Skip to main content
Log in

Finite Bending of a Rectangular Block of an Elastic Hencky Material

  • Published:
Journal of elasticity and the physical science of solids Aims and scope Submit manuscript

Abstract

Hencky's elasticity model is an isotropic, finite hyperelastic equation obtained by simply replacing the Cauchy stress tensor and the infinitesimal strain tensor in the classical Hooke's law for isotropic infinitesimal elasticity with the Kirchhoff stress tensor and Hencky's logarithmic strain tensor. A study by Anand in 1979 and 1986 indicates that it is a realistic finite elasticity model that is in good accord with experimental data for a variety of engineering materials for moderate deformations. Most recently, by virtue of well-founded physical grounds and rigorous mathematical procedures it has been demonstrated by these authors that this model may be essential to achieving self-consistent Eulerian rate type theories of finite inelasticity, e.g., the J 2-flow theory for metal plasticity, etc. Its predictions have been studied for some typical deformation modes, including extension, simple shear and torsion, etc. Here we are concerned with finite bending of a rectangular block. We show that a closed-form solution may be obtained. We present explicit expressions for the bending angle and the bending moment in terms of the maximum or minimum circumferential stretch in a general case of compressible deformations for any assigned stretch normal to the bending plane. In particular, simplified results are derived for the plane strain case and for the case of incompressibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Anand, On H. Hencky's approximate strain-energy function for moderate deformations. J. Appl. Mech. 46 (1979) 78–82.

    MATH  Google Scholar 

  2. L. Anand, Moderate deformations in extension-torsion of incompressible isotropic elastic materials. J. Mech. Phys. Solids 34 (1986) 293–304.

    Article  ADS  Google Scholar 

  3. M. Aron and Y. Wang, On deformations with constant modified stretches describing the bending of rectangular blocks. Quart. J. Mech. Appl. Math. 48 (1995) 375–387.

    MATH  MathSciNet  Google Scholar 

  4. M. Aron and Y. Wang, Remarks concerning the flexure of a compressible nonlinearly elastic rectangular block. J. Elasticity 40 (1995) 99–106.

    Article  MATH  MathSciNet  Google Scholar 

  5. S.N. Atluri, An endochronic approach and other topics in small and finite deformation computational elasto-plasticity. In: P.G. Bergan, K.J. Bathe and W. Wunderlich (eds), Finite Element Methods for Nonlinear Problems, Europe-US Symposium, Trondheim, Norway (1985) pp. 61–74.

  6. K.J. Bathe, R. Slavkovic and M. Kojic, On large strain elasto-plastic and creep analysis. In: P.G. Bergan, K.J. Bathe and W. Wunderlich (eds), Finite Element Methods for Nonlinear Problems, Europe-US Symposium, Trondheim, Norway (1985) pp. 75–90.

  7. J. Bonet and R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge Univ. Press, Cambridge (1997).

    MATH  Google Scholar 

  8. O.T. Bruhns, Die Berücksichtigung einer isotropen Werkstoffverfestigung bei der elastischplastischen Blechbiegung mit endlichen Formänderungen. Ing.-Arch. 39 (1970) 63–72.

    Article  Google Scholar 

  9. O.T. Bruhns, Elastoplastische Scheibenbiegung bei endlichen Formänderungen. Z. Angew. Math. Mech. 51 (1971) T101–T103.

    Google Scholar 

  10. O.T. Bruhns and K. Thermann, Elastisch-plastische Biegung eines Plattenstreifens bei endlichen Formänderungen. Ing.-Arch. 38 (1969) 141–152.

    Article  Google Scholar 

  11. O.T. Bruhns, H. Xiao and A. Meyers, Self-consistent Eulerian rate type elastoplasticity models based upon the logarithmic stress rate. Internat. J. Plasticity 15 (1999) 479–520.

    Article  MATH  Google Scholar 

  12. O.T. Bruhns, H. Xiao and A. Meyers, The Hencky model of elasticity: A study on Poynting effect and stress response in torsion of tubes and rods. Arch. Mech. 52 (2000) 489–509.

    MATH  MathSciNet  Google Scholar 

  13. O.T. Bruhns, H. Xiao and A. Meyers, Constitutive inequalities for an isotropic elastic strain energy function based on Hencky's logarithmic strain tensor. Proc. Roy. Soc. London A 457 (2001) 2207–2226.

    MATH  MathSciNet  ADS  Google Scholar 

  14. O.T. Bruhns, H. Xiao and A. Meyers, A self-consistent Eulerian rate type model for finite deformation elastoplasticity with isotropic damage. Internat. J. Solids Struct. 38 (2001) 657–683.

    Article  MATH  MathSciNet  Google Scholar 

  15. R. de Boer, Die elastisch-plastische Biegung eines Plattenstreifens aus inkompressiblem Werkstoff bei endlichen Formänderungen. Ing.-Arch. 36 (1967) 145–154.

    Article  Google Scholar 

  16. R. de Boer and O.T. Bruhns, Zur Berechnung der Eigenspannungen bei einem durch endliche Biegung verformten inkompressiblen Plattenstreifen. Acta Mechanica 8 (1969) 146–159.

    Article  Google Scholar 

  17. A.L. Eterovic and K.J. Bathe, A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. Internat. J. Numer. Methods Engrg. 30 (1990) 1099–1115.

    Article  MATH  Google Scholar 

  18. Y.B. Fu and R.W. Ogden, Nonlinear Elasticity, Theory and Applications. Cambridge Univ. Press, Cambridge (2001).

    MATH  Google Scholar 

  19. A.E. Green and W. Zerna, Theoretical Elasticity, 2nd edn. Clarendon Press, Oxford (1960).

    Google Scholar 

  20. J.P. Halleux and J. Donea, A discussion of Cauchy stress formulations for large strain analysis. In: P.G. Bergan, K. Bathe and W. Wunderlich (eds), Finite Element Methods for Nonlinear Problems, Europe-US Symposium, Trondheim, Norway (1985) pp. 175–190.

  21. H. Hencky, Ñber die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Z. Techn. Phys. 9 (1928) 215–220; ibidem 457.

    MATH  Google Scholar 

  22. H. Hencky, The law of elasticity for isotropic and quasi-isotropic substances by finite deformations. J. Rheology 2 (1931) 169–176.

    Article  ADS  Google Scholar 

  23. H. Hencky, The elastic behavior of vulcanized rubber. Rubber Chem. Techn. 6 (1933) 217–224.

    Google Scholar 

  24. F.G. Kollmann and C. Sansour, Viscoplastic shells: Theory and numerical analysis. Arch.Mech. 49 (1997) 477–511.

    MATH  Google Scholar 

  25. R.W. Ogden, Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984).

    Google Scholar 

  26. B. Raniecki and H.V. Nguyen, Isotropic elasto-plastic solids at finite strain and arbitrary pressure. Arch. Mech. 36 (1984) 687–704.

    MATH  Google Scholar 

  27. R.S. Rivlin, Large elastic deformations of isotropic materials. V. The problem of flexure. Proc. Roy. Soc. London A 195 (1949) 463–473.

    MATH  MathSciNet  ADS  Google Scholar 

  28. B. Schieck and H. Stumpf, The appropriate corotational rate, exact formula for the plastic spin and constitutive model for finite elastoplasticity. Internat. J. Solids Struct. 32 (1995) 3643–3667.

    Article  MATH  MathSciNet  Google Scholar 

  29. H. Stumpf and B. Schieck, Theory and analysis of shells undergoing finite elastic-plastic strains and rotations. Acta Mechanica 106 (1994) 1–21.

    Article  MATH  MathSciNet  Google Scholar 

  30. C. Truesdell, Hypo-elasticity. J. Rational Mech. Anal. 4 (1955) 83–133. Reprinted in: C. Truesdell (ed.), Continuum Mechanics III, The International Science Review Series. Gordon and Breach, New York (1965).

    MATH  MathSciNet  Google Scholar 

  31. C. Truesdell, The simplest rate theory of pure elasticity. Comm. Pure Appl. Math. 8 (1955) 123–132. Reprinted in: C. Truesdell (ed.), Continuum Mechanics III, The International Science Review Series. Gordon and Breach, New York (1965).

    Article  MATH  MathSciNet  Google Scholar 

  32. C. Truesdell and W. Noll, The non-linear field theories of mechanics. In: S. Flügge (ed.), Handbuch der Physik, Vol. III/3. Springer, Berlin (1965).

    Google Scholar 

  33. C.C. Wang and C. Truesdell, Introduction to Rational Elasticity. Noordhoff Internat., Leyden (1973).

    MATH  Google Scholar 

  34. G. Weber and L. Anand, Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput. Methods Appl. Mech. Engrg. 79 (1990) 173–202.

    Article  MATH  Google Scholar 

  35. H. Xiao, O.T. Bruhns and A. Meyers, Hypo-elasticity model based upon the logarithmic stress rate. J. Elasticity 47 (1997) 51–68.

    Article  MATH  MathSciNet  Google Scholar 

  36. H. Xiao, O.T. Bruhns and A.Meyers, Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mechanica 124 (1997) 89–105.

    Article  MATH  MathSciNet  Google Scholar 

  37. H. Xiao, O.T. Bruhns and A. Meyers, Existence and uniqueness of the integrable-exactly hypoelastic equation τ * = ?(trD ) I +2µ D and its significance to finite inelasticity. Acta Mechanica 138 (1999) 31–50.

    Article  MATH  Google Scholar 

  38. H. Xiao, O.T. Bruhns and A. Meyers, The choice of objective rates in finite elastoplasticity: General results on the uniqueness of the logarithmic rate. Proc. Roy. Soc. London A 456 (2000) 1865–1882.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. H. Xiao, O.T. Bruhns and A. Meyers, A consistent finite elastoplasticity theory combining additive and multiplicative decomposition of the stretching and the deformation gradient. Internat. J. Plasticity 16 (2000) 143–177.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruhns, O.T., Xiao, H. & Meyers, A. Finite Bending of a Rectangular Block of an Elastic Hencky Material. Journal of Elasticity 66, 237–256 (2002). https://doi.org/10.1023/A:1021959329598

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021959329598

Navigation