Skip to main content
Log in

Production and Rheological Studies of Microalgal Extracellular Biopolymer from Lactose Using the Green Alga Neochloris oleoabundans

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

It was discovered that a green alga strain had the capacity of producing up to 5 g/L high viscosity biopolymers from lactose under mixotrophic cultivation conditions. The weight-average molecular weight of the polymer was determined to be around 505,000 Da. The ability of this strain to utilize lactose for biopolymer production promises the potential of valuable biopolymer production from cheese whey, a waste liquor stream of the cheese industry that contains approximately 50 g/L lactose. Using Plackett-Burnman experiment design and statistical analysis, it was determined that the major parameters affecting biopolymer production were the concentrations of sodium nitrate and lactose and temperature as well. Further studies on polymer characterization, production optimization, and applications are under way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vincenzini M, De Philippis R, Sili C, Materassi R (1990) A novel exopolysaccharide from a filamentous cyanobacterium: production, chemical characterization and rheological properties. In: Dawes EA (ed) Novel biodegradable microbial polymers. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 295–310

  2. Athukorala Y, Lee K-W, Kim S-K, Jeon Y-J (2007) Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresour Technol 98(9):1711–1716

    Article  CAS  Google Scholar 

  3. Trento F, Cattaneo F, Pescador R, Porta R, Ferro L (2001) Antithrombin activity of an algal polysaccharide. Thromb Res 102(5):457–465

    Article  CAS  Google Scholar 

  4. Witvrouw M, De Clercq E (1997) Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol 29(4):497–511

    Article  CAS  Google Scholar 

  5. Schaeffer DJ, Krylov VS (2000) Anti-HIV activity of extracts and compounds from Algae and Cyanobacteria. Ecotoxicol Environ Saf 45(3):208–227

    Article  CAS  Google Scholar 

  6. Yalcin I, Hicsasmaz Z, Boz B, Bozoglu F (1994) Characterization of the extracellular polysaccharide from freshwater Microalgae Chlorella sp. LWT Food Sci Technol 27(2):158–165

    Article  CAS  Google Scholar 

  7. Sutherland IW (1994) Structure-function relationships in microbial exopolysaccharides. Biotechnol Adv 12(2):393–448

    Article  CAS  Google Scholar 

  8. Moreno J, Vargas MA, Madiedo JM, Muñoz J, Rivas J, Guerrero MG (2000) Chemical and rheological properties of an extracellular polysaccharide produced by the cyanobacterium Anabaena sp. ATCC 33047. Biotechnol Bioeng 67(3):283–290

    Article  CAS  Google Scholar 

  9. De Philippis R, Sili C, Vincenzini M (1996) Response of an exopolysaccharide-producing heterocystous cyanobacterium to changes in metabolic carbon flux. J Appl Phycol 8(4–5):275–281

    Article  Google Scholar 

  10. De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. J Appl Phycol 13(4):293–299

    Article  Google Scholar 

  11. De Philippis R, Ena A, Paperi R, Sili C, Vincenzini M (2000) Assessment of the potential of Nostoc strains from the Pasteur Culture Collection for the production of polysaccharides of applied interest. J Appl Phycol 12(3–5):401–407

    Article  Google Scholar 

  12. Ramus J, Kenney BE (1989) Shear degradation as a probe of microalgal exopolymer structure and rheological properties. Biotechnol Bioeng 34(9):1203–1208

    Article  CAS  Google Scholar 

  13. Vossoughi S (2000) Profile modification using in situ gelation technology—a review. J Petrol Sci Eng 26(1–4):199–209

    Article  CAS  Google Scholar 

  14. Schulte W (2008) Leading on innovation. http://www-static.shell.com/static/innovation/downloads/leading_on_innovation/article_willem_schulte.pdf

  15. Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81(4):629–636

    Article  CAS  Google Scholar 

  16. Mao WJ, Fang F, Li H-Y, Qi X-H, Sun H-H, Chen Y, Guo S-D (2008) Heparinoid-active two sulfated polysaccharides isolated from marine green algae Monostroma nitidum. Carbohydr Polym 74(4):834–839

    Article  CAS  Google Scholar 

  17. Plackett RL, Burman JP (1943) The design of optimum multifactorial experiments. Biometrika 33:305

    Article  Google Scholar 

  18. Nasr S, Soudi MR, Haghighi M (2007) Xanthan production by a native strain of X. campestris and evaluation of application in EOR. Pak J Biol Sci 10(17):3010–3013

    Article  CAS  Google Scholar 

  19. Ashraf S, Soudi MR, Sadeghizadeh M (2008) Isolation of a novel mutated strain of Xanthomonas campestris for xanthan production using whey as the sole substrate. Pak J Biol Sci 11(3):438–442

    Article  CAS  Google Scholar 

  20. Rochefort WE, Middleman S (1987) Rheology of xanthan gum: salt, temperature, and strain effects in oscillatory and steady shear experiments. J Rheol 31(4):337–369

    Article  CAS  Google Scholar 

  21. Viturawong Y, Achayuthakan P, Suphantharika M (2008) Gelatinization and rheological properties of rice starch/xanthan mixtures: effects of molecular weight of xanthan and different salts. Food Chem 111(1):106–114

    Article  CAS  Google Scholar 

  22. Rinaudo M (2004) Role of substituents on the properties of some polysaccharides. Biomacromolecules 5(4):1155–1165

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the Natural Science and Engineering Research Council (NSERC) of Canada and Canadian Foundation of Innovation (CFI) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Q. Lan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, N., Li, Y. & Lan, C.Q. Production and Rheological Studies of Microalgal Extracellular Biopolymer from Lactose Using the Green Alga Neochloris oleoabundans . J Polym Environ 19, 935–942 (2011). https://doi.org/10.1007/s10924-011-0351-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0351-z

Keywords

Navigation