Skip to main content
Log in

Cultivation of the microalga Neochloris oleoabundans for biofuels production and other industrial applications (a review)

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Microalgae cultivation for biofuels production and other applications has gained considerable interest recently. Despite their simple structures, microalgae can accumulate significant amounts of neutral lipids per dry cell weight compared to other energy crops. Neochloris oleoabundans is a promising microalga known for its high lipid content and biomass growth rate compared to other species cultivated for biofuels synthesis; therefore, it is considered as a suitable candidate for biodiesel synthesis. This review paper covers several key aspects associated with the cultivation and applications of the microalga N. oleoabundans. Biomass composition, factors affecting the growth, and biomass and lipid productivities of this species were addressed. In addition, different growth conditions as well as alternative readily available nutrient media to support the growth of N. oleoabundans were presented in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D.J., and Chang, J.S., Bioresour. Technol., 2011, vol. 102, no. 1, pp. 71–81.

    Article  CAS  PubMed  Google Scholar 

  2. Mata, T.M., Martins, A.A., and Caetano, N.S., Renew. Sust. Energ. Rev., 2010, vol. 14, pp. 217–232.

    Article  CAS  Google Scholar 

  3. Williams, P.J.L. B. and Laurens, L.M., Energ. Environ. Sci., 2010, vol. 3, no. 5, pp. 554–590.

    Article  CAS  Google Scholar 

  4. Greenwell, H.C., Laurens, L.M.L., Shields, R.J., Lovitt, R.W., and Flynn, K.J., J. R. Soc. Inteface, 2009, rsif20090322.

    Google Scholar 

  5. Lam, M.K. and Lee, K.T., Biotechnol. Adv., 2012, vol. 30, no. 3, pp. 673–690.

    Article  CAS  PubMed  Google Scholar 

  6. Balat, M., Balat, H., and Öz, C., Prog. Energy Combust., 2008, vol. 34, no. 5, pp. 551–573.

    Article  CAS  Google Scholar 

  7. Chisti, Y., Trends Biotechnol., 2008, vol. 26, no. 3, pp. 126–131.

    Article  CAS  PubMed  Google Scholar 

  8. Murray, K.E., Shields, J.A., Garcia, N.D., and Healy, F.G., Bioresour. Technol., 2012, vol. 114, pp. 499–506.

    Article  CAS  PubMed  Google Scholar 

  9. Pruvost, J., Van Vooren, G., Cogne, G., and Legrand, J., Bioresour. Technol., 2009, vol. 100, no. 23, pp. 5988–5995.

    Article  CAS  PubMed  Google Scholar 

  10. Yang, Y., Xu, J., Vail, D., and Weathers, P., Bioresour. Technol., 2011, vol. 102, no. 8, pp. 5076–5082.

    Article  CAS  PubMed  Google Scholar 

  11. Brennan, L. and Owende, P., Renew. Sust. Energy Rev., 2010, vol. 14, no. 2, pp. 557–577.

    Article  CAS  Google Scholar 

  12. Mubarak, M., Shaija, A., and Suchithra, T. V., Algal. Res., 2015, vol. 7, pp. 117–123.

    Article  Google Scholar 

  13. Milledge, J.J., Rev. Environ. Sci. Biotechnol., 2011, vol. 10, no. 1, pp. 31–41.

    Article  Google Scholar 

  14. Amin, S., Energ. Convers. Manage., 2009, vol. 50, no. 7, pp. 1834–1840.

    Article  CAS  Google Scholar 

  15. Giovanardi, M., Baldisserotto, C., Ferroni, L., Longoni, P., Cella, R., and Pancaldi, S., Protoplasma, 2014, vol. 251, no. 1, pp. 115–125.

    Article  CAS  PubMed  Google Scholar 

  16. Villa, J.A., Ray, E.E., and Barney, B.M., FEMS Microbiol. Lett., 2014, vol. 351, no. 1, pp. 70–77.

    Article  CAS  PubMed  Google Scholar 

  17. da Silva, T.L., Reis, A., Medeiros, R., Oliveira, A. C., and Gouveia, L., Appl. Biochem. Biotech., 2009, vol. 159, no. 2, pp. 568–578.

    Article  Google Scholar 

  18. Klok, A.J., Verbaanderd, J.A., Lamers, P.P., Martens, D.E., Rinzema, A., and Wijffels, R.H., Bioresour. Technol., 2013, vol. 146, pp. 89–100.

    Article  CAS  PubMed  Google Scholar 

  19. Morales-Sánchez, D., Tinoco-Valencia, R., Caro-Bermúdez, M.A., and Martinez, A., Algal. Res., 2014, vol. 5, pp. 61–69.

    Article  Google Scholar 

  20. Morales-Sánchez, D., Tinoco-Valencia, R., Kyndt, J., and Martinez, A., Biotechnol. Biofuels, 2013, vol. 6, no. 1, pp. 1–13.

    Article  Google Scholar 

  21. Baldisserotto, C., Giovanardi, M., Ferroni, L., and Pancaldi, S., Acta Physiol. Plantarum, 2014, vol. 36, no. 2, pp. 461–472.

    Article  CAS  Google Scholar 

  22. Barnhart, M.C., Aquaculture, 2006, vol. 254, no. 1, pp. 227–233.

    Article  Google Scholar 

  23. de Winter, L., Schepers, L.W., Cuaresma, M., Barbosa, M.J., Martens, D.E., and Wijffels, R.H., J. Biotechnol., 2014, vol. 187, pp. 25–33.

    Article  PubMed  Google Scholar 

  24. Gatenby, C.M., Orcutt, D.M., Kreeger, D.A., Parker, B.C., Jones, V.A., and Neves, R.J., J. Appl. Phycol., 2003, vol. 15, no. 1, pp. 1–11.

    Article  CAS  Google Scholar 

  25. Santos, A.M., Janssen, M., Lamers, P.P., Evers, W.A.C., and Wijffels, R.H. Bioresour. Technol., 2012, vol. 104, pp. 593–599.

    Article  CAS  PubMed  Google Scholar 

  26. Sun, X., Cao, Y., Xu, H., Liu, Y., Sun, J., Qiao, D., and Cao, Y., Bioresour. Technol., 2014, vol. 155, pp. 204–212.

    Article  CAS  PubMed  Google Scholar 

  27. Franchino, M., Comino, E., Bona, F., and Riggio, V. A., Chemosphere, 2013, vol. 92, no. 6, pp. 738–744.

    Article  CAS  PubMed  Google Scholar 

  28. Gouveia, L. and Oliveira, A., J. Ind. Microbiol. Biot., 2009, vol. 36, no. 2, pp. 269–274.

    Article  CAS  Google Scholar 

  29. Murray, K.E., Healy, F.G., McCord, R.S., and Shields, J.A., Appl. Microbiol. Biot., 2011, vol. 90, no. 1, pp. 89–95.

    Article  CAS  Google Scholar 

  30. Wang, B. and Lan, C. Q., Bioresour. Technol., 2011, vol. 102, no. 10, pp. 5639–5644.

    Article  CAS  PubMed  Google Scholar 

  31. Sharma, K.K., Schuhmann, H., and Schenk, P.M., Energies, 2012, vol. 5, no. 5, pp. 1532–1553.

    Article  CAS  Google Scholar 

  32. Garibay-Hernández, A., Vazquez-Duhalt, R., Serrano-Carreón, L., and Martinez, A., Appl. Biochem. Biotech., 2013, vol. 171, no. 7, pp. 1775–1791.

    Article  Google Scholar 

  33. Giovanardi, M., Ferroni, L., Baldisserotto, C., Tedeschi, P., Maietti, A., Pantaleoni, L., and Pancaldi, S., Protoplasma, 2013, vol. 250, no. 1, pp. 161–174.

    Article  PubMed  Google Scholar 

  34. Santos, A.M., Lamers, P.P., Janssen, M., and Wijffels, R.H., Algal. Res., 2013, vol. 2, no. 3, pp. 204–211.

    Article  Google Scholar 

  35. Santos, A. M., Wijffels, R. H., and Lamers, P. P., Bioresour. Technol., 2014, vol. 152, pp. 299–306.

    Article  CAS  PubMed  Google Scholar 

  36. Bona, F., Capuzzo, A., Franchino, M., and Maffei, M.E., Algal. Res., 2014, vol. 5, pp. 1–6.

    Article  Google Scholar 

  37. Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., and Wijffels, R. H., Bioresour. Technol., 2012, vol. 124, pp. 217–226.

    Article  CAS  PubMed  Google Scholar 

  38. Gouveia, L., Marques, A., da Silva, T., and Reis, A., J. Ind. Microbiol. Biot., 2009, vol. 36, no. 6, pp. 821–826.

    Article  CAS  Google Scholar 

  39. Klok, A.J., Martens, D.E., Wijffels, R.H., and Lamers, P.P., Bioresour. Technol. 2013, vol. 134, pp. 233–243.

    Article  CAS  PubMed  Google Scholar 

  40. Levine, R.B., Costanza-Robinson, M.S., and Spatafora, G.A., Biomass Bioenerg., 2011, vol. 35, pp. 40–49.

    Article  CAS  Google Scholar 

  41. Li, Y., Horsman, M., Wang, B., Wu, N., and Lan, C., Appl. Microbiol. Biot., 2008, vol. 81, no. 4, pp. 629–639.

    Article  CAS  Google Scholar 

  42. Urreta, I., Ikaran, Z., Janices, I., Ibañez, E., Castro-Puyana, M., Castañón, S., and Suárez-Alvarez, S., Algal. Res., 2014, vol. 5, pp. 16–22.

    Article  Google Scholar 

  43. Davis, R.W., Volponi, J.V., Jones, H.D., Carvalho, B.J., Wu, H., and Singh, S., Biotechnol. Bioeng., 2012, vol. 109, no. 10, pp. 2503–2512.

    Article  CAS  PubMed  Google Scholar 

  44. Salim, S., Vermuë, M. H., and Wijffels, R. H., Bioresour. Technol., 2012, vol. 118, pp. 49–55.

    Article  CAS  PubMed  Google Scholar 

  45. Sabia, A., Baldisserotto, C., Biondi, S., Marchesini, R., Tedeschi, P., Maietti, A., et al., Appl. Microbiol. Biotechnol., 2015, vol. 99, no. 24, pp. 10597–10609.

    Article  CAS  PubMed  Google Scholar 

  46. Chen, Y., Wang, J., Zhang, W., Chen, L., Gao, L., and Liu, T., Biomass Bioenerg., 2013, vol. 56, pp. 464–470.

    Article  CAS  Google Scholar 

  47. Peng, L., Lan, C.Q., Zhang, Z., Sarch, C., and Laporte, M., Bioresour. Technol., 2015, vol. 197, pp. 143–151.

    Article  CAS  PubMed  Google Scholar 

  48. Menetrez, M. Y., Environ. Sci. Technol., 2012, vol. 46, no. 13, pp. 7073–7085.

    Article  CAS  PubMed  Google Scholar 

  49. Muller-Feuga, A., Lemar, M., Vermel, E., Pradelles, R., Rimbaud, L., and Valiorgue, P., J. Appl. Phycol., 2012, vol. 24, no. 3, pp. 349–355.

    Article  CAS  Google Scholar 

  50. Olguín, E.J., Dorantes, E., Castillo, O.S., and Hernández-Landa, V.J., J. Appl. Phycol., 2015, vol. 27, no. 5, pp. 1813–1822.

    Article  Google Scholar 

  51. Lenneman, E.M., Wang, P., and Barney, B.M., FEMS Microbiol. Lett., 2014, vol. 354, no. 2, pp. 102–110.

    Article  CAS  PubMed  Google Scholar 

  52. Tibbetts, S.M., Milley, J.E., and Lall, S.P., J. Appl. Phycol., 2015, vol. 27, no. 3, pp. 1109–1119.

    Article  CAS  Google Scholar 

  53. Popovich, C.A., Damiani, C., Constenla, D., Martínez, A.M., Freije, H., Giovanardi, M., et al., Bioresour. Technol., 2012, vol. 114, pp. 287–293.

    Article  CAS  PubMed  Google Scholar 

  54. Rismani-Yazdi, H., Haznedaroglu, B.Z., Hsin, C., and Peccia, J., Biotechnol. Biofuels, 2012, vol. 5, no. 1, p.74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, Y., Mininberg, B., Tarbet, A., and Weathers, P., Appl. Microbiol. Biot., 2013, vol. 97, no. 5, pp. 2263–2273.

    Article  CAS  Google Scholar 

  56. The Culture Collection of Algae at the University of Texas at Austin, 2016. Retrieved from https://utex.org.

  57. Sousa, C., Compadre, A., Vermuë, M.H., and Wijffels, R.H., Algal. Res., 2013, vol. 2, no. 2, pp. 122–126.

    Article  Google Scholar 

  58. Tornabene, T.G., Holzer, G., Lien, S., and Burris, N., Enzyme Microb. Technol., 1983, vol. 5, no. 6, pp. 435–440.

    Article  CAS  Google Scholar 

  59. Hosikian, A., Lim, S., Halim, R., and Danquah, M. K., Int. J. Chem. Eng., 2010, Article ID 391632, 11 p.

    Google Scholar 

  60. Sousa, C., Valev, D., Vermuë, M.H., and Wijffels, R.H., Bioresour. Technol., 2013, vol. 142, pp. 95–100.

    Article  CAS  PubMed  Google Scholar 

  61. Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., and De Cooman, L., J. Appl. Phycol., 2012, vol. 24, no. 6, pp. 1477–1486.

    Article  CAS  Google Scholar 

  62. Beal, C.M., Webber, M.E., Ruoff, R.S., and Hebner, R.E., Biotechnol. Bioeng., 2010, vol. 106, no. 4, pp. 573–583.

    Article  CAS  PubMed  Google Scholar 

  63. ‘t Lam, G.P., Zegeye, E.K., Vermuë, M.H., Kleinegris, D.M.M., Eppink, M.H. M., Wijffels, R.H., and Olivieri, G., Bioresour. Technol., 2015, vol. 198, pp. 797–802.

    Article  PubMed  Google Scholar 

  64. Beach, E.S., Eckelman, M.J., Cui, Z., Brentner, L., and Zimmerman, J.B., Bioresour. Technol., 2012, vol. 121, pp. 445–449.

    Article  CAS  PubMed  Google Scholar 

  65. de Winter, L., Klok, A.J., Franco, M.C., Barbosa, M.J., and Wijffels, R.H. Algal. Res., 2013, vol. 2, no. 4, pp. 313–320.

    Article  Google Scholar 

  66. Wu, N., Li, Y. and Lan, C.Q., J. Polym. Environ., 2011, vol. 19, no. 4, pp. 935–942.

    Article  CAS  Google Scholar 

  67. Kwak, H.S., Kim, J.Y.H., and Sim, S.J., Bioprocess Biosyst. Eng., 2015, vol. 38, no. 10, pp. 2035–2043.

    Article  CAS  PubMed  Google Scholar 

  68. Schachtman, D.P., Reid, R.J., and Ayling, S.M., Plant. Physiol., 1998, vol. 116, no. 2, pp. 447–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Klausmeier, C.A., Litchman, E., Daufresne, T., and Levin, S.A., Nature, vol. 429, no. 6988, pp. 171–174.

  70. Sousa, C., De Winter, L., Janssen, M., Vermuë, M.H., and Wijffels, R.H., Bioresour. Technol., 2012, vol. 104, pp. 565–570.

    Article  CAS  PubMed  Google Scholar 

  71. Wahal, S. and Viamajala, S., Appl. Biochem. Biotech., 2010, vol. 161, nos. 1–8, pp. 511–522.

    Article  CAS  Google Scholar 

  72. Zhao, Y., Sun, S., Hu, C., Zhang, H., Xu, J., and Ping, L., Bioresour. Technol., 2015, vol. 187, pp. 338–345.

    Article  CAS  PubMed  Google Scholar 

  73. Wang, B. and Lan, C.Q., Can. J. Chem. Eng., 2011, vol. 89, no. 4, pp. 932–939.

    Article  CAS  Google Scholar 

  74. Olguín, E.J., Castillo, O.S., Mendoza, A., Tapia, K., González-Portela, R.E., and Hernández-Landa, V.J., New Biotechnol., 2015, vol. 32, no. 3, pp. 387–395.

    Article  Google Scholar 

  75. Abu Hajar, H.A., Riefler, R.G., and Stuart, B.J., Environ. Eng. Res., 2016, vol. 21, no. 3, pp. 265–275.

    Article  Google Scholar 

  76. Yoon, S.Y., Hong, M.E., Chang, W.S., and Sim, S.J., Bioprocess Biosyst. Eng., 2015, vol. 38, no. 7, pp. 1415–1421.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Abu Hajar.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Hajar, H.A., Riefler, R.G. & Stuart, B.J. Cultivation of the microalga Neochloris oleoabundans for biofuels production and other industrial applications (a review). Appl Biochem Microbiol 53, 640–653 (2017). https://doi.org/10.1134/S0003683817060096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683817060096

Keywords

Navigation