Skip to main content
Log in

Diversity of Thermophilic Prokaryotes Inhabiting Russian Natural Hot Springs

  • REVIEWS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

In this review, we highlight the key results of studies on the diversity of thermophilic prokaryotes inhabiting the Russian Federation’s hot springs. The main part of the review is a summary of the results obtained from several decades of research on the thermophilic microbial communities of the Kamchatka Peninsula, the Kuril Islands, and Lake Baikal using classical microbiological approaches, radioisotopic tracing, and molecular ecology. Apart from these well-studied environments, we have also included recent exploration of the hot springs located in the East-Tuvinian upland, the Chukchi Peninsula, Sakhalin, and the North Caucasus. First, we discuss taxonomy of all above-mentioned thermophilic prokaryotes. Second, we consider the main energy-providing processes, based primarily on redox reactions of inorganic (mainly sulfur and iron) and organic compounds. Then, we discuss in detail the thermophilic prokaryotes involved in the carbon cycle: from CO2-assimilating chemolithoautotrophs to heterotrophs capable of hydrolyzing complex organic matter. Last, we discuss uncultivated lineages of thermophilic bacteria and archaea, which are present or even predominant in the thermal environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Here and below, we provide taxonomy according to the Bergey’s Manual of Systematics of Archaea and Bacteria (https://onlinelibrary.wiley.com/doi/book/10.1002/9781118960608). We will be using this nomenclature rather than that of GTDB (https://gtdb.ecogenomic.org/) because the latter system is relatively new, has not been universally accepted by microbiologists, and is unfamiliar to many readers.

REFERENCES

  1. Adam, P.S., Borrel, G., Brochier-Armanet, C., and Gribaldo, S., The growing tree of Archaea: new perspectives on their diversity, evolution and ecology, ISME J., 2017, vol. 11, pp. 2407–2425.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Albuquerque, L., Rainey, F.A., and da Costa, M.S., Thermus, in Bergey’s Manual of Systematics of Archaea and Bacteria, Wiley, 2018, pp. 1–39.

    Google Scholar 

  3. Babasanova, O.B., Budagaeva, V.G., Barkhutova, D.D., and Namsaraev, B.B., Organotrophic bacteria of hydrotherms of the Baikal Rift Zone and their functional role in the microbial community, Vestn. Buryat Gos. Univ., 2013, vol. 4, pp. 150–153.

    Google Scholar 

  4. Balashova, V.V. and Zavarzin, G.A., Anaerobic reduction of ferric iron by hydrogen bacteria, Mikrobiologiya, 1979, vol. 48, pp. 773–778.

    CAS  Google Scholar 

  5. Baskov, E. and Surikov, S., Gidrotermy zemli (Hydrotherms of Earth), Leningrad: Nedra, 1989.

  6. Bazhenova, O.K., Arefiev, O.A., and Frolov, E.B., Oil of the volcano Uzon caldera, Kamchatka, Org. Geochem., 1998, vol. 29, pp. 421–428.

    Article  CAS  Google Scholar 

  7. Bogomaz, O.D., Vladimirov, I.A., Pavlova, O.A., and Bogomaz, D.I., A study of diversity of thermophilic bacteria from the Psekup thermal water deposit, Mezhd. Zh. Prikl. Fundament. Issled., 2019, vol. 5, pp. 1–6.

    Google Scholar 

  8. Bonch-Osmolovskaya, E.A, Sokolova, T.G., Kostrikina, N.A., and Zavarzin, G.A., Desulfurella acetivorans gen. nov. and sp. nov. — a new thermophilic sulfur-reducing eubacterium, Arch. Microbiol., 1990a, vol. 153, pp. 151–155.

    Article  Google Scholar 

  9. Bonch-Osmolovskaya, E.A., Miroshnichenko, M.L., Kostrikina, N.A., Chernyh, N.A., and Zavarzin, G.A., Thermoproteus uzoniensis sp. nov., a new extremely thermophilic archaebacterium from Kamchatka continental hot springs, Arch. Microbiol., 1990b, vol. 154, pp. 556–559.

    Article  CAS  Google Scholar 

  10. Bonch-Osmolovskaya, E.A., Miroshnichenko, M.L., Pikuta, E.V., Sorokin, D.Yu., and Namsaraev, B.B., Bacterial sulfur reduction in shallow hydrotherms of South-Western Pacific Ocean, Mikrobiologiya, 1993, vol. 62, pp. 564–573.

    CAS  Google Scholar 

  11. Bonch-Osmolovskaya, E.A., Miroshnichenko, M.L., Chernykh, N.A., Kostrikina, N.A., Pikuta, E.V., and Rainey, F.A., Reduction of elemental sulfur by moderately thermophilic organotrophic bacteria and the description of Thermoanaerobacter sulfurophilus sp. nov., Microbiology (Moscow), 1997, vol. 66, pp. 483–489.

    CAS  Google Scholar 

  12. Bonch-Osmolovskaya, E.A., Miroshnichenko, M.L., Slobodkin, A.I., Sokolova, T.G., Kostrikina, N.A., Prokofeva, M.I., Rusanov, I.I., Pimenov, N.V., Kar-pov, G.A., and Zavarzina, D.G., Biodiversity of anaerobic lithotrophic prokaryotes in terrestrial hot springs of Kamchatka, Microbiology (Moscow), 1999, vol. 68, pp. 343–351.

    CAS  Google Scholar 

  13. Bonch-Osmolovskaya, E.A., Slesarev, A.I., Miroshnichenko, M.L., Svetlichnaya, T.P., and Alekseev, V.A., Characterization of Desulfurococcus amylolyticus sp. nov.—a novel extremely thermophilic archebacterium isolated from hydrotherms of Kamchatka and Kunashir Island, Mikrobiologiya, 1988, vol. 57, pp. 94–102.

    CAS  Google Scholar 

  14. Borisenko, I.M. and Zamana, L.V., Mineralnye vody Buryatskoi ASSR (Mineral Waters of Buryat ASSR), Ulan-Ude: Buryat. Knigoizd., 1978.

  15. Boyd, E.S., Fecteau, K.M., Havig, J.R., Shock, E.L., and Peters, J.W., Modeling the habitat range of phototrophs in Yellowstone National Park: toward the development of a comprehensive fitness landscape, Front. Microbiol., 2012, vol. 3, art. 221.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brock, T.D. and Freeze, H., Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile, J. Bacteriol., 1969, vol. 98, pp. 289–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brock, T.D., Thermophilic Microorganisms and Life at High Temperatures, Berlin: Springer, 1978.

    Book  Google Scholar 

  18. Bryanskaya, A.V., Barkhutova, D.D., Namsaraev, B.B., Namsaraev, Z.B., Gorlenko, V.M., and Kalashniko-va, O.M., Biogeochemical processes in the algal-bacterial mats of the Urinskii alkaline hot spring, Microbiology (Moscow), 2006, vol. 75, pp. 611–620.

    Article  CAS  Google Scholar 

  19. Bryanskaya, A.V., Rozanov, A.S., Slynko, N.M., Shekhovtsov, S.V., and Peltek, S.E., Geobacillus icigianus sp. nov., a thermophilic bacterium isolated from a hot spring, Int. J. Syst. Evol. Microbiol., 2015, vol. 65, pp. 864–869.

    Article  CAS  PubMed  Google Scholar 

  20. Budagaeva, V.G., Radnagurueva, A.A., Malygin, A.V., and Barkhutova, D.D., Taxonomic composition of the microbial community of Alla hot spring (Baikal Rift Zone), Vestn. Buryat. Gos. Univ., 2021, vol. 110, pp. 3–11.

    Google Scholar 

  21. Burgess, E.A., Unrine, J.M., Mills, G.L., Romanek, C.S., and Wiegel, J., Comparative geochemical and microbiological characterization of two thermal pools in the Uzon Caldera, Kamchatka, Russia, Microb. Ecol., 2012, vol. 63, pp. 471–489.

    Article  PubMed  Google Scholar 

  22. Chernousova, E.Yu., Gridneva, E.V., Grabovich, M.Yu., Akimov, V.N., and Dubinina, G.A., Phylogenetic in situ/ex situ analysis of a sulfur mat microbial community from a thermal sulfide spring in the North Caucasus, Microbiology (Moscow), 2008, vol. 77, pp. 219–223.

    Article  CAS  Google Scholar 

  23. Chernyh, N.A., Mardanov, A.V., Gumerov, V.M., Miroshnichenko, M.L., Lebedinsky, A.V., Merkel, A.Y., Crowe, D., Pimenov, N.V., Rusanov, I.I., Ravin, N.V., Moran, M.A., and Bonch-Osmolovskaya, E.A., Microbial life in Bourlyashchy, the hottest thermal pool of Uzon Caldera, Kamchatka, Extremophiles, 2015, vol. 19, pp. 1157–1171.

    Article  CAS  PubMed  Google Scholar 

  24. Chernyh, N.A., Kublanov, I.V., Prokof’eva, M.I., Pimenov, N.V., Frolov, E.N., Lebedinskii, A.V., Bonch-Osmolovskaya, E.A., Mardanov, A.V., Khvashchev-skaya, A.A., and Guseva, N.V., Production of organic matter and diversity of the ribulose bisphosphate carboxylase genes in sediments of the Solnechny spring, Uzon caldera, Kamchatka, Microbiology (Moscow), 2017, vol. 86, pp. 666–669.

    Article  CAS  Google Scholar 

  25. Chernyh, N.A., Neukirchen, S., Frolov, E.N., Sousa, F.L., Miroshnichenko, M.L., Merkel, A.Y., Pimenov, N.V., Sorokin, D.Y., Ciordia, S., Mena, M.C., Ferre, M., Golyshin, P.N., Lebedinsky, A.V., Pereira, I.A.C., and Bonch-Osmolovskaya, E.A., Dissimilatory sulfate reduction in the archaeon ‘Candidatus Vulcanisaeta moutnovskia’ sheds light on the evolution of sulfur metabolism, Nature Microbiol., 2020, vol. 5, pp. 1428–1438.

    Article  CAS  Google Scholar 

  26. Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., von Herzen, R.P., Ballard, R.D., Green, K., Williams, D., Bainbridge, A., Crane, K., and van Andel, T.H., Submarine thermal springs on the Galápagos Rift, Science, 1979, vol. 203, pp. 1073–1083.

    Article  CAS  PubMed  Google Scholar 

  27. Daims, H., Lebedeva, E.V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R.H., von Bergen, M., Rattei, T., Bendinger, B., Nielsen, P.H., and Wagner, M., Complete nitrification by Nitrospira bacteria, Nature, 2015, vol. 528, pp. 504–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. DeCastro, M.-E., Rodríguez-Belmonte, E., and González-Siso, M.-I., Metagenomics of thermophiles with a focus on discovery of novel thermozymes, Front. Microbiol., 2016, vol. 7, art. 1521.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Des Marais, D.J. and Walter, M.R., Terrestrial hot spring systems: introduction, Astrobiology, 2019, vol. 19, pp. 1419–1432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dobretsov, N.L., Lazareva, E.V., Zhmodik, S.M., Kirichenko, I.S., Bryanskaya, A.V., Peltek, S.E., Rozanov, A.S., Morozova, V.V., Tikunova, N.V., Babkin, I.V., Karpov, G.A., Taran, O.P., Ogorodnikova, O.L., Shuvaeva, O.V., and Chebykin, E.P., Geological, hydrogeochemical, and microbiological characteristics of the oil site of the Uzon caldera (Kamchatka), Russian Geol. Geophys., 2015, vol. 56, pp. 39–63.

    Article  Google Scholar 

  31. Dvoryanchikova, E.N., Kizilova, A.K., Kravchenko, I.K., and Galchenko, V.F., Analysis of the microbial communities of thermal springs near Fumarolnoe Lake of the Uzon caldera (Kamchatka), Izv. Samara Nauchn. Tsentra Ross. Akad. Nauk, 2011, vol. 13, pp. 1418–1424.

    Google Scholar 

  32. Eder, W. and Huber, R., New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov., Extremophiles, 2002, vol. 6, pp. 309–318.

    Article  PubMed  Google Scholar 

  33. Elcheninov, A.G., Podosokorskaya, O.A., Kovaleva, O.L., Novikov, A.A., Toshchakov, S.V., Bonch-Osmolovskaya, E.A., and Kublanov, I.V., Thermogemmata fonticola gen. nov., sp. nov., the first thermophilic planctomycete of the order Gemmatales from a Kamchatka hot spring, Syst. Appl. Microbiol., 2021, vol. 44, art. 126157.

    Article  CAS  PubMed  Google Scholar 

  34. Eme, L., Reigstad, L.J., Spang, A., Lanzén, A., Weinmaier, T., Rattei, T., Schleper, C., and Brochier-Armanet, C., Metagenomics of kamchatkan hot spring filaments reveal two new major (hyper) thermophilic lineages related to Thaumarchaeota, Res. Microbiol., 2013, vol. 164, pp. 425–438.

    Article  CAS  PubMed  Google Scholar 

  35. Fedotov, S.A., On the mechanisms of volcanic activity on Kamchatka, the Kuril–Kamchatka Arch, and in similar structures, in Deistvuyushchie vulkany Kamchatki (Active Volcanoes of Kamchatka), Fedotov, S.A. and Masurenkov, Yu.P., Eds., Moscow: Nauka, 1991, pp. 18–35.

  36. Frolov, E.N., Kublanov, I.V., Toshchakov, S.V., Samarov, N.I., Novikov, A.A., Lebedinsky, A.V., Bonch-Osmolovskaya, E.A., and Chernyh, N.A., Thermodesulfobium acidiphilum sp. nov., a thermoacidophilic, sulfate-reducing, chemoautotrophic bacterium from a thermal site, Int. J. Syst. Evol. Microbiol., 2017, vol. 67, pp. 1482–1485.

    Article  CAS  PubMed  Google Scholar 

  37. Frolov, E.N., Zayulina, K.S., Kopitsyn, D.S., Kublanov, I.V., Bonch-Osmolovskaya, E.A., and Chernyh, N.A., Desulfothermobacter acidiphilus gen. nov., sp. nov., a thermoacidophilic sulfate-reducing bacterium isolated from a terrestrial hot spring, Int. J. Syst. Evol. Microbiol., 2018, vol. 68, pp. 871–875.

    Article  CAS  PubMed  Google Scholar 

  38. Frolov, E.N., Kublanov, I.V., Toshchakov, S.V., Lunev, E.A., Pimenov, N.V., Bonch-Osmolovskaya, E.A., Lebedinsky, A.V., and Chernyh, N.A., Form III RubisCO-mediated transaldolase variant of the Calvin cycle in a chemolithoautotrophic bacterium, Proc. Natl. Acad. Sci. USA, 2019, vol. 116, pp. 18638–18646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frolov, E.N., Gololobova, A.V., Klyukina, A.A., Bonch-Osmolovskaya, E.A., Pimenov, N.V., Chernyh, N.A., and Merkel, A.Y., Diversity and activity of sulfate-reducing prokaryotes in Kamchatka hot springs, Microorganisms, 2021, vol. 9, art. 2072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Frolova, A.A., Slobodkina, G.B., Bonch-Osmolovskaya, E.A., Slobodkin, A.I., Baslerov, R.V., and Novikov, A.A., Thermosulfurimonas marina sp. nov., an autotrophic sulfur-disproportionating and nitrate-reducing bacterium isolated from a shallow-sea hydrothermal vent, Microbiology (Moscow), 2018, vol. 87, pp. 502–507.

    Article  CAS  Google Scholar 

  41. Fry, J.C., Parkes, R.J., Cragg, B.A., Weightman, A.J., and Webster, G., Prokaryotic biodiversity and activity in the deep subseafloor biosphere, FEMS Microbiol. Ecol., 2008, vol. 66, pp. 181–196.

    Article  CAS  PubMed  Google Scholar 

  42. Gaisin, V.A., Kalashnikov, A.M., Sukhacheva, M.V., Namsaraev, Z.B., Barhutova, D.D., Gorlenko, V.M., and Kuznetsov, B.B., Filamentous anoxygenic phototrophic bacteria from cyanobacterial mats of Alla hot springs (Barguzin Valley, Russia), Extremophiles, 2015, vol. 19, pp. 1067–1076.

    Article  CAS  PubMed  Google Scholar 

  43. Gaisin, V.A., Grouzdev, D.S., Namsaraev, Z.B., Sukhacheva, M.V., Gorlenko, V.M., and Kuznetsov, B.B., Biogeography of thermophilic phototrophic bacteria belonging to Roseiflexus genus, FEMS Microbiol. Ecol., 2016, vol. 92, pp. 1–7.

    Article  Google Scholar 

  44. Gavrilov, S.N., Stracke, C., Jensen, K., Menzel, P., Kallnik, V., Slesarev, A., Sokolova, T., Zayulina, K., Bräsen, C., Bonch-Osmolovskaya, E.A., Peng, X., Kublanov, I.V., and Siebers, B., Isolation and characterization of the first xylanolytic hyperthermophilic euryarchaeon Thermococcus sp. strain 2319x1 and its unusual multidomain glycosidase, Front. Microbiol., 2016, vol. 7, art. 552.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Golovacheva, R.S., Thermophilic nitrifying bacteria of hot springs, Mikrobiologiya, 1976, vol. 45, pp. 298–301.

    CAS  Google Scholar 

  46. Golovacheva, R.S. and Karavaiko, G.I., Sulfobacillus, a novel genus of thermophilic spore-forming bacteria, Mikrobiologiya, 1978, vol. 47, pp. 815–822.

    CAS  Google Scholar 

  47. Golovacheva, R.S., Val’ekho-Roman, K.M., and Troitskii, A.V., Sulfurococcus mirabilis gen. nov., sp. nov., a novel thermophilic archebacterium capable of sulfur oxidation, Mikrobiologiya, 1987, vol. 56, pp. 100–107.

    CAS  Google Scholar 

  48. Golovacheva, R.S., Golyshina, O.V., Karavaiko, G.I., Dorofeev, A.G., Pivovarova, T.A. and Chernyh, N.A., A novel iron-oxidizing bacterium Leptospirillum thermoferrooxidans sp. nov., Mikrobiologiya, 1992, vol. 61, pp. 1056–1065.

    CAS  Google Scholar 

  49. Golyshina, O.V., Bargiela, R., Toshchakov, S.V., Chernyh, N.A., Ramayah, S., Korzhenkov, A.A., Kublanov, I.V., and Golyshin, P.N., Diversity of “Ca. Micrarchaeota” in two distinct types of acidic environments and their associations with Thermoplasmatales, Genes, 2019, vol. 10, art. 461.

    Article  CAS  PubMed Central  Google Scholar 

  50. Gorlenko, V.M., Bonch-Osmolovskaya, E.A., Kompantseva, E.I., and Starynin, D.A., Differentiation of microbial communities due to changes in physicochemical conditions in the spring Termofilnyi, Mikrobiologiya, 1987, vol. 56, pp. 314–322.

    CAS  Google Scholar 

  51. Gorlenko, V.M., Burganskaya, E.I., and Bryantseva, I.A., Phototrophic communities of the Berikei highly mineralized mesothermal sulfide springs (Dagestan, Russia), Microbiology (Moscow), 2019, vol. 88, pp. 146–155.

    Article  CAS  Google Scholar 

  52. Hao, L., McIlroy, S.J., Kirkegaard, R.H., Karst, S.M., Fernando, W.E.Y., Aslan, H., Meyer, R.L., Albertsen, M., Nielsen, P.H., and Dueholm, M.S., Novel prosthecate bacteria from the candidate phylum Acetothermia, ISME J., 2018, vol. 12, pp. 2225–2237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hatzenpichler, R., Lebedeva, E.V., Spieck, E., Stoecker, K., Richter, A., Daims, H., and Wagner, M., A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 2134–2139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hedlund, B.P., Reysenbach, A.-L., Huang, L., Ong, J.C., Liu, Z., Dodsworth, J.A., Ahmed, R., Williams, A.J., Briggs, B.R., Liu, Y., Hou, W., and Dong, H., Isolation of diverse members of the Aquificales from geothermal springs in Tengchong, China, Front. Microbiol., 2015, vol. 6, art. 157.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hellebrand, H.J. and Schade, G.W., Carbon monoxide from composting due to thermal oxidation of biomass, J. Environ. Qual., 2008, vol. 37, pp. 592–598.

    Article  CAS  PubMed  Google Scholar 

  56. Hou, W., Wang, S., Dong, H., Jiang, H., Briggs, B.R., Peacock, J.P., Huang, Q., Huang, L., Wu, G., Zhi, X., Li, W., Dodswoth, J.A., Hedlund, B.P., Zhang, C., Hartnett, H.E., Dijkstra, P., and Hungate, B.A., A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing, PLoS One, 2013, vol. 8, art. e53350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hu, P., Tom, L., Singh, A., Thomas, B.C., Baker, B.J., Piceno, Y.M., Andersen, G.L., and Banfield, J.F., Genome-resolved metagenomic analysis reveals roles for candidate phyla and other microbial community members in biogeochemical transformations in oil reservoirs, mBio, 2016, vol. 7, e01669-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang, Q., Jiang, H., Briggs, B.R., Wang, S., Hou, W., Li, G., Wu, G., Solis, R., Arcilla, C.A., Abrajano, T., and Dong, H., Archaeal and bacterial diversity in acidic to circumneutral hot springs in the Philippines, FEMS Microbiol. Ecol., 2013, vol. 85, pp. 452–464.

    Article  CAS  PubMed  Google Scholar 

  59. Inskeep, W.P., Jay, Z.J., Tringe, S.G., Herrgård, M.J., and Rusch, D.B., The YNP metagenome project: environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem, Front. Microbiol., 2013, vol. 4, pp. 1–15.

    Article  Google Scholar 

  60. Islam, T., Jensen, S., Reigstad, L.J., Larsen, Ø., and Birkeland, N.K., Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 300–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jung, D., Seo, E.-Y., Owen, J.S., Aoi, Y., Young, S., Lavrentyeva, E.V., and Ahn, T.S., Application of the filter plate microbial trap (FPTMT), for cultivating thermophilic bacteria from thermal springs in Barguzin area, eastern Baikal, Russia, Biosci. Biotechnol. Biochem., 2018, vol. 82, pp. 1624–1632.

    Article  CAS  PubMed  Google Scholar 

  62. Kalashnikov, A.M., Nuyanzina-Boldareva, E.N., Gorlenko, V.M., Gaisin, V.A., Sukhacheva, M.V., Pantelee-va, A.N., Kuznetsov, B.B., and Namsaraev, B.B., Anoxygenic phototrophic bacteria from microbial communities of Goryachinsk thermal spring (Baikal area, Russia), Microbiology (Moscow), 2014, vol. 83, pp. 407–421.

    Article  CAS  Google Scholar 

  63. Karaseva, A.I., Elcheninov, A.G., Perevalova, A.A., Zayulina, K.S., Kochetkova, T.V., and Kublanov, I.V., Fervidicoccus fontis strain 3639FD, the first crenarchaeon capable of growth on lipids, Microbiology (Moscow), 2021, vol. 90, pp. 435–442.

    Article  CAS  Google Scholar 

  64. Karnachuk, O.V., Frank, Y.A., Lukina, A.P., Kadnikov, V.V., Beletsky, A.V., Mardanov, A.V., and Ravin, N.V., Domestication of previously uncultivated Candidatus Desulforudis audaxviator from a deep aquifer in Siberia sheds light on its physiology and evolution, ISME J., 2019, vol. 13, pp. 1947–1959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Karner, M.B., DeLong, E.F., and Karl, D.M., Archaeal dominance in the mesopelagic zone of the Pacific Ocean, Nature, 2001, vol. 409, pp. 507–510.

    Article  CAS  PubMed  Google Scholar 

  66. Karpov, G.A. and Naboko, S.I., Metal contents of recent thermal waters, mineral precipitates and hydrothermal alteration in active geothermal fields, Kamchatka, J. Geochem. Explor., 1990, vol. 36, pp. 57–71.

    Article  CAS  Google Scholar 

  67. Keilhack, K., Lehrbuch der Grundwasser und Quellenkunde, Berlin, 1912, 2nd edn.

    Google Scholar 

  68. Kevbrin, V.V., Zengler, K., Lysenko, A.M., and Wiegel, J., Anoxybacillus kamchatkensis sp. nov., a novel thermophilic facultative aerobic bacterium with a broad pH optimum from the Geyser valley, Kamchatka, Extremophiles, 2005, vol. 9, pp. 391–398.

    Article  CAS  PubMed  Google Scholar 

  69. Kevbrin, V., Boltyanskaya, Y., Garnova, E., and Wiegel, J., Anaerobranca zavarzinii sp. nov., an anaerobic, alkalithermophilic bacterium isolated from Kamchatka thermal fields, Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 1486–1491.

    Article  CAS  PubMed  Google Scholar 

  70. Khalilova, E.A., Aliverdieva, D.A., Kotenko, S.Ts., Islammagomedova, E.A., and Abakarova, A.A., Biodiversity of microbial communities of geothermal waters and saline soils in the regions of the Caspian Depression (Republic of Dagestan), Izv. Samara Nauchn. Tsentr Ross. Akad. Nauk, 2017, vol. 19, pp. 99–105.

    Google Scholar 

  71. Khomyakova, M.A., Merkel, A.Y., Kopitsyn, D.S., Bonch-Osmolovskaya, E.A., and Slobodkin, A.I., Calorimonas adulescens gen. nov., sp. nov., an anaerobic thermophilic bacterium utilizing methoxylated benzoates, Int. J. Syst. Evol. Microbiol., 2020, vol. 70, pp. 2066–2071.

    Article  CAS  PubMed  Google Scholar 

  72. Khraptsova, G.I., Tsaplina, I.A., and Seregina, L.M., Thermophilic bacteria of hot springs of Buryatiya, Mikro-biologiya, 1984, vol. 53, pp. 137–141.

    Google Scholar 

  73. Kizilova, A.K., Sukhacheva, M.V., Pimenov, N.V., Yurkov, A.M., and Kravchenko, I.K., Methane oxidation activity and diversity of aerobic methanotrophs in pH-neutral and semi-neutral thermal springs of the Kunashir Island, Russian Far East, Extremophiles, 2014, vol. 18, pp. 207–218.

    Article  CAS  PubMed  Google Scholar 

  74. Kochetkova, T.V., Rusanov, I.I., Pimenov, N.V., Kolganova, T.V., Lebedinsky, A.V., Bonch-Osmolovskaya, E.A., and Sokolova, T.G., Anaerobic transformation of carbon monoxide by microbial communities of Kamchatka hot springs, Extremophiles, 2011, vol. 15, pp. 319–325.

    Article  CAS  PubMed  Google Scholar 

  75. Kochetkova, T.V., Kublanov, I.V., Toshchakov, S.V., Osburn, M.R., Novikov, A.A., Bonch-Osmolovskaya, E.A., and Perevalova, A.A., Thermogladius calderae gen. nov., sp. nov., an anaerobic, hyperthermophilic crenarchaeote from a Kamchatka hot spring, Int. J. Syst. Evol. Microbiol., 2016, vol. 66, pp. 1407–1412.

    Article  CAS  PubMed  Google Scholar 

  76. Kochetkova, T.V., Mardanov, A.V., Sokolova, T.G., Bonch-Osmolovskaya, E.A., Kublanov, I.V., Kevbrin, V.V., Beletsky, A.V., Ravin, N.V., and Lebedinsky, A.V., The first crenarchaeon capable of growth by anaerobic carbon monoxide oxidation coupled with H2 production, Syst. Appl. Microbiol., 2020a, vol. 43, art. 126064.

    Article  CAS  PubMed  Google Scholar 

  77. Kochetkova, T.V., Toshchakov, S.V., Zayulina, K.S., Elcheninov, A.G., Zavarzina, D.G., Lavrushin, V.Y., Bonch-Osmolovskaya, E.A., and Kublanov, I.V., Hot in cold: microbial life in the hottest springs in permafrost, Microorganisms, 2020b, vol. 8, art. 1308.

    Article  CAS  PubMed Central  Google Scholar 

  78. Kochetkova, T.V., Zayulina, K.S., Zhigarkov, V.S., Minaev, N.V., Chichkov, B.N., Novikov, A.A., Toshchakov, S.V., Elcheninov, A.G., and Kublanov, I.V., Tepidiforma bonchosmolovskayae gen. nov., sp. nov., a moderately thermophilic Chloroflexi bacterium from a Chukotka hot spring (Arctic, Russia), representing a novel class, Tepidiformia, which includes the previously uncultivated lineage OLB14, Int. J. Syst. Evol. Microbiol., 2020c, vol. 70, pp. 1192–1202.

    Article  CAS  PubMed  Google Scholar 

  79. Kompantseva, E.I., Kublanov, I.V., Perevalova, A.A., Chernyh, N.A., Toshchakov, S.V., Litti, Y.V., Antipov, A.N., Bonch-Osmolovskaya, E.A., and Miroshnichenko, M.L., Calorithrix insularis gen. nov., sp. nov., a novel representative of the phylum Calditrichaeota, Int. J. Syst. Evol. Microbiol., 2017, vol. 67, pp. 1486–1490.

    Article  CAS  PubMed  Google Scholar 

  80. Korzhenkov, A.A., Teplyuk, A.V., Lunev, E.A., Lebedinsky, A.V., Kublanov, I.V., Toshchakov, S.V., Gavrilov, S.N., Khvashchevskaya, A.A., Kopylova, Y.G., Arakchaa, K.D., Golyshin, P.N., and Golyshina, O.V., Members of the uncultured taxon OP1 (“Acetothermia”) predominate in the microbial community of an alkaline hot spring at East-Tuvinian upland, Microbiology (Moscow), 2018, vol. 87, pp. 783–795.

    Article  CAS  Google Scholar 

  81. Kovaleva, O.L., Merkel, A.Y., Novikov, A.A., Baslerov, R.V., Toshchakov, S.V., and Bonch-Osmolovskaya, E.A., Tepidisphaera mucosa gen. nov., sp. nov., a moderately thermophilic member of the class Phycisphaerae in the phylum Planctomycetes, and proposal of a new family, Tepidisphaeraceae fam. nov., and a new order, Tepidisphaerales ord. nov., Int. J. Syst. Evol. Microbiol., 2015, vol. 65, pp. 549–555.

    Article  CAS  PubMed  Google Scholar 

  82. Kozina, I.V., Kublanov, I.V., Kolganova, T.V., Chernyh, N.A., and Bonch-Osmolovskaya, E.A., Caldanaerobacter uzonensis sp. nov., an anaerobic, thermophilic, heterotrophic bacterium isolated from a hot spring, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 1372–1375.

    Article  CAS  PubMed  Google Scholar 

  83. Kryukov, V., Savel’eva, N., and Pusheva, M., Calderobacterium hydrogenophilum nov. gen., nov. sp., hyperthermophilic hydrogen bacterium and its hydrogenase activity, Mikrobiologiya, 1983, vol. 52, pp. 781–788.

    CAS  Google Scholar 

  84. Kublanov, I.V., Prokofeva, M.I., Kostrikina, N.A., Kolganova, T.V., Tourova, T.P., Wiegel, J., and Bonch-Osmolovskaya, E.A., Thermoanaerobacterium aciditolerans sp. nov., a moderate thermoacidophile from a Kamchatka hot spring, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 260–264.

    Article  CAS  PubMed  Google Scholar 

  85. Kublanov, I.V., Perevalova, A.A., Slobodkina, G.B., Lebedinsky, A.V., Bidzhieva, S.K., Kolganova, T.V., Kaliberda, E.N., Rumsh, L.D., Haertlé, T., and Bonch-Osmolovskaya, E.A., Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka (Russia), Appl. Environ. Microbiol., 2009, vol. 75, pp. 286–291.

    Article  CAS  PubMed  Google Scholar 

  86. Kurbanov, M.K., Geotermalnye i gidromineralnye resursy Vostochnogo Kavakaza i Predkavkaz’ya (Geothermal and Hydromineral Resources of the Eastern Caucasus and Pre-Caucasus), Moscow: Nauka, 2001.

  87. Kuznetsov, B.B., in Tr. Winogradsky Inst. Microbiology, 1955, p. 130.

    Google Scholar 

  88. Lau, M.C.Y., Aitchison, J.C., and Pointing, S.B., Bacterial community composition in thermophilic microbial mats from five hot springs in central Tibet, Extremophiles, 2009, vol. 13, pp. 139–149.

    Article  PubMed  Google Scholar 

  89. Lebedeva, E.V., Alawi, M., Fiencke, C., Namsaraev, B., Bock, E., and Spieck, E., Moderately thermophilic nitrifying bacteria from a hot spring of the Baikal rift zone, FEMS Microb. Ecol., 2005, vol. 54, pp. 297–306.

    Article  CAS  Google Scholar 

  90. Lebedeva, E.V., Off, S., Zumbrägel, S., Kruse, M., Shagzhina, A., Lücker, S., Maixner, F., Lipski, A.M., Daims, H., and Spieck, E., Isolation and characterization of a moderately thermophilic nitrite-oxidizing bacterium from a geothermal spring, FEMS Microbiol. Ecol., 2011, vol. 75, pp. 195–204.

    Article  CAS  PubMed  Google Scholar 

  91. Lebedeva, E.V., Hatzenpichler, R., Pelletier, E., Schuster, N., Hauzmayer, S., Bulaev, A., Grigor’eva, N.V., Galushko, A., Schmid, M., Palatinszky, M., Le Paslier, D., Daims, H., and Wagner, M., Enrichment and genome sequence of the group, I.1a ammonia-oxidizing archaeon ‘Ca. Nitrosotenuis uzonensis’ representing a clade globally distributed in thermal habitats, PLoS One, 2013, vol. 8, pp. 1–12.

    Article  Google Scholar 

  92. Logachev, N.A., History and geodynamics of the Baikal rift, Russian Geol. Geophys., 2003, vol. 44, pp. 353–370.

    Google Scholar 

  93. Loginova, L.G., Khraptsova, G.I., Egorova, L.A., and Bogdanova, T.I., Acidophlic obligately thermophilic bacteria Bacillus acidocaldarius isolated from hot springs and soils of Kunashir Island, Mikrobiologiya, 1978, vol. 47, pp. 939–946.

    CAS  Google Scholar 

  94. Loginova, L.G., Egorova, L.A., Golovacheva, R.S., and Seregina, L.M., Thermus ruber sp. nov., nom. rev., Int. J. Syst. Evol. Bacteriol., 1984, vol. 34, pp. 498–499.

    Article  Google Scholar 

  95. Magnabosco, C., Lin, L.H., Dong, H., Bomberg, M., Ghiorse, W., Stan-Lotter, H., Pedersen, K., Kieft, T.L., van Heerden, E., and Onstott, T.C., The biomass and biodiversity of the continental subsurface, Nat. Geosci., 2018, vol. 11, pp. 707–717.

    Article  CAS  Google Scholar 

  96. Mall, A., Sobotta, J., Huber, C., Tschirner, C., Kowarschik, S., Bačnik, K., Mergelsberg, M., Boll, M., Hügler, M., Eisenreich, W., and Berg, I.A., Reversibility of citrate synthase allows autotrophic growth of a thermophilic bacterium, Science, 2018, vol. 359, pp. 563–567.

    Article  CAS  PubMed  Google Scholar 

  97. Mardanov, A.V., Gumerov, V.M., Beletsky, A.V., Perevalova, A.A., Karpov, G.A., Bonch-Osmolovskaya, E.A., and Ravin, N.V., Uncultured archaea dominate in the thermal groundwater of Uzon Caldera, Kamchatka, Extremophiles, 2011, vol. 15, pp. 365–372.

    Article  PubMed  Google Scholar 

  98. Mardanov, A.V., Gumerov, V.M., Beletsky, A.V., and Ravin, N.V., Microbial diversity in acidic thermal pools in the Uzon Caldera, Kamchatka, Antonie van Leeuwenhoek, 2018, vol. 111, pp. 35–43.

    Article  PubMed  Google Scholar 

  99. Martin, W. and Russell, M.J., On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2003, vol. 358, pp. 59–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Menzel, P., Gudbergsdóttir, S.R., Rike, A.G., Lin, L., Zhang, Q., Contursi, P., Moracci, M., Kristjansson, J.K., Bolduc, B., Gavrilov, S., Ravin, N., Mardanov, A., Bonch-Osmolovskaya, E., Young, M., Krogh, A., and Peng, X., Comparative metagenomics of eight geographically remote terrestrial hot springs, Microb. Ecol., 2015, vol. 70, pp. 411–424.

    Article  PubMed  Google Scholar 

  101. Merkel, A.Y., Podosokorskaya, O.A., Chernyh, N.A., and Bonch-Osmolovskaya, E.A., Occurrence, diversity, and abundance of methanogenic archaea in terrestrial hot springs of Kamchatka and Saõ Miguel island, Microbiology (Moscow), 2015, vol. 84, pp. 577–583.

    Article  CAS  Google Scholar 

  102. Merkel, A.Y., Podosokorskaya, O.A., Sokolova, T.G., and Bonch-Osmolovskaya, E.A., Diversity of methanogenic archaea from the 2012 terrestrial hot spring (Valley of Geysers, Kamchatka), Microbiology (Moscow), 2016, vol. 85, pp. 342–349.

    Article  CAS  Google Scholar 

  103. Merkel, A.Y., Pimenov, N.V., Rusanov, I.I., Slobodkin, A.I., Slobodkina, G.B., Tarnovetckii, I.Y., Frolov, E.N., Dubin, A.V., Perevalova, A.A., and Bonch-Osmolovskaya, E.A., Microbial diversity and autotrophic activity in Kamchatka hot springs, Extremophiles, 2017, vol. 21, pp. 307–317.

    Article  CAS  PubMed  Google Scholar 

  104. Miroshnichenko, M.L., Bonch-Osmolovskaya, E.A., Neuner, A., Kostrikina, N.A., Chernych, N.A., and Alekseev, V.A. Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium, Syst. Appl. Microbiol., 1989, vol. 12, pp. 257–262.

    Article  Google Scholar 

  105. Miroshnichenko, M.L., Rainey, F.A., Hippe, H., Chernyh, N.A., Kostrikina, N.A., and Bonch-Osmolovskaya, E.A., Desulfurella kamchatkensis sp. nov. and Desulfurella propionica sp. nov., new sulfur-respiring thermophilic bacteria from Kamchatka thermal environments, Int. J. Syst. Bacteriol., 1998, vol. 48, pp. 475–479.

    Article  PubMed  Google Scholar 

  106. Miroshnichenko, M.L., Tourova, T.P., Kolganova, T.V., Kostrikina, N.A., Chernych, N., and Bonch-Osmolovs-kaya, E.A., Ammonifex thiophilus sp. nov., a hyperthermophilic anaerobic bacterium from a Kamchatka hot spring, Int. J. Syst. Evol. Microbiol., 2008a, vol. 58, pp. 2935–2938.

    Article  CAS  PubMed  Google Scholar 

  107. Miroshnichenko, M.L., Kublanov, I.V., Kostrikina, N.A., Tourova, T.P., Kolganova, T.V., Birkeland, N.-K., and Bonch-Osmolovskaya, E.A., Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs, Int. J. Syst. Evol. Microbiol., 2008b, vol. 58, pp. 1492–1496.

    Article  CAS  PubMed  Google Scholar 

  108. Miroshnichenko, M.L., Lebedinsky, A.V., Chernyh, N.A., Tourova, T.P., Kolganova, T.V., Spring, S., and Bonch-Osmolovskaya, E.A., Caldimicrobium rimae gen. nov., sp. nov., an extremely thermophilic, facultatively lithoautotrophic, anaerobic bacterium from the Uzon Caldera, Kamchatka, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 1040–1044.

    Article  CAS  PubMed  Google Scholar 

  109. Namsaraev, B.B., Bonch-Osmolovskaya, E.A., Miroshnichenko, M.L., Pikuta, E.V., Kachalkin, V.I., Miller, Yu.M., Propp, L.A., and Tarasov, V.G., Microbiological processes of the carbon cycle in shallow hydrotherms of the Southeastern rim of the Pacific Ocean, Mikrobiolo-giya, 1994, vol. 63, pp. 100–111.

    CAS  Google Scholar 

  110. Namsaraev, Z.B., Gorlenko, V.M., Namsaraev, B.B., Buryukhaev, S.P., and Yurkov, V.V., The structure and biogeochemical activity of the phototrophic communities from the Bol’sherechenskii alkaline hot spring, Microbiology (Moscow), 2003, vol. 72, pp. 193–202.

    Article  CAS  Google Scholar 

  111. Namsaraev, B.B., Abidueva, E.Yu., Lavrent’eva, E.V., et al., Ekologiya mikroorganizmov ekstremal’nykh vodnykh sistem (Microbial Ecology of Extreme Water Systems), Ulan-Ude: Buryat Gos. Univ., 2008, p. 94.

  112. Nazina, T.N., Lebedeva, E.V., Poltaraus, A.B., Tourova, T.P., Grigoryan, A.A., Sokolova, D.S., Lysenko, A.M., and Osipov, G.A., Geobacillus gargensis sp. nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani comb. nov., Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 2019–2024.

    Article  CAS  PubMed  Google Scholar 

  113. Nazina, T.N., Pavlova, N.K., Tatarkin, Y.V., Shestakova, N.M., Babich, T.L., Sokolova, D.S., Ivoilov, V.S., Tourova, T.P., Belyaev, S.S., Ivanov, M.V., Khisametdinov, M.R., and Ibatullin, R.R., Microorganisms of the carbonate petroleum reservoir 302 of the Romashkinskoe oilfield and their biotechnological potential, Microbiology (Moscow), 2013, vol. 82, pp. 190–200.

    Article  CAS  Google Scholar 

  114. Nepomnyashchaya, Y.N., Slobodkina, G.B., Baslerov, R.V., Chernyh, N.A., Bonch-Osmolovskaya, E.A., Netrusov, A.I., and Slobodkin, A.I., Moorella humiferrea sp. nov., a thermophilic, anaerobic bacterium capable of growth via electron shuttling between humic acid and Fe(III), Int. J. Syst. Evol. Microbiol., 2012, vol. 62, pp. 613–617.

    Article  CAS  PubMed  Google Scholar 

  115. Nozhevnikova, A.N. and Chudina, V.I., The morphology of the thermophilic acetate methanogenic bacterium Methanothrix thermoacetophila n. sp., Microbiology (Moscow), 1984, vol. 33, pp. 756–760.

    Google Scholar 

  116. O’Neill, A.H., Liu, Y., Ferrera, I., Beveridge, T.J., and Reysenbach, A.-L., Sulfurihydrogenibium rodmanii sp. nov., a sulfur-oxidizing chemolithoautotroph from the Uzon Caldera, Kamchatka Peninsula, Russia, and emended description of the genus Sulfurihydrogenibium, Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 1147–1152.

    Article  PubMed  Google Scholar 

  117. Op den Camp, H.J.M., Islam, T., Stott, M.B., Harhangi, H.R., Hynes, A., Schouten, S., Jetten, M.S.M., Birkeland, N.-K., Pol, A., and Dunfield, P.F., Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia, Environ. Microbiol. Rep., 2009, vol. 1, pp. 293–306.

    Article  CAS  PubMed  Google Scholar 

  118. Panda, A.K., Bisht, S.S., De Mandal, S., and Kumar, N.S., Bacterial and archeal community composition in hot springs from Indo-Burma region, North-east India, AMB Express, 2016, vol. 6, art. 111.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Perevalova, A.A., Lebedinsky, A.V., Bonch-Osmolovskaya, E.A., and Chernyh, N.A., Detection of hyperthermophilic archaea of the genus Desulfurococcus by hybridization with oligonucleotide probes, Microbiology (Moscow), 2003, vol. 72, pp. 340–346.

    Article  CAS  Google Scholar 

  120. Perevalova, A.A., Kolganova, T.V., Birkeland, N.-K., Schleper, C., Bonch-Osmolovskaya, E.A., and Lebedinsky, A.V., Distribution of Crenarchaeota representatives in terrestrial hot springs of Russia and Iceland, Appl. Environ. Microbiol., 2008, vol. 74, pp. 7620–7628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Perevalova, A.A., Bidzhieva, S.K., Kublanov, I.V., Hinrichs, K.U., Liu, X.L., Mardanov, A.V., Lebedinsky, A.V., and Bonch-Osmolovskaya, E.A., Fervidicoccus fontis gen. nov., sp. nov., an anaerobic, thermophilic crenarchaeote from terrestrial hot springs, and proposal of Fervidicoccaceae fam. nov. and Fervidicoccales ord. nov., Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 2082–2088.

    Article  PubMed  Google Scholar 

  122. Perevalova, A.A., Kublanov, I.V., Baslerov, R.V., Zhang, G., Bonch-Osmolovskaya, E.A. Brockia lithotrophica gen. nov., sp. nov., an anaerobic thermophilic bacterium from a terrestrial hot spring, Int. J. Syst. Evol. Microbiol., 2013, vol. 63, pp. 479–483.

    Article  CAS  PubMed  Google Scholar 

  123. Perevalova, A.A., Kublanov, I.V., Bidzhieva, S.K., Mukhopadhyay, B., Bonch-Osmolovskaya, E.A., and Lebedinsky, A.V., Reclassification of Desulfurococcus mobilis as a synonym of Desulfurococcus mucosus, Desulfurococcus fermentans and Desulfurococcus kamchatkensis as synonyms of Desulfurococcus amylolyticus, and emendation of the D. mucosus and D. amylolyticus species descriptions, Int. J. Syst. Evol. Microbiol., 2016, vol. 66, pp. 514–517.

    Article  CAS  PubMed  Google Scholar 

  124. Pinneker, E.V., Mineral’nye vody Tuvy (Mineral Waters of Tuva), Kyzyl, Tuvinskoe knigoizdanie, 1968.

  125. Podosokorskaya, O.A., Merkel, A.Y., Kolganova, T.V., Chernyh, N.A., Miroshnichenko, M.L., Bonch-Osmolovskaya, E.A., and Kublanov, I.V., Fervidobacterium riparium sp. nov., a thermophilic anaerobic cellulolytic bacterium isolated from a hot spring, Int. J. Syst. Evol. Microbiol., 2011, vol. 61, pp. 2697–2701.

    Article  CAS  PubMed  Google Scholar 

  126. Podosokorskaya, O.A., Kadnikov, V.V., Gavrilov, S.N., Mardanov, A.V., Merkel, A.Y., Karnachuk, O.V., Ravin, N.V., Bonch-Osmolovskaya, E.A., and Kublanov, I.V., Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae, Environ. Microbiol., 2013, vol. 15, pp. 1759–1771.

    Article  CAS  PubMed  Google Scholar 

  127. Podosokorskaya, O.A., Kochetkova, T.V., Novikov, A.A., Toshchakov, S.V., Elcheninov, A.G., and Kublanov, I.V., Tenuifilum thalassicum gen. nov., sp. nov., a novel moderate thermophilic anaerobic bacterium from a Kunashir Island shallow hot spring representing a new family Tenuifilaceae fam. nov. in the class Bacteroidia, Syst. Appl. Microbiol., 2020, vol. 43, art. 126126.

    Article  CAS  PubMed  Google Scholar 

  128. Polyak, B.G., Prasolov, E.M., Lavrushin, V.Y., Cheshko, A.L., and Kamenskii, I.L., He, Ar, C and N isotopes in thermal springs of the Chukotka Peninsula: geochemical evidence of the recent rifting in the north-eastern Asia, Chem. Geol., 2013, vol. 339, pp. 127–140.

    Article  CAS  Google Scholar 

  129. Prokofeva, M.I., Miroshnichenko, M.L., Kostrikina, N.A., Chernyh, N.A., Kuznetsov, B.B., Tourova, T.P., and Bonch-Osmolovskaya, E.A., Acidilobus aceticus gen. nov., sp. nov., a novel anaerobic thermoacidophilic archaeon from continental hot vents in Kamchatka, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 2001–2008.

    Article  PubMed  Google Scholar 

  130. Prokofeva, M.I., Kublanov, I.V., Nercessian, O., Tourova, T.P., Kolganova, T.V., Lebedinsky, A.V., Bonch-Osmolovskaya, E.A., Spring, S., and Jeanthon, C., Cultivated anaerobic acidophilic/acidotolerant thermophiles from terrestrial and deep-sea hydrothermal habitats, Extremophiles, 2005, vol. 9, pp. 437–448.

    Article  PubMed  Google Scholar 

  131. Prokofeva, M.I., Kostrikina, N.A., Kolganova, T.V., Tourova, T.P., Lysenko, A.M., Lebedinsky, A.V., and Bonch-Osmolovskaya, E.A., Isolation of the anaerobic thermoacidophilic crenarchaeote Acidilobus saccharovorans sp. nov. and proposal of Acidilobales ord. nov., including Acidilobaceae fam. nov. and Caldisphaeraceae fam. nov., Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 3116–3122.

    Article  CAS  PubMed  Google Scholar 

  132. Rasmussen, B., Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit, Nature, 2000, vol. 405, pp. 676–679.

    Article  CAS  PubMed  Google Scholar 

  133. Reigstad, L.J., Richter, A., Daims, H., Urich, T., Schwark, L., and Schleper, C., Nitrification in terrestrial hot springs of Iceland and Kamchatka, FEMS Microbiol. Ecol., 2008, vol. 64, pp. 167–174.

    Article  CAS  PubMed  Google Scholar 

  134. Reigstad, L.J., Jorgensen, S.L., and Schleper, C., Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka, ISME J., 2010, vol. 4, pp. 346–356.

    Article  CAS  PubMed  Google Scholar 

  135. Reysenbach, A.-L., Banta, A., Civello, S., Daly, J., Mitchel, K., Lalonde, S., Konhauser, K., Rodman, A., Rusterholtz, K., and Takacs-Vesbach, C., Aquificales in Yellowstone National Park, in Geothermal Biology and Geochemistry in YNP, Inskeep, W.P. and McDermott, T.R., Eds., Bozeman: Montana State Univ. Publ., 2005, pp. 129–142.

    Google Scholar 

  136. Rozanov, A.S., Bryanskaya, A.V., Malup, T.K., Meshcheryakova, I.A., Lazareva, E.V., Taran, O.P., Ivanisenko, T.V., Ivanisenko, V.A., Zhmodik, S.M., Kolchanov, N.A., and Peltek, S.E., Molecular analysis of the benthos microbial community in Zavarzin thermal spring (Uzon Caldera, Kamchatka, Russia), BMC Genomics, 2014, vol. 15, pp. 1–15.

    Article  Google Scholar 

  137. Rozanov, A.S., Bryanskaya, A.V., Ivanisenko, T.V., Malup, T.K., and Peltek, S.E., Biodiversity of the microbial mat of the Garga hot spring, BMC Evol. Biol., 2017a, vol. 17, art. 254.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Rozanov, A.S., Bryanskaya, A.V., Kotenko, A.V., and Peltek, S.E., Draft genome sequence of Thermoactinomyces sp. Gus2-1 isolated from the hot-spring Gusikha in Bargusin Valley (Baikal Rift Zone, Russia), Genomics Data, 2017b, vol. 11, pp. 1–2.

    Article  PubMed  Google Scholar 

  139. Saiki, R., Gelfand, D., Stoffel, S., Scharf, S., Higuchi, R., Horn, G., Mullis, K., and Erlich, H., Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase, Science, 1988, vol. 239, pp. 487–491.

    Article  CAS  Google Scholar 

  140. Skirnisdottir, S., Hreggvidsson, G.O., Hjörleifsdottir, S., Marteinsson, V.T., Petursdottir, S.K., Holst, O., and Kristjansson, J.K., Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats, Appl. Environ. Microbiol., 2000, vol. 66, pp. 2835–2841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Slepova, T.V., Sokolova, T.G., Lysenko, A.M., Tourova, T.P., Kolganova, T.V., Kamzolkina, O.V., Karpov, G.A., and Bonch-Osmolovskaya, E.A., Carboxydocella sporoproducens sp. nov., a novel anaerobic CO-utilizing/H2-producing thermophilic bacterium from a Kamchatka hot spring, Int. J. Syst. Evol. Microbiol., 2006, vol. 56, pp. 797–800.

    Article  CAS  PubMed  Google Scholar 

  142. Slepova, T.V., Sokolova, T.G., Kolganova, T.V., Tourova, T.P., and Bonch-Osmolovskaya, E.A., Carboxydothermus siderophilus sp. nov., a thermophilic, hydrogenogenic, carboxydotrophic, dissimilatory Fe(III)-reducing bacterium from a Kamchatka hot spring, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 213–217.

    Article  CAS  PubMed  Google Scholar 

  143. Slobodkin, A.I., Thermophilic microbial metal reduction, Microbiology (Moscow), 2005, vol. 74, pp. 501–514.

    Article  CAS  Google Scholar 

  144. Slobodkin, A.I., Eroshchev-Shak, A.A., Kostrikina, N.A., Lavrushin, V.Yu., Dainyak, L.G., and Zavarzin, G.A., Magnetite formation by thermophilic anaerobic microorganisms, Dokl. Akad. Nauk, 1995, vol. 345, pp. 694–697.

    CAS  Google Scholar 

  145. Slobodkin, A.I., Tourova, T.P., Kuznetsov, B.B., Kostrikina, N.A., Chernyh, N.A., and Bonch-Osmolovskaya, E.A., Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium, Int. J. Syst. Evol. Microbiol., 1999, vol. 49, pp. 1471–1478.

    Article  Google Scholar 

  146. Slobodkin, A.I., Tourova, T.P., Kostrikina, N.A., Lysen-ko, A.M., German, K.E., Bonch-Osmolovskaya, E.A., and Birkeland, N.K., Tepidimicrobium ferriphilum gen. nov., sp. nov., a novel moderately thermophilic, Fe(III)-reducing bacterium of the order Clostridiales, Int. J. Syst. Evol. Microbiol., 2006, vol. 56, pp. 369–372.

    Article  CAS  PubMed  Google Scholar 

  147. Slobodkin, A.I., Gavrilov, S.N., and Slobodkina, G.B., Thermophilic iron-reducing prokaryotes, in Termofil’nye mikroorganizmy (Thermophilic Microorganisms), Galchenko, V.F., Ed., Tr. Winogradsky Inst. Microbiology, Moscow: Maks Press, 2011, vol. 16, pp. 36–63.

  148. Slobodkin, A.I. and Slobodkina, G.B., Thermophilic prokaryotes from deep subterranean habitats, Microbiology (Moscow), 2014, vol. 83, pp. 169–183.

    Article  CAS  Google Scholar 

  149. Slobodkin, A.I., Slobodkina, G.B., Panteleeva, A.N., Chernyh, N.A., Novikov, A.A., and Bonch-Osmolovskaya, E.A., Dissulfurimicrobium hydrothermale gen. nov., sp. nov., a thermophilic, autotrophic, sulfur-disproportionating deltaproteobacterium isolated from a hydrothermal pond, Int. J. Syst. Evol. Microbiol., 2016, vol. 66, pp. 1022–1026.

    Article  CAS  PubMed  Google Scholar 

  150. Slobodkina, G.B., Panteleeva, A.N., Sokolova, T.G., Bonch-Osmolovskaya, E.A., and Slobodkin, A.I., Carboxydocella manganica sp. nov., a thermophilic, dissimilatory Mn(IV)- and Fe(III)-reducing bacterium from a Kamchatka hot spring, Int. J. Syst. Evol. Microbiol., 2012, vol. 62, pp. 890–894.

    Article  CAS  PubMed  Google Scholar 

  151. Slobodkina, G.B., Lebedinsky, A.V., Chernyh, N.A., Bonch-Osmolovskaya, E.A., and Slobodkin, A.I., Pyrobaculum ferrireducens sp. nov., a hyperthermophilic Fe(III)-, selenate- and arsenate-reducing crenarchaeon isolated from a hot spring, Int. J. Syst. Evol. Microbiol., 2015a, vol. 65, pp. 851–856.

    Article  CAS  PubMed  Google Scholar 

  152. Slobodkina, G.B., Kovaleva, O.L., Miroshnichenko, M.L., Slobodkin, A.I., Kolganova, T.V., Novikov, A.A., van Heerden, E., and Bonch-Osmolovskaya, E.A., Thermogutta terrifontis gen. nov., sp. nov. and Thermogutta hypogea sp. nov., thermophilic anaerobic representatives of the phylum Planctomycetes, Int. J. Syst. Evol. Microbiol., 2015b, vol. 65, pp. 760–765.

    Article  CAS  PubMed  Google Scholar 

  153. Slobodkina, G.B., Baslerov, R.V., Novikov, A.A., Viryasov, M.B., Bonch-Osmolovskaya, E.A., and Slobodkin, A.I., Inmirania thermothiophila gen. nov., sp. nov., a thermophilic, facultatively autotrophic, sulfur-oxidizing gammaproteobacterium isolated from a shallow-sea hydrothermal vent, Int. J. Syst. Evol. Microbiol., 2016a, vol. 66, pp. 701–706.

    Article  CAS  PubMed  Google Scholar 

  154. Slobodkina, G.B., Kolganova, T.V., Kopitsyn, D.S., Viryasov, M.B., Bonch-Osmolovskaya, E.A., and Slobodkin, A.I., Dissulfurirhabdus thermomarina gen. nov., sp. nov., a thermophilic, autotrophic, sulfite-reducing and disproportionating deltaproteobacterium isolated from a shallow-sea hydrothermal vent, Int. J. Syst. Evol. Microbiol., 2016b, vol. 66, pp. 2515–2519.

    Article  CAS  PubMed  Google Scholar 

  155. Slobodkina, G.B., Baslerov, R.V., Novikov, A.A., Bonch-Osmolovskaya, E.A., and Slobodkin, A.I., Thermodesulfitimonas autotrophica gen. nov., sp. nov., a thermophilic, obligate sulfite-reducing bacterium isolated from a terrestrial hot spring, Int. J. Syst. Evol. Microbiol., 2017, vol. 67, pp. 301–305.

    Article  CAS  PubMed  Google Scholar 

  156. Slobodkina, G.B., Baslerov, R.V., Kostryukova, N.K., Bonch-Osmolovskaya, E.A., Slobodkin, A.I., Tepidibaculum saccharolyticum gen. nov., sp. nov. a moderately thermophilic, anaerobic, spore-forming bacterium isolated from a terrestrial hot spring, Extremophiles, 2018, vol. 22, pp. 761–768.

    Article  CAS  PubMed  Google Scholar 

  157. Sokolova, T.G., Kostrikina, N.A., Chernyh, N.A., Tourova, T.P., Kolganova, T.V., and Bonch-Osmolovskaya, E.A., Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a kamchatkan hot spring, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1961–1967.

    CAS  PubMed  Google Scholar 

  158. Sokolova, T.G., Kostrikina, N.A., Chernyh, N.A., Kolganova, T.V., Tourova, T.P., and Bonch-Osmolovskaya, E.A. Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 2069–2073.

    Article  CAS  PubMed  Google Scholar 

  159. Stetter, K.O., Huber, R., Blöchl, E., Kurr, M., Eden, R.D., Fielder, M., Cash, H., and Vance, I. Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs, Nature, 1993, vol. 365, pp. 743–745.

    Article  Google Scholar 

  160. Svetlichny, V.A., Slesarev, A.I., Svetlichnaya, T.P., and Zavarzin, G.A., “Caldococcus litoralis” gen. nov., sp. nov., a novel marine hyperthermophilic archebacterium reducing elemental sulfur, Mikrobiologiya, 1987, vol. 56, pp. 831–838.

    Google Scholar 

  161. Svetlichny, V.A. and Svetlichnaya, T.P., Dictyoglomus turgidus sp. nov., a novel hyperthermophilic bacterium isolated from a hot spring of the Uzon volcanic caldera, Mikrob-iologiya, 1988, vol. 57, pp. 435–441.

    Google Scholar 

  162. Svetlichny, V.A., Svetlichnaya, T.P., Chernykh, N.A., and Zavarzin, G.A., Anaerocellum thermophilum gen. nov. sp. nov., an extreme thermophilic cellulosolytic eubacterium isolated from hot springs in the Valley of Geysers, Microb-iology (Moscow), 1990, vol. 59, pp. 871–879.

    Google Scholar 

  163. Svetlichny, V.A., Sokolova, T.G., Gerhardt, M., Kostrikina, N.A., and Zavarzin, G.A. Anaerobic extremely thermophilic carboxydotrophic bacteria in hydrotherms of Kuril Islands, Microb. Ecol., 1991a, vol. 21, pp. 1–10.

    Article  CAS  PubMed  Google Scholar 

  164. Svetlichny, V.A., Sokolova, T.G., Gerhardt, M., Ringpfeil, M., Kostrikina, N.A., and Zavarzin, G.A. Carboxydothermus hydrogenoformans gen. nov., sp. nov., a CO-utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir Island, Syst. Appl. Microbiol., 1991b, vol. 14, pp. 254–260.

    Article  Google Scholar 

  165. Symonds, R.B., Rose, W.I., Bluth, G.J.S., and Gerlach, T.M., Volcanic-gas studies: methods, results, and applications, in Volatiles in Magmas, Carroll, M.R. and Holloway, J.R., Eds., Berlin, Boston: De Gruyter, 1994, Ch. 1, pp. 1–66.

    Google Scholar 

  166. Syrbu, N.S. and Shakirov, R.B., Sources of natural hydrocarbon gases and distribution of gas hazard regions on Sakhalin Island, Neftegaz. Gorn. Delo, 2012, pp. 194–197.

    Google Scholar 

  167. Takami, H., Noguchi, H., Takaki, Y., Uchiyama, I., Toyoda, A., Nishi, S., Chee, G.-J., Arai, W., Nunoura, T., Itoh, T., Hattori, M., and Takai, K., A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem, PLoS One, 2012, vol. 7, art. e0030559.

    Article  Google Scholar 

  168. Toshchakov, S.V., Korzhenkov, A.A., Samarov, N.I., Mazunin, I.O., Mozhey, O.I., Shmyr, I.S., Derbikova, K.S., Taranov, E.A., Dominova, I.N., Bonch-Osmo-lovskaya, E.A., Patrushev, M.V., Podosokorskaya, O.A., and Kublanov, I.V., Complete genome sequence of and proposal of Thermofilum uzonense sp. nov. a novel hyperthermophilic crenarchaeon and emended description of the genus Thermofilum, Stand Genomic Sci., 2015, vol. 10. 122.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Toshchakov, S.V., Lebedinsky, A.V., Sokolova, T.G., Zavarzina, D.G., Korzhenkov, A.A., Teplyuk, A.V., Chistyakova, N.I., Rusakov, V.S., Bonch-Osmolovskaya, E.A., Kublanov, I.V., and Gavrilov, S.N., Genomic insights into energy metabolism of Carboxydocella thermautotrophica coupling hydrogenogenic CO oxidation with the reduction of Fe(III) minerals, Front. Microbiol., 2018, vol. 9, art. 1759.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Trotsenko, Y.A., Medvedkova, K.A., Khmelenina, V.N., and Eshinimayev, B.T., Thermophilic and thermotolerant aerobic methanotrophs, Microbiology (Moscow), 2009, vol. 78, pp. 387–401.

    Article  CAS  Google Scholar 

  171. Tsyrenzhapova, I.S., Eshinimaev, B.Ts., Khmeleni-na, V.N., Trotsenko, Yu.A., and Osipov, G.A., A new thermotolerant aerobic methanotroph from a thermal spring in Buryatia, Microbiology (Moscow), 2007, vol. 76, pp. 118–121.

    Article  CAS  Google Scholar 

  172. Urschel, M.R., Kubo, M.D., Hoehler, T.M., Peters, J.W., and Boyd, E.S., Carbon source preference in chemosynthetic hot spring communities, Appl. Environ. Microbiol., 2015, vol. 81, pp. 3834–3847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wagner, I.D., Zhao, W., Zhang, C.L., Romanek, C.S., Rohde, M., and Wiegel, J., Thermoanaerobacter uzonensis sp. nov., an anaerobic thermophilic bacterium isolated from a hot spring within the Uzon Caldera, Kamchatka, Far East Russia, Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 2565–2573.

    Article  CAS  PubMed  Google Scholar 

  174. Walker, J.C.G., Was the Archaean biosphere upside down?, Nature, 1987, vol. 329, pp. 710–712.

    Article  CAS  PubMed  Google Scholar 

  175. Weiss, M.C., Sousa, F.L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S., and Martin, W.F., The physiology and habitat of the last universal common ancestor, Nat. Microbiol., 2016, vol. 1, art. 16116.

    Article  CAS  PubMed  Google Scholar 

  176. Wemheuer, B., Taube, R., Akyol, P., Wemheuer, F., and Daniel, R., Microbial diversity and biochemical potential encoded by thermal spring metagenomes derived from the Kamchatka peninsula, Archaea, 2013, art. 136714.

  177. Whitaker, R.J., Grogan, D.W., and Taylor, J.W., Geographic barriers isolate endemic populations of hyperthermophilic archaea, Science, 2003, vol. 301, pp. 976–978.

    Article  CAS  PubMed  Google Scholar 

  178. Wilkins, L.G.E., Ettinger, C.L., Jospin, G., and Eisen, J.A., Metagenome-assembled genomes provide new insight into the microbial diversity of two thermal pools in Kamchatka, Russia, Sci. Rep., 2019, vol. 9, pp. 1–15.

    Article  Google Scholar 

  179. Woese, C.R., Kandler, O., and Wheelis, M.L., Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 4576–4579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yumoto, I., Hirota, K., Kawahara, T., Nodasaka, Y., Okuyama, H., Matsuyama, H., Yokota, Y., Nakajima, K., and Hoshino, T., Anoxybacillus voinovskiensis sp. nov., a moderately thermophilic bacterium from a hot spring in Kamchatka, Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 1239–1242.

    Article  CAS  PubMed  Google Scholar 

  181. Zavarzin, G.A., Karpov, G.A., Gorlenko V.M., Golovacheva, R.S., Gerasimanko, L.M., and Bonch-Osmolovskaya, E.A., Kal’dernye mikroorganizmy (Caldera Microorganisms), Moscow: Nauka, 1989.

  182. Zavarzina, D.G., Zhilina, T.N., Tourova, T.P., Kuznetsov, B.B., Kostrikina, N.A., and Bonch-Osmolovskaya, E.A., Thermanaerovibrio velox sp. nov., a new anaerobic, thermophilic, organotrophic bacterium that reduces elemental sulfur, and emended description of the genus Thermanaerovibrio, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 1287–1295.

    Article  CAS  PubMed  Google Scholar 

  183. Zavarzina, D.G., Tourova, T.P., Kuznetsov, B.B., Bonch-Osmolovskaya, E.A., and Slobodkin, A.I., Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic, anaerobic, endospore-forming bacterium, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1737–1743.

    CAS  PubMed  Google Scholar 

  184. Zavarzina, D.G., Sokolova, T.G., Tourova, T.P., Chernyh, N.A., Kostrikina, N.A., and Bonch-Osmolovskaya, E.A., Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction, Extremophiles, 2007, vol. 11, pp. 1–7.

    Article  CAS  PubMed  Google Scholar 

  185. Zavarzina, D.G., Kochetkova, T.V., Chistyakova, N.I., Gracheva, M.A., Antonova, A.V., Merkel, A.Y., Perevalova, A.A., Chernov, M.S., Koksharov, Y.A., Bonch-Osmolovskaya, E.A., Gavrilov, S.N., and Bychkov, A.Y., Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium, Sci. Rep., 2020, vol. 10, pp. 1–11.

    Article  Google Scholar 

  186. Zayulina, K.S., Prokofeva, M.I., Elcheninov, A.G., Voytova, M.P., Novikov, A.A., Kochetkova, T.V., and Kublanov, I.V., Arenimonas fontis sp. nov., a bacterium isolated from Chukotka hot spring, Arctic region, Russia, Int. J. Syst. Evol. Microbiol., 2020a, vol. 70, pp. 2726–2731.

    Article  CAS  PubMed  Google Scholar 

  187. Zayulina, K.S., Kochetkova, T.V., Piunova, U.E., Ziganshin, R.H., Podosokorskaya, O.A., and Kublanov, I.V., Novel hyperthermophilic crenarchaeon Thermofilum adornatum sp. nov. uses GH1, GH3, and two novel glycosidases for cellulose hydrolysis, Front. Microbiol., 2020b, vol. 10, art. 2972.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Zelenkina, T.S., Dagurova, O.P., Namsarayev, B.B., Eshinimayev, B.T., Suzina, N.E., and Trotsenko, Y.A., Aerobic methanotrophs from the coastal thermal springs of Lake Baikal, Microbiology (Moscow), 2009, vol. 78, pp. 492–497.

    Article  CAS  Google Scholar 

  189. Zhao, W., Zhang, C.L., Romanek, C.S., and Wiegel, J., Description of Caldalkalibacillus uzonensis sp. nov. and emended description of the genus Caldalkalibacillus, Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 1106–1108.

    Article  CAS  PubMed  Google Scholar 

  190. Zharkov, R.V., Current physicochemical characteristics of thermomineral waters of the Daginskoe deposit (Sakhalin), Nauki o Zemle, 2018, vol. 4, pp. 35–40.

  191. Zotov, A.V., Sorokin, V.I., and Nikitina, I.B., Some features of modern hydrothermal activity in the Golovnin volcanic caldera (Kunashir Island), in Sovremennnye gidrotermy i mineraloobrazovanie (Modern Hydrotherms and Mineral Formation), Chukhrov, F.V., Ed., Moscow: Nauka, 1988, pp. 54–69.

Download references

ACKNOWLEDGMENTS

The authors are grateful to Prof. Elizaveta Bonch-Osmolovskaya for valuable advices and for the inspiration from thermophiles studies, which she generously shared with the authors.

Funding

The reported study was funded by RFBR, project number 20-14-50440.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Kochetkova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interests.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochetkova, T.V., Podosokorskaya, O.A., Elcheninov, A.G. et al. Diversity of Thermophilic Prokaryotes Inhabiting Russian Natural Hot Springs. Microbiology 91, 1–27 (2022). https://doi.org/10.1134/S0026261722010064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722010064

Keywords:

Navigation