Skip to main content
Log in

Logarithmic strain, logarithmic spin and logarithmic rate

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Two yet undiscovered relations between the Eulerian logarithmic strain inV and two fundamental mechanical quantities, the stretching and the Cauchy stress, are disclosed. A new spin tensor and a new objective tensor-rate are accordingly introduced. Further, new rate-form constitutive models based on this objective tensor-rate are established. It is proved that

  1. (i).

    an objective corotational rate of the logarithmic strain inV can be exactly identical with the stretching and in all strain measures only inV enjoys this property, and

  2. (ii).

    InV and the Cauchy stress σ form a work-conjugate pair of strain and stress.

These properties of in ν are shown to determine a unique smooth spin tensor called logarithmic spin and by virtue of this spin a new tensor-rate called logarithmic rate is proposed. In all possible rate-form constitutive models relating the same kind of objective corotational rates of an Eulerian stress measure and an Eulerian strain measure, it is proved that the logarithmic rate is the only choice and the strain measure must be the logarithmic strain inV if the stretching, as is commonly assumed, is used to measure the rate of change of deformation. As an illustration, it is shown that all finite deformation responses of the grade-zero hypoelastic model based on the logarithmic rate are completely in agreement with those of a finite deformation elastic model and moreover this simplest rate-form constitutive model based on the logarithmic rate can predict the phenomenon of the known hypoelastic yield at simple shear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aifantis, E. C.: The physics of plastic deformation. Int. J. Plasticity3, 211–247 (1987).

    Google Scholar 

  2. Carlson, D. E., Hoger, A.: The derivative of a tensor-valued function of a tensor. Q. Appl. Math.44, 409–423 (1986).

    Google Scholar 

  3. Dafalias, Y. F.: Corotational rates for kinematical hardening at large plastic deformations. J. Appl. Mech.50, 561–565 (1983).

    Google Scholar 

  4. Dafalias, Y. F.: The plastic spin. J. Appl. Mech.52, 865–871 (1985).

    Google Scholar 

  5. Dienes, J. K.: On the analysis of rotation and stress rate in deforming bodies. Acta Mech.32, 217–232 (1979).

    Google Scholar 

  6. Dienes, J. K.: A discussion of material rotation and stress rate. Acta Mech.65, 1–11 (1987).

    Google Scholar 

  7. Dubey, R. N.: Choice of tensor-rates — a methodology. SM Arch.12, 233–244 (1987).

    Google Scholar 

  8. Eringen, A. C.: Nonlinear theory of continuous media. New York: McGraw-Hill 1962.

    Google Scholar 

  9. Fitzgerald, J. E.: A tensorial Hencky measure of strain and strain for finite deformation. J. Appl. Phys.51, 5111–5115 (1980).

    Google Scholar 

  10. Guo, Z. H.: Recent investigation in strain and stress rates in nonlinear continuum mechanics. Appl. Math. Mech.4, 639–648 (1983).

    Google Scholar 

  11. Gurtin, M. E.: An introduction to continuum mechanics. New York: Academic Press 1981.

    Google Scholar 

  12. Gurtin, M. E., Spear, K.: On the relationship between the logarithmic strain rate and the stretching tensor. Int. J. Solids Struct.19, 437–444 (1983).

    Google Scholar 

  13. Haupt, P., Tsakmakis, C.: On the application of dual variables in continuum mechanics. Continuum Mech. Thermodyn.1, 165–196 (1989).

    Google Scholar 

  14. Heiduschke, K.: The logarithmic strain space description. Int. J. Solids Struct.32, 1047–1062 (1995).

    Google Scholar 

  15. Hencky, H.: Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Z. Techn. Phys.9, 214–247 (1928).

    Google Scholar 

  16. Hill, R.: On constitutive inequalities for simple materials. J. Mech. Phys. Solids16, 229–242; 315–322 (1968).

    Google Scholar 

  17. Hill, R.: Constitutive inequalities for isotropic elastic solids under finite strain. Proc. R. Soc. London Ser. A326, 131–147 (1970).

    Google Scholar 

  18. Hill, R.: Aspects of invariance in solid mechanics. Adv. Appl. Mech.18, 1–75 (1978).

    Google Scholar 

  19. Hoger, A.: The material time derivative of logarithmic strain. Int. J. Solids Struct.22, 1019–1032 (1986).

    Google Scholar 

  20. Hoger, A.: The stress conjugate to logarithmic strain. Int. J. Solids Struct.23, 1645–1656 (1987).

    Google Scholar 

  21. Hutchinson, J., Neale, K.: Finite strainJ 2 deformation theory. In: Finite elasticity (Carlson, D. E., Shield, R. T., eds.), pp. 237–247. The Hague-Boston-London: Martinus Nijhoff 1980.

    Google Scholar 

  22. Lee, E. H., Mallet, R. L., Wertheimer, T. B.: Stress analysis for anisotropic hardening in finitedeformation plasticity. J. Appl. Mech.50, 554–560 (1983).

    Google Scholar 

  23. Lehmann, T.: Anisotrope plastische Formänderungen. Rom. J. Techn. Sci. Appl. Mech.17, 1077–1086 (1972).

    Google Scholar 

  24. Lehmann, T.: On the balance of energy and entropy at inelastic deformations of solid bodies. Eur. J. Mech. Solids8, 235–251 (1989).

    Google Scholar 

  25. Lehmann, T., Liang, H. Y.: The stress conjugate to logarithmic strain inV. ZAMM73, 357–363 (1993).

    Google Scholar 

  26. Macvean, D. B.: Die Elementararbeit in einem Kontinuum und die Zuordnung von Spannungs- und Verzerrungstensoren. ZAMP19, 157–186 (1968).

    Google Scholar 

  27. Man, C. S., Guo, Z. H.: A basis-free formula for time rate of Hill's strain tensors. Int. J. Solids Struct.30, 2819–2842 (1993).

    Google Scholar 

  28. Nagtegaal, J. C., de Jong, J. E.: Some aspects of non-isotropic work-hardening in finite strain plasticity. In. Proceedings of the workshop on plasticity of metals at finite strain: theory, experiment and computation, (Lee, E. H., Mallet, R. L., eds.), pp. 65–102. Stanford University 1982.

  29. Neale, K. W.: Phenomenological constitutive laws in finite plasticity. SM Arch.6, 79–128 (1981).

    Google Scholar 

  30. Ogden, R. W.: Nonlinear elastic deformations. Chichester: Ellis Horwood 1984.

    Google Scholar 

  31. Rice, J. R.: Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanism. In: Constitutive equations in plasticity (Argon, A. S., ed.). Cambridge, Mass.: MIT Press 1975.

    Google Scholar 

  32. Richter, H.: Das isotrope Elastizitätsgesetz. ZAMM28, 205–209 (1948).

    Google Scholar 

  33. Stickforth, J., Wegener, K.: A note on Dienes' and Aifantis' corotational derivatives. Acta Mech.74, 227–234 (1988).

    Google Scholar 

  34. Stören, S., Rice, J. R.: Localized necking in thin sheets. J. Mech. Phys. Solids23, 421–441 (1975).

    Google Scholar 

  35. Truesdell, C.: Hypo-elastic shear. J. Appl. Phys.27, 441–447 (1956).

    Google Scholar 

  36. Truesdell, C., Noll, W.: The nonlinear field theories of mechanics. In: Handbuch der Physik, (Flügge, S., ed.), vol. III/3, pp. 441–447. Berlin: Springer 1965.

    Google Scholar 

  37. Xiao, H.: Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill' strain. Int. J. Solids Struct.32, 3327–3340 (1995).

    Google Scholar 

  38. Xiao, H., Bruhns, O. T., Meyers, A.: On conjugate stresses of Lagrangean and Eulerian strain measures. (in preparation).

  39. Xiao, H., Bruhns, O. T., Meyers, A.: Strain rates and material spins. J. Elasticity (in press).

  40. Xia, Z., Ellyin, F.: A stress rate measure for finite elastic plastic deformation. Acta Mech.98, 1–14 (1993).

    Google Scholar 

  41. Xiao, H., Bruhns, O. T., Meyers, A.: Hypo-elasticity model based upon the logarithmic stress rate. J. Elasticity (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, H., Bruhns, O.T. & Meyers, A. Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mechanica 124, 89–105 (1997). https://doi.org/10.1007/BF01213020

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01213020

Keywords

Navigation