Skip to main content

Advertisement

Log in

Growth and lipid synthesis promotion in mixotrophic Neochloris oleoabundans (Chlorophyta) cultivated with glucose

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

In the recent years, the studies concerning the cultivation of Neochloris oleoabundans for biofuel purposes have increased, in relation to its capability to accumulate lipids when grown under nutrient starvation. Unfortunately, this cultivation mode does not allow to reach high biomass densities, which are required to improve the feasibility of the process. Increasing knowledge of the microalgal physiology is necessary to obtain new useful information for the improvement of culture performance in the perspective of large-scale cultivation. In this work, the mixotrophic cultivation of N. oleoabundans in a brackish medium added with different glucose concentrations has been tested under shaking, with the aim of stimulating growth alongside lipid accumulation inside cells. Cell morphology, glucose consumption, photosynthetic pigment content and photosynthetic efficiency were also investigated. Among all tested glucose concentrations (0–30 g L−1), it was observed that 2.5 g L−1 was the optimal concentration, allowing to obtain the best compromise between glucose supplement, biomass production and lipid accumulation. Growth was highly enhanced in mixotrophic cultures, linked to the release of cells from sporocysts. A unique feature characterising mixotrophy in N. oleoabundans was the promotion of the maximum quantum yield of Photosystem II. Moreover, when mixotrophic cells entered the stationary phase, high lipid accumulation was induced. This study shows that the addition of glucose to N. oleoabundans remarkably increases the production of biomass enriched in lipids and represents an advancement for the cultivation of this microalga for applied purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BM:

Brackish Medium

Chl:

Chlorophyll

Car:

Carotenoids

FM :

Maximum PSII fluorescence in the dark-adapted state

F0 :

Minimum fluorescence in the dark-adapted state

FV :

Variable fluorescence

PAM:

Pulse amplitude modulated fluorimetry

PSII:

Photosystem II

TAG:

Triglyceride

References

  • Baldisserotto C, Ferroni L, Giovanardi M, Pantaleoni L, Boccaletti L, Pancaldi S (2012) Salinity promotes growth of freshwater Neochloris oleoabindans UTEX 1185 (Sphaeropleales, Neochloridaceae): morpho-physiological aspects. Phycologia 51:700–710

    Article  CAS  Google Scholar 

  • Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Meth 77:41–47

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotech Adv 25:294–306

    Article  CAS  Google Scholar 

  • Elsey D, Jameson D, Raleigh B, Cooney MJ (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Meth 68:639–642

    Article  CAS  Google Scholar 

  • Ferroni L, Baldisserotto C, Pantaleoni L, Billi P, Fasulo MP, Pancaldi S (2007) High salinity alters chloroplast morpho-physiology in a freshwater Kichneriella species (Selenastraceae) from Ethipian Lake Awasa. Am J Bot 94:1973–1983

    Article  Google Scholar 

  • Ferroni L, Baldisserotto C, Giovanardi M, Pantaleoni L, Morosinotto T, Pancaldi S (2011) Revised assignment of room-temperature chlorophyll fluorescence emission bands in single living cells of Chlamydomonas reinhardtii. J Bioenerg Biomembr 43:163–173

    Article  CAS  PubMed  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Giovanardi M, Ferroni L, Baldisserotto C, Tedeschi P, Maietti A, Pantaleoni L, Pancaldi S (2013) Morpho-physiological analyses of Neochloris oleoabundans (Chlorophyta) grown mixotrophically in a carbon-rich waste product. Protoplasma 250:161–174

    Article  PubMed  Google Scholar 

  • Gouveia L, Marques AE, Lopes da Silva T, Reis A (2009) Neochloris oleoabundans UTEX #1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol 36:821–826

    Article  CAS  PubMed  Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14:1037–1047

    Article  CAS  Google Scholar 

  • Heredia-Arroyo T, Wei W, Hu B (2010) Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol 162:1978–1995

    Article  CAS  PubMed  Google Scholar 

  • Heredia-Arroyo T, Wei W, Ruan R, Hu B (2011) MIxotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenerg 35:2245–2253

    Article  CAS  Google Scholar 

  • Ip PF, Wong KH, Chen F (2004) Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem 39:1761–1776

    Article  CAS  Google Scholar 

  • Issa AA, Abdel-Basset RM, Adam MS (1995) Abolition of heavy metal toxicity on Kirchneriella lunaris (Chlorophyta) by calcium. Ann Bot 75:189–192

    Article  CAS  Google Scholar 

  • Kromkamp J, Peene J (1999) Estimation of phytoplankton photosynthesis and nutrient limitation in the Eastern Scheldt estuary using variable fluorescence. Aquat Ecol 33:101–104

    Article  CAS  Google Scholar 

  • Leonardi PI, Popovich CA, Damiani MC (2011) Feedstocks for second-generation biodiesel: microalgae’s biology and oil composition. In: dos Santos Bernardes MA (ed) Economic effects of biofuel production. Tech Publisher, Croacia, pp 318–346

    Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effect on nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Buschmann C, Knapp M (2005) How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 43:379–393

    Article  CAS  Google Scholar 

  • Liu X, Duan S, Li A, Xu N, Cai Z, Hu Z (2009) Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum. J Appl Phycol 21:239–246

    Article  Google Scholar 

  • Marquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S (1993) Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J Ferment Bioeng 5:408–410

    Article  Google Scholar 

  • Martinez F, Orus MI (1991) Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM101. Plant Physiol 95:1150–1155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Miller GL (1959) Modified DNS method for reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Oesterhelt C, Schmalzlin E, Schmitt JM, Lokstein H (2007) Regulation of photosynthesis in the unicellular acidophilic red alga Galdieria sulphuraria. Plant J 51:500–511

    Article  CAS  PubMed  Google Scholar 

  • Orosa M, Franqueira D, Chid A, Abalde J (2001) Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth. Biotech Lett 23:373–378

    Article  CAS  Google Scholar 

  • Pantaleoni L, Ferroni L, Baldisserotto C, Aro EM, Pancaldi S (2009) Photosystem II organisation in chloroplasts of Arum italicum leaf depends on tissue location. Planta 230:1019–1031

    Article  CAS  PubMed  Google Scholar 

  • Popovich CA, Damiani MC, Constenla D, Martínez AM, Giovanardi M, Pancaldi S, Leonardi PI (2012) Neochloris oleoabundans grown in natural enriched seawater for biodiesel feedstock: Evaluation of its growth and biochemical composition. Bioresource Technol 114:287–293

    Article  CAS  Google Scholar 

  • Pruvost J, Van Vooren G, Cogne G, Legrand J (2009) Investigation of biomass and lipid production with Neochloris oleoabundans in photobioreactor. Bioresource Technol 100:5988–5995

    Article  CAS  Google Scholar 

  • Rubio CF, García Camacho F, Fernández Sevilla JM, Chisti Y, Molina Grima E (2003) A mechanistic model of photosynthesis in microalgae. Biotechnol Bioeng 81:459–473

    Article  PubMed  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Shi XM, Chen F (1999) Production and rapid extraction of lutein and the other lipid-soluble pigments from Chlorella protothecoides grown under heterotrophic and mixotrophic conditions. Nahrung 43:109–113

    Article  CAS  Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from microalgae: challenges and prospects. Curr Opin Biotechnol 21:277–286

    Article  CAS  PubMed  Google Scholar 

  • Simionato D, Sforza E, Corteggiani Carpinelli E, Bertucco A, Giacometti GM, Morosinotto T (2011) Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipid accumulation. Bioresource Technol 102:6026–6032

    Article  CAS  Google Scholar 

  • Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B (2010) Future prospects of microalgal biofuel production systems. Trends Plant Sci 15:554–564

    Article  CAS  PubMed  Google Scholar 

  • Tornabene TG, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microbiol Tech 5:435–440

    Article  CAS  Google Scholar 

  • Vonshak A, Cheung SM, Chen F (2000) Mixotrophic growth modifies the response of Spirulina (Arthrospira) platensis (Cyanobacteria) cells to light. J Phycol 36:675–679

    Article  CAS  Google Scholar 

  • Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactors for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High-quality biodiesel production from a microalga Chlorella prototecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  PubMed  Google Scholar 

  • Wan M, Liu P, Xia J, Rosenberg JN, Oyler GA, Betenbaugh MJ, Nie Z, Qiu G (2011) The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol Biotechnol 91:835–844

    Article  CAS  PubMed  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometer of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • White S, Anandraj A, Bux F (2011) PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. Bioresource Technol 102:1675–1682

    Article  CAS  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Hua Q, Shimizu K (2000) Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J 6:87–102

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Xu J, Vail D, Weathers P (2011) Ettlia oleoabundans growth and oil production on agricultural anaerobic waste effluents. Bioresource Technol 102:1675–1682

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of Consorzio Universitario Italiano per l’Argentina (CUIA), of the University of Ferrara (Italy) and of Fondazione Bussolera Branca (Italy). We are grateful to Prof. Maria Teresa Indelli of the University of Ferrara, for her kind assistance in spectrofluorimetric analyses, and to Dr. Immacolata Maresca of the University of Ferrara, for technical assistance during lipid extraction.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simonetta Pancaldi.

Additional information

Handling Editor: Peter Nick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giovanardi, M., Baldisserotto, C., Ferroni, L. et al. Growth and lipid synthesis promotion in mixotrophic Neochloris oleoabundans (Chlorophyta) cultivated with glucose. Protoplasma 251, 115–125 (2014). https://doi.org/10.1007/s00709-013-0531-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0531-x

Keywords

Navigation