda, M., et al., Genetic basis of agronomically important traits in sugar beet (Beta vulgaris L.) investigated with joint linkage association mapping, Theor. Appl. Genet., 2010, vol. 121, pp. 1489–1499.

    Article  PubMed  Google Scholar 

  77. Wurschum, T., Maurer, H.P., Schultz, B., et al., Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet, Theor. Appl. Genet., 2011, vol. 123, pp. 109–118.

    Article  PubMed  Google Scholar 

  78. Wurschum, T., Maurer, H.P., Kraft, T., et al., Genome-wide association mapping of agronomic traits in sugar beet, Theor. Appl. Genet., 2011, vol. 123, pp. 1121–1131.

    Article  PubMed  Google Scholar 

  79. Wurschum, T., Mapping QTL for agronomic traits in breeding populations, Theor. Appl. Genet., 2012, vol. 125, pp. 201–210.

    Article  PubMed  Google Scholar 

  80. Laurent, V., Devaux, P., Thiel, T., et al., Comparative effectiveness of sugar beet microsatellite markers isolated from genomic libraries and Gen Bank ESTs to map the sugar beet genome, Theor. Appl. Genet., 2007, vol. 115, pp. 793–805.

    Article  CAS  PubMed  Google Scholar 

  81. Kornienko, A.V., Morgun, A.V., and Trush, S.G., Selektsiya svekly na geterozis (Beta vulgaris L.) (Beet Breeding for Heterosis (Beta vulgaris L.)), Voronezh, 2007.

    Google Scholar 

  82. Bogomolov, M.A. and Fedulova, T.P., Sozdanie iskhodnogo materiala sakharnoi svekly na osnove indutsirovannogo apomiksisa (Production of Sugar Beet Initial Material Based on Induced Apomixis), Voronezh: Istoki, 2007.

    Google Scholar 

  83. Oshevnev, V.P. and Gribanova, N.P., Improving components of sugar beet hybrids in the selection and maintenance of primary seed production, Dokl. Ross. Akad. S-kh. Nauk, 2003, no. 1, pp. 11–15.

    Google Scholar 

  84. Kirikovich, S.S. and Levites, E.V., Role of polyteny and chromosome-membrane interactions in plant genetic processes, Russ. J. Genet., 2013, vol. 49, no. 8, pp. 787–797.

    Article  CAS  Google Scholar 

  85. Levites, E.V. and Kirikovich, S.S., Post-meiotic apozygotic combinatory process in sugar beet (Beta vulgaris L.), Adv. Biosci. Biotechnol., 2012, vol. 3, pp. 75–79.

    Article  CAS  Google Scholar 

  86. Levites, E.V. and Kirikovich, S.S., Zygotic combinatory process in plants, Adv. Biosci. Biotechnol., 2013, vol. 4, pp. 798–803.

    Article  Google Scholar 

  87. Koryakov, D.E. and Zhimulev, I.F., Khromosomy: struktura i funktsii (Chromosomes: Structure and Functions), Novosibipsk: Sib. Otd. Ross. Akad. Nauk, 2009.

    Google Scholar 

  88. Vanyushin, B.F., Enzymatic DNA methylation is an epigenetic control for genetic functions of the cell, Biochemistry (Moscow), 2005, vol. 70, no. 5, pp. 488–499.

    Article  CAS  Google Scholar 

  89. Korochkin, L.I., What is epigenetics?, Russ. J. Genet., 2006, vol. 42, no. 9, pp. 958–967.

    Article  CAS  Google Scholar 

  90. Maletskaya, E.I., Yudanova, S.S., and Maletskii, S.I., Effect of 5-azacytidine on flower stalk branching in sugar beet (Beta vulgaris L.), Tsitol. Genet., 2006, vol. 40, no. 6, pp. 16–22.

    Google Scholar 

  91. Kirikovich, S.S. and Levites, E.V., Effect of Triton X-100 on genetic segregation and manifestation of the trait of mono- and dicotyledonousness in sugarbeet (Beta vulgaris L.), Russ. J. Genet., 2013, vol. 49, no. 5, pp. 517–522.

    Article  CAS  Google Scholar 

  92. Maletskii, S.I., Epigenetic inheritance of unianthysynanthy trait in sugarbeet (Beta vulgaris L.), in Epigenetika rastenii (Plant Epigenetics), Novosibirsk, 2005, pp. 195–207.

    Google Scholar 

  93. Vershinin, A.V., Epigenetics of specific chromosome regions, Russ. J. Genet., 2006, vol. 42, no. 9, pp. 998–1010.

    Article  CAS  Google Scholar 

  94. Razin, S.V., Spatial organization of the eukaryotic genome and the action of epigenetic mechanisms, Russ. J. Genet., 2006, vol. 42, no. 12, pp. 1353–1361.

    Article  CAS  Google Scholar 

  95. Groszmann, M., Greaves, I.K., Fujimoto, R., et al., The role of epigenetics in hybrid vigor, Trends Genet., 2013, vol. 29, no. 12, pp. 684–690.

    Article  CAS  PubMed  Google Scholar 

  96. Levites, E.V. and Kirikovich, S.S., Combinatorial processes as a mechanism of variability in agamospermic progenies of sugar beet (Beta vulgaris L.), in Sovremennoe sostoyanie i prioritetnye napravleniya razvitiya genetiki, epigenetiki, selektsii i semenovodstva sel’skokhozyaistvennykh kul’tur (Current Status and Priorities for the Development of Genetics, Epigenetics, Breeding, and Seed Production of Agricultural Crops), (Proc. 11th Int. Gen. Breed. School-Seminar, Kasnoobsk, 2012), Novosibirsk: Sibirskii Nauchno-Issledovatel’skii Institut Rastenievodstva i Selektsii, 2013, pp. 123–128.

    Google Scholar 

  97. Kirikovich, S.S. and Levites, E.V., Change in the phenotype ratio in agamospermic progenies of sugar beet under the influence of epimutagene Triton-100 at the early stages of embryogenesis, in Sovremennoe sostoyanie i prioritetnye napravleniya razvitiya genetiki, epigenetiki, selektsii i semenovodstva sel’skokhozyaistvennykh kul’tur (Current Status and Priorities for the Development of Genetics, Epigenetics, Breeding, and Seed Production of Agricultural Crops), (Proc. 11th Int. Gen. Breed. School-Seminar, Kasnoobsk, 2012), Novosibirsk: Sibirskii Nauchno-Issledovatel’skii Institut Rastenievodstva i Selektsii, 2013, pp. 64–71.

    Google Scholar 

  98. Maletskii, S.I., Plant development and the ideas of N.I. Vavilov in the context of modern concepts on epigenetic hereditary variation, in Sovremennoe sostoyanie i prioritetnye napravleniya razvitiya genetiki, epigenetiki, selektsii i semenovodstva sel’skokhozyaistvennykh kul’tur (Current Status and Priorities for the Development of Genetics, Epigenetics, Breeding, and Seed Production of Agricultural Crops), (Proc. 11th Int. Gen. Breed. School-Seminar, Kasnoobsk, 2012), Novosibirsk: Sibirskii Nauchno-Issledovatel’skii Institut Rastenievodstva i Selektsii, 2013, pp. 129–138.

    Google Scholar 

  99. Yudanova, S.S. and Maletskaya, E.I., History of sugar beet breeding in the light of current issues of exchange of initial and new breeding material, in Sovremennoe sostoyanie i prioritetnye napravleniya razvitiya genetiki, epigenetiki, selektsii i semenovodstva sel’skokhozyaistvennykh kul’tur (Current Status and Priorities for the Development of Genetics, Epigenetics, Breeding, and Seed Production of Agricultural Crops), (Proc. 11th Int. Gen. Breed. School-Seminar, Kasnoobsk, 2012), Novosibirsk: Sibirskii Nauchno-Issledovatel’skii Institut Rastenievodstva i Selektsii, 2013, pp. 12–320.

    Google Scholar 

  100. Kornienko, A.V., Butorina, A.K., Sukhorukikh, V.A., et al., Kontseptsiya razvitiya selektsii sel’skokhozyaistvennykh rastenii na ustoichivost’ k bioi abioticheskim faktoram v Rossiiskoi Federatsii za period do 2020 goda (Concept of Development of Crop Plant Breeding for Resistance to Bio- and Abiotic Factors in the Russian Federation for the Period till 2020), Voronezh: Voronezhskii TsBNTI, 2012.

    Google Scholar 

  101. Slater, A.T., Cogan, N.O.I., and Forster, J.W., Cost analysis of the application of marker-assisted selection in potato breeding, Mol. Breed., 2013, vol. 32, pp. 299–310.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kornienko.

Additional information

Original Russian Text © A.V. Kornienko, O.A. Podvigina, T.P. Zhuzhzhalova, T.P. Fedulova, M.A. Bogomolov, V.P. Oshevnev, A.K. Butorina, 2014, published in Genetika, 2014, Vol. 50, No. 11, pp. 1286–1298.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornienko, A.V., Podvigina, O.A., Zhuzhzhalova, T.P. et al. High-priority research directions in genetics and the breeding of the sugar beet (Beta vulgaris L.) in the 21st century. Russ J Genet 50, 1137–1148 (2014). https://doi.org/10.1134/S1022795414110064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414110064

Keywords

Navigation