Skip to main content
Log in

Existence and uniqueness of the integrable-exactly hypoelastic equation\(\mathop \tau \limits^ \circ = \lambda (trD){\rm I} + 2\mu D\) and its significance to finite inelasticity

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In Eulerian rate type finite inelasticity models postulating the additive decomposition of the stretchingD, such as finite deformation elastoplasticity models, the simple rate equation indicated in the above title is widely used to characterize the elastic response withD replaced by its “elastic” part. In 1984 Simo and Pister (Compt. Meth. Appl. Mech. Engng.46, 201–215) proved that none of such rate equations with several commonly-known stress rates is exactly integrable to deliver an elastic relation, and thus any of them is incompatible with the notion of elasticity. Such incompatibility implies that Eulerian rate type inelasticity theory based on any commonly-known stress rate is self-inconsistent, and thus it is hardly surprising that some aberrant, spurious phenomena such as the so-called shear oscillatory response etc., may be resulted in. Then arises the questions: Whether or not is there a stress rate\(\mathop {\tau ^* }\limits^\bigcirc\)? The answer for these questions is crucial to achieving rational, self-consistent Eulerian rate type formulations of finite inelasticity models. It seems that there has been no complete, natural and convincing treatment for the foregoing questions until now. It is the main goal of this article to prove the fact: among all possible (infinitely many) objective corotational stress rates and other well-known objective stress rates\(\mathop {\tau ^* }\limits^\bigcirc\), there is one and only one such that the hypoelastic equation of grade zero with this stress rate is exactly integrable to define a hyperelastic relation, and this stress rate is just the newly discoveredlogarithmic stress rate by these authors and others. This result, which provides a complete answer for the aforementioned questions, indicates that in Eulerian rate type formulations of inelasticity models, the logarithmic stress rate is the only choice in the sense of compatibility of the hypoelastic equation of grade zero that is used to represent the elastic response with the notion of elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atluri, S. N.: On constitutive relations at finite strain: hypo-elasticity and elasto-plasticity with isotropic or kinematic hardening. Compt. Meth. Appl. Mech. Eng.43, 137–171 (1984).

    Google Scholar 

  2. Bernstein, B.: Hypo-elasticity and elasticity. Arch. Rat. Mech. Anal.6, 90–104 (1960).

    Google Scholar 

  3. Bruhns, O. T., Xiao, H., Meyers, A.: Self-consistent Eulerian rate type elastoplasticity models based upon the logarithmic stress rate. Int. J. Plasticity15, 479–520 (1999).

    Google Scholar 

  4. Cotter, B. A., Rivlin, R. S.: Tensors associated with time-dependent stress. Q. Appl. Math.13, 177–182 (1955).

    Google Scholar 

  5. Dafalias, Y. F.: Corotational rates for kinematic hardening at large plastic deformations. J. Appl. Mech.50, 561–565 (1983).

    Google Scholar 

  6. Dafalias, Y. F.: A missing link in the macroscopic constitutive formulation of large plastic deformations. In: Plasticity today (Sawczuk, A., Bianchi, B., eds.), London: Elsevier 1983.

    Google Scholar 

  7. Dafalias, Y. F.: The plastic spin. J. Appl. Mech.52, 865–871 (1985).

    Google Scholar 

  8. Dienes, J. K.: On the analysis of rotation and stress rate in deforming bodies. Acta Mech.32, 217–232 (1979).

    Google Scholar 

  9. Dubey, R. N.: Choice of tensor-rates-a methodology. SM Arch.12, 233–244 (1987).

    Google Scholar 

  10. Fitzjerald, J. E.: A tensor Henchy measure of strain and strain rate for finite deformation. J. Appl. Phys.51, 5111–5115 (1980).

    Google Scholar 

  11. Green, A. E., Naghdi, P. M.: A general theory of an elastic-plastic continuum. Arch. Rat. Mech. Anal.18, 251–281 (1965).

    Google Scholar 

  12. Gurtin, M. E., Spear, K.: On the relationship between the logarithmic strain rate and the stretching tensor. Int. J. Solids Struct.19, 437–444 (1983).

    Google Scholar 

  13. Haupt, P., Tsakmakis, Ch.: On kinematic hardening and large plastic deformations. Int. J. Plasticity2, 279–293 (1986).

    Google Scholar 

  14. Hencky, H.: Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Z. Techn. Phys.9, 214–247 (1928).

    Google Scholar 

  15. Hill, R.: Aspects of invariance in solid mechanics. Adv. Appl. Mech.18, 1–75 (1978).

    Google Scholar 

  16. Hoger, A.: The material time derivative of logarithmic strain tensor. Int. J. Solids. Struct.22, 1019–1032 (1986).

    Google Scholar 

  17. Jaumann, G.: Geschlossenes System physikalischer und chemischer Differenzialgesetze. Sitzber. Akad. Wiss. Wien (IIa)120, 385–530 (1911).

    Google Scholar 

  18. Johnson, G. C., Bammann, D. J.: A discussion of stress rates in finite deformation problems. Int. J. Solids Struct.20, 725–737 (1984).

    Google Scholar 

  19. Key, S. W.: On an implementation of finite strain plasticity in transient dynamic large deformation calculation. In: Theoretical foundation for large-scale computations for nonlinear material behaviour (Nemat-Nasser, S., Asaro, R. J., Hegemier, G. A., eds.), pp. 29–57. Dordrecht: Martinus Nijhoff 1984.

    Google Scholar 

  20. Khan, A. S., Huang, S. J.: Continuum theory of plasticity. New York: Wiley 1995.

    Google Scholar 

  21. Kleiber, M.: On errors inherent in commonly accepted rate forms of the elastic constitutive law. Arch. Mech.38, 271–279 (1986).

    Google Scholar 

  22. Kojic, M., Bathe, K. J.: Studies of finite element procedures-stress solution of a closed elastic strain path with stretching and shearing using the updated Lagrangian-Jaumann formulation. Compt. Struct.26, 175–179 (1987).

    Google Scholar 

  23. Lee, E. H., Mallet, R. L., Wertheimer, T. B.: Stress analysis for anisotropic hardening in finite deformation plasticity. J. Appl. Mech.50, 554–560 (1983).

    Google Scholar 

  24. Lehmann, Th.: Anisotrope plastische Formänderungen. Romanian J. Tech. Sci. Appl. Mech.17, 1077–1086 (1972).

    Google Scholar 

  25. Lehmann, Th.: Einige Bemerkungen zu einer allgemeinen Klasse von Stoffgesetzen für große elastoplastische Formänderungen. Ing.-Arch.41, 297–310 (1972).

    Google Scholar 

  26. Lehmann, Th., Guo, Z. H., Liang, H. Y.: The conjugacy between Cauchy stress and logarithm of the left stretch tensor. Eur. J. Mech., A/Solids10, 395–404 (1991).

    Google Scholar 

  27. Loret, B.: On the effect of plastic rotation in the finite deformation of anisotropic elastoplastic materials. Mech. Mater.2, 287–304 (1983).

    Google Scholar 

  28. Marsden, J. E., Hughes, T. J. R.: Mathematical foundations of elasticity. Englewood Cliffs, NJ.: Prentice-Hall 1983

    Google Scholar 

  29. Mehrabadi, M. M., Nemat-Nasser, S.: Some basic kinematical relations for finite deformations of continua. Mech. Mater.6, 127–138 (1987).

    Google Scholar 

  30. Metzger, D. R., Dubey, R. N.: Corotational rates in consititutive modelling of elastic-plastic deformation. Int. J. Plasticity4, 341–368 (1987).

    Google Scholar 

  31. Moss, C.: On instabilities in large deformation simple shear loading. Compt. Mech. Appl. Mech. Eng.46, 329–338 (1984).

    Google Scholar 

  32. Nagtegaal, J. C., de Jong, J. E.: Some aspects of non-isotropic work-hardening in finite strain plasticity. In: Proceedings of the workshop on plasticity of metals at finite strain: theory, experiment and computation, (Lee, E. H., Mallet, R. L., eds.), pp. 65–102, Stanford University 1982.

  33. Noll, W.: On the continuity of the solid and fluid states. J. Rat. Mech. Anal.4, 3–81 (1955).

    Google Scholar 

  34. Oldroyd, J. G.: On the formulation of rheological equations of state. Proc. Roy. Soc. London A200, 523–541 (1950).

    Google Scholar 

  35. Paulun, J. E., Pecherski, R. B.: Study of corotational rates for kinematic hardening in finite deformation plasticity. Arch. Mech.37, 661–678 (1985).

    Google Scholar 

  36. Reed, K. W., Atluri, S. N.: Analysis of large quasistatic deformations of inelastic bodies by a new hybid-stress finite element algorithm. Compt. Meth. Appl. Mech. Engng.39, 245–295 (1983).

    Google Scholar 

  37. Reed, K. W., Atluri, S. N.: Constitutive modelling and computational implementation for finite strain plasticity. Int. J. Plasticity,1, 63–87 (1985).

    Google Scholar 

  38. Reinhardt, W. D., Dubey, R. N.: Coordinate-independent representation of spin tensors in continuum mechanics. J. Elasticity42, 133–144 (1996).

    Google Scholar 

  39. Roy, S., Fossum, A. F., Dexter, R. J.: On the use of polar decomposition in the integration of hypoelastic constitutive laws. Int. J. Eng. Sci.30, 119–113 (1992).

    Google Scholar 

  40. Sansour, C., Bednarczyk, H.: A study on rate-type constitutive equations and the existence of a free energy function. Acta Mech.100, 205–221 (1993).

    Google Scholar 

  41. Simo, J. C., Pister, K. S.: Remarks on rate constitutive equations for finite deformation problem: computational implications. Compt. Meth. Appl. Mech. Eng.46, 201–215 (1984).

    Google Scholar 

  42. Sowerby, R., Chu, E.: Rotations, stress rates and strain measures in homogeneous deformation processes. Int. J. Solids Struct.20, 1037–1048 (1984).

    Google Scholar 

  43. Szabó, L., Balla, M.: Comparison of stress rates. Int. J. Solids Struct.25, 279–297 (1989).

    Google Scholar 

  44. Truesdell, C.: The simplest rate theory of pure elasticity. Commun. Pure Appl. Math.8, 123–132 (1955).

    Google Scholar 

  45. Truesdell, C.: Hypo-elasticity. J. Rat. Mech. Anal.4, 83–133, 1019–1020 (1955).

    Google Scholar 

  46. Truesdell, C.: Hypo-elastic shear. J. Appl. Phys.27, 441–447 (1956).

    Google Scholar 

  47. Truesdell, C., Noll, W.: The nonlinear field of mechanics. In: Handbuch der Physik (Flügge, S., ed.). Vol. III/3, Berlin: Springer-Verlag 1965.

    Google Scholar 

  48. Xia, Z., Ellyin, F.: A stress rate measure for finite elastic plastic deformation. Acta Mech.98, 1–14 (1993).

    Google Scholar 

  49. Xiao, H.: Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill's strain. Int. J. Solids Struct.32, 3327–3340 (1995).

    Google Scholar 

  50. Xiao, H., Bruhns, O. T., Meyers, A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech.124, 89–105 (1997).

    Google Scholar 

  51. Xiao, H., Bruhns, O. T., Meyers, A.: Hypoelasticity model based upon the logarithmic stress rate. J. Elasticity47, 51–68 (1997).

    Google Scholar 

  52. Xiao, H., Bruhns, O. T., Meyers, A.: On objective corotational rates and their defining spin tensors. Int. J. Solids Struct.30, 4001–4014 (1998).

    Google Scholar 

  53. Xiao, H., Bruhns, O. T., Meyers, A.: Strain rates and material spins. J Elasticity52, 1–41 (1998).

    Google Scholar 

  54. Yang, W., Cheng, L., Hwang, K. C.: Objective corotational rates, and shear oscillation. Int. J. Plasticity8, 643–656 (1992).

    Google Scholar 

  55. Zaremba, S.: Sur une forme perfectionée de la théorie de la relaxation. Bull. Intl. Acad. Sci. Cracovie, 594–614 (1903).

  56. Zbib, H. M., Aifantis, E. C.: On the concept of relative and plastic spins and its implications to large deformation theories. Part I: Hypoelasticity and vertex-type plasticity. Acta Mech.75, 15–33 (1988).

    Google Scholar 

  57. Zbib, H. M., Aifantis, E. C.: On the concept of relative and plastic spins and its implications to large deformation theories. Part II: Anisotropic hardening plasticity. Acta Mech.75, 35–56 (1988).

    Google Scholar 

  58. Anand, L.: On H. Hencky's approximate strain-energy function for moderate deformations. J. Appl. Mech.46, 78–82 (1979).

    Google Scholar 

  59. Anand, L.: Moderate deformations in extension-torsion of incompressible isotropic elastic materials. J. Mech. Phys. Solids34, 293–304 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, H., Bruhns, O.T. & Meyers, A. Existence and uniqueness of the integrable-exactly hypoelastic equation\(\mathop \tau \limits^ \circ = \lambda (trD){\rm I} + 2\mu D\) and its significance to finite inelasticity. Acta Mechanica 138, 31–50 (1999). https://doi.org/10.1007/BF01179540

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01179540

Keywords

Navigation