Skip to main content
Log in

An overview on salt-induced physiological changes, molecular mechanism of salinity tolerance and application strategies for its management in rice

  • Review
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Low yields of crops, especially rice, are caused by climate change and environmental stress concerns such as drought, temperature fluctuations, and salinity in arid and semi-arid locations around the globe. Rice is one of the essential crops for human consumption and one of the most commonly farmed cereals on the planet earth, but its growth is severely retarded by excessive salt, which influences rice development and production, leading to economic loss. Salt stress induces osmotic stress and ionic toxicity in rice by altering the environment, leading to water deprivation and accumulation of toxic ions, thereby triggering specific physiological and molecular responses in the rice plants. Many factors may affect rice production and cereal quality via its interaction with salinity. This review focuses on some influential factors (photosynthesis, osmosis, micro and macronutrients, microbial flora, rice growth, development, and genes) that may reduce rice production in saline soils. The review also describes the responsive mechanism of rice to salinity and the genetic susceptibility of rice. In light of the challenges posed by the growing global population and limited agricultural land, it is imperative to consider the influential factors discussed in this review, along with genetic susceptibility to improve rice production in terms of quantity and quality under saline soil conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdullah Z, Khan MA, Flowers T (2001) Causes of sterility in seed set of rice under salinity stress. J Agro Crop Sci 187:25–32

    Article  Google Scholar 

  • Amanullah I, Inamullah X (2016) Dry matter partitioning and harvest index differ in rice genotypes with variable rates of phosphorus and zinc nutrition. Rice Sci 23:78–87

    Article  Google Scholar 

  • Amirjani MR (2011) Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. Int J Bot 7:73–81

    Article  CAS  Google Scholar 

  • Aref F, Rad HE (2012) Physiological characterization of rice under salinity stress during vegetative and reproductive stages. Ind J Sci Technol 5:2578–2586

    CAS  Google Scholar 

  • Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S (2020) Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiol Bioch 156:64–77

    Article  CAS  Google Scholar 

  • Asaye Z, Kim DG, Yimer F, Prost K, Obsa O, Tadesse M, Gebrehiwot M, Brüggemann N (2022) Effects of combined application of compost and mineral fertilizer on soil carbon and nutrient content, yield, and agronomic nitrogen use efficiency in maize-potato cropping systems in southern ethiopia. Land 11:784

    Article  Google Scholar 

  • Assaha DV, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:509

    Article  PubMed  PubMed Central  Google Scholar 

  • Benevenuto RF, Agapito-Tenfen SZ, Vilperte V, Wikmark OG, van Rensburg NRO (2017) Molecular responses of genetically modified maize to abiotic stresses as determined through proteomic and metabolomic analyses. PLoS ONE 12:e0173069

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya P, Chakrabarti K, Chakraborty A, Nayak D, Tripathy S, Powell M (2007) Municipal waste compost as an alternative to cattle manure for supplying potassium to lowland rice. Chemosphere 66:1789–1793

    Article  CAS  PubMed  Google Scholar 

  • Bisht N, Tiwari S, Singh PC, Niranjan A, Chauhan PS (2019) A multifaceted rhizobacterium Paenibacillus lentimorbus alleviates nutrient deficiency-induced stress in Cicer arietinum L. Microbiol Res 223:110–119

    Article  PubMed  Google Scholar 

  • Blum A (2018) Plant breeding for stress environments. CRC Press

    Book  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Chen QJ, Niu XG, Zhang R, Lin HQ, Xu CY, Wang GY, Chen J (2007) Expression of OsNHX1 gene in maize confers salt tolerance and promotes plant growth in the field. Plant Soil Enviro 53:490

    Article  CAS  Google Scholar 

  • Chen T, Xu Y, Wang J, Wang Z, Yang J, Zhang J (2013) Polyamines and ethylene interact in rice grains in response to soil drying during grain filling. J Exper Bot 64:2523–2538

    Article  CAS  Google Scholar 

  • Chen L, Deng Y, Zhu H, Hu Y, Jiang Z, Tang S, Wang S, Ding Y (2019) The initiation of inferior grain filling is affected by sugar translocation efficiency in large panicle rice. Rice 2:75

    Article  Google Scholar 

  • Chen T, Shabala S, Niu Y, Chen ZH, Shabala L, Meinke H, Venkataraman G, Pareek A, Xu J, Zhou M (2021) Molecular mechanisms of salinity tolerance in rice. The Crop J 9:506–520

  • Cornah JE, Terry MJ, Smith AG (2002) Green or red: what stops the traffic in the tetrapyrrole pathway? Trends Plant Sci 8:224–230

    Article  Google Scholar 

  • Cotsaftis O, Plett D, Johnson AA, Walia H, Wilson C, Ismail AM, Close TJ, Tester M, Baumann U (2011) Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress. Mol Plant 4:25–41

    Article  CAS  PubMed  Google Scholar 

  • Cotsaftis O, Plett D, Shirley N, Tester M, Hrmova M (2012) A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing. PLoS ONE 7:e39865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:1–14

    Article  Google Scholar 

  • Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100:1383–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dadkhah A (2011) Effect of salinity on growth and leaf photosynthesis of two sugar beet (Beta vulgaris L.) cultivars. J Agricul Sci Technol 13:1001–1012

    CAS  Google Scholar 

  • Dalal VK, Tripathy BC (2012) Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant Cell Environ 35:1685–1703

    Article  CAS  PubMed  Google Scholar 

  • Das P, Nutan KK, Singla-Pareek SL (2015) Pareek A (2012) Understanding salinity responses and adopting ‘omics-based’approaches to generate salinity tolerant cultivars of rice. Front Plant Sci 6:712

    Article  PubMed  PubMed Central  Google Scholar 

  • Das P, Mishra M, Lakra N, Singla-Pareek S, Pareek A (2014) Mutation breeding: a powerful approach for obtaining abiotic stress tolerant crops and upgrading food security for human nutrition. In: Mutagenesis: exploring novel genes and pathways: Wageningen Academic Publishers 615–621.

  • DeGomez, T (2019). Basic Soil Components. In Climate, forests and woodlands. university of arizona, peter kolb, montana state university, and sabrina kleinman, university of arizona: Climate, Forests and Woodlands Community of Practice.

  • DeLuca T, DeLuca D (1997) Composting for feedlot manure management and soil quality. J Prod Agri 10:235–241

    Article  Google Scholar 

  • De-Smet I, White PJ, Bengough AG, Dupuy L, Parizot B, Casimiro I, Heidstra R, Laskowski M, Lepetit M, Bennett M (2012) Analyzing lateral root development: how to move forward. Plant Cell 24:15–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhamodharan K, Ravi KS, Balachandar D (2015) Changes in nutrient status and enzymatic activities in soil amended with composted urban green waste. Int J Recycl 4:101–108

    Google Scholar 

  • Dhanorkar B, Borkar D, Puranik R, Joshi R (1994) Forms of soil potassium as influenced by long-term application of FYM and NPK in Vertisol. J Potassium R 10:42–48

    Google Scholar 

  • Dhar R, Sägesser R, Weikert C, Yuan J, Wagner A (2011) Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution. J Evol Boil 24:1135–1153

    Article  CAS  Google Scholar 

  • Diédhiou CJ, Popova OV, Dietz K-J, Golldack D (2008) The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Boil 8:1–13

    Google Scholar 

  • Ernst WH, Peter D, Herman JP (2004) Chapter 3 vegetation, organic matter and soil quality developments in soil science. Develop Soil Sci 29:41–98

    Article  Google Scholar 

  • García Morales S, Trejo-Téllez LI, Gómez Merino FC, Caldana C, Espinosa-Victoria D, Herrera Cabrera BE (2012) Growth, photosynthetic activity, and potassium and sodium concentration in rice plants under salt stress. Acta Sci Agron 34:317–324

    Google Scholar 

  • Grattan SR, Zeng L, Shannon MC, Roberts SR (2002) Rice is more sensitive to salinity than previously thought. California Agri 56:189–198

    Article  Google Scholar 

  • Gull A, Lone AA, Wani NUI (2019) Biotic and abiotic stresses in plants. Abiotic Biot Stress Plants 1–19.

  • Gupta BH, B, (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom. https://doi.org/10.1155/2014/701596

    Article  Google Scholar 

  • Hairmansis A, Berger B, Tester M, Roy SJ (2014) Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice. Rice 7:1–10

    Article  Google Scholar 

  • Hajlaoui H, El Ayeb N, Garrec JP, Denden M (2010) Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties. Ind Crops Prod 31:122–130

    Article  CAS  Google Scholar 

  • Hameed A, Ahmed MZ, Hussain T, Aziz I, Ahmad N, Gul B, Nielsen BL (2021) Effects of salinity stress on chloroplast structure and function. Cells 7:2023

    Article  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013 a) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ecophysiology and responses of plants under salt stress: Springer, New York, NY 25–87. https://doi.org/10.1007/978-1-4614-4747-4_2

  • Hasanuzzaman M, Nahar K, Fujita M, Ahmad P, Chandna R, Prasad M (2013 b) Enhancing plant productivity under salt stress: relevance of poly-omics. Salt stress in plants. Springer, New York, NY 113–156. https://doi.org/10.1007/978-1-4614-6108-1_6

  • Hopmans JW, Qureshi A, Kisekka R, Munns S, Grattan P, Rengasamy A, Ben-Gal S, Assouline M, Javaux M, Minhas P (2021) Critical knowledge gaps and research priorities in global soil salinity. Adv Agron 169:1–191

    Article  Google Scholar 

  • Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice 5:1–18

    Article  Google Scholar 

  • Huang M, Shan S, Cao J, Fang S, Tian A, Liu Y, Zou Y (2020) Primary-tiller panicle number is critical to achieving high grain yields in machine-transplanted hybrid rice. Sci Rep 10:2811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humplík JF, Lazár D, Husičková A, Spíchal L (2015) Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses–a review. Plant Methods 11:1–10

    Article  Google Scholar 

  • Hussain S, Zhang R, Liu S, Li R, Zhou Y, Chen Y, Hou H, Dai Q (2022b) Transcriptome-wide analysis revealed the potential of the high-affinity potassium transporter (HKT) gene family in rice salinity tolerance via ion homeostasis. Bioengineering 9:410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Zhang JH, Zhong C, Zhu LF, Cao XC, Yu SM, Bohr JA, Hu JJ, Jin QY (2017) Effects of salt stress on rice growth, development characteristics, and the regulating ways: a review. J Integ Agri 16:2357–2374

    Article  CAS  Google Scholar 

  • Hussain S, Zhang R, Liu S, Wang Y, Ahmad I, Chen Y, Hou H, Dai Q (2022a) Salt stress affects the growth and yield of wheat (Triticum aestivum L.) by altering the antioxidant machinery and expression of hormones and stress-specific genes. Phyton 92:3

    Google Scholar 

  • Isayenkov SV (2019) Genetic sources for the development of salt tolerance in crops. Plant Growth Regul 89:1–17

    Article  CAS  Google Scholar 

  • Ishak NK, Sulaiman Z, Tennakoon KU (2015) Comparative study on growth performance of transgenic (Over-expressed OsNHX1) and wild-type nipponbare under different salinity regimes. Rice Sci 22:275–282

    Article  Google Scholar 

  • Jouyban Z (2012) The effects of salt stress on plant growth. Tech J Eng Appl Sci 2:7–10

    CAS  Google Scholar 

  • Kordrostami M, Rabiei B, Hassani Kumleh H (2017) Biochemical, physiological and molecular evaluation of rice cultivars differing in salt tolerance at the seedling stage. Physiol Mol Biol Plants 23:529–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Kumar M, Kim SR, Ryu H, Cho YG (2013) Insights into genomics of salt stress response in rice. Rice 6:1–15

    Article  Google Scholar 

  • Kumari S, Panjabi nee Sabharwal V, Kushwaha HR, Sopory SK, Singla-Pareek SL, Pareek A (2009) Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L. Funct Integr Genom 9:109–123

    Article  CAS  Google Scholar 

  • Kurokawa Y, Noda T, Yamagata Y, Angeles-Shim R, Sunohara H, Uehara K, Furuta A, Negai K, Jena KK, Yasui H, Yoshimura A, Ashikari M, Doi K (2016) Construction of a versatile SNP array for pyramiding useful genes of rice. Plant Sci 242:131–139

    Article  CAS  PubMed  Google Scholar 

  • Kurotani K, Yamanaka K, Toda Y, Ogawa D, Tanaka M, Kozawa H, Nakamura H, Hakata M, Ichikawa H, Hattori T, Takeda S (2015) Stress tolerance profiling of a collection of extant salt-tolerant rice varieties and transgenic plants overexpressing abiotic stress tolerance genes. Plant Cell Physiol 56:1867–1876

    Article  CAS  PubMed  Google Scholar 

  • Lakhdar A, Rabhi M, Ghnaya T, Montemurro F, Jedidi N, Abdelly C (2009) Effectiveness of compost use in salt-affected soil. J Hazard Mater 171:29–37

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ari G (2012) Plant biotechnology and agriculture, marker-assisted selection in plant breeding. Academic Press 163–184. https://doi.org/10.1016/B978-0-12-381466-1.00011-0

  • Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103:561–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KS, Choi WY, Ko JC, Kim TS, Gregorio GB (2003) Salinity tolerance of japonica and indica rice (Oryza sativa L.) at the seedling stage. Planta 216:1043–1046

    Article  CAS  PubMed  Google Scholar 

  • Lee DG, Ahsan N, Lee SH, Lee JJ, Bahk JD, Kang KY, Lee BY (2009) Chilling stress-induced proteomic changes in rice roots. J Plant Physiol 166:1–11

    Article  CAS  PubMed  Google Scholar 

  • Li HW, Zang BS, Deng XW, Wang XP (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Li M, Guo L, Guo C, Wang L, Chen L (2016) Over-expression of a DUF1644 protein gene, SIDP361, enhances tolerance to salt stress in transgenic rice. J Plant Biol 59:62–73

    Article  CAS  Google Scholar 

  • Liao YD, Lin KH, Chen CC, Chiang CM (2016) Oryza sativa protein phosphatase 1a (OsPP1a) involved in salt stress tolerance in transgenic rice. Mol Breeding 36:1–19

    Article  CAS  Google Scholar 

  • Litardo RCM, Bendezú SJG, Zenteno MDC, Pérez-Almeida IB, Parismoreno LL, García EDL (2022) Effect of mineral and organic amendments on rice growth and yield in saline soils. J Saudi Soci Agri Sci 21:29–37

    Google Scholar 

  • Liu Y, Du H, Wang K, Huang B, Wang Z (2011) Differential photosynthetic responses to salinity stress between two perennial grass species contrasting in salinity tolerance. Hort Sci 46:311–316

    CAS  Google Scholar 

  • Liu X, Li L, Li M, Su L, Lian S, Zhang B, Li X, Ge K, Li L (2018) AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. Sci Rep 8:1–11

    Google Scholar 

  • Liu C, Mao B, Yuan D, Chu C, Duan M (2022a) Salt tolerance in rice: physiological responses and molecular mechanisms. Crop J 1:13–25

    Article  Google Scholar 

  • Liu C, Mao D, Yuan C, Chu M, Duan D (2022b) Salt tolerance in rice: physiological responses and molecular mechanisms. Crop J 10:13–25

    Article  Google Scholar 

  • Lutts S, Kinet J, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    Article  CAS  Google Scholar 

  • Mahlooji M, Seyed Sharifi R, Razmjoo J, Sabzalian M, Sedghi M (2018) Effect of salt stress on photosynthesis and physiological parameters of three contrasting barley genotypes. Photosynthetica 56:549–556

    Article  CAS  Google Scholar 

  • Mishra S, Singh B, Panda K, Singh BP, Singh N, Misra P, Rai V, Singh NK (2016) Association of SNP haplotypes of HKT family genes with salt tolerance in indian wild rice germplasm. Rice 9:1–13

    Article  Google Scholar 

  • Miyamoto T, Ochiai K, Nonoue Y, Matsubara K, Yano M, Matoh T (2015) Expression level of the sodium transporter gene OsHKT2; 1 determines sodium accumulation of rice cultivars under potassium-deficient conditions. J Soil Sci Plant Nutr 61:481–492

    Article  CAS  Google Scholar 

  • Mohanavelu A, Naganna SR, Al-Ansari N (2021) Irrigation induced salinity and sodicity hazards on soil and groundwater: an overview of its causes. Impacts Mitig Strat Agri 11:983

    CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exper B 57:1025–1043

    Article  CAS  Google Scholar 

  • Mustafa MA (2007) Desertification processes. UNESCO chair of desertification/university of khartoum, Khartoum, Sudan

    Google Scholar 

  • Nagahatenna DS, Langridge P, Whitford R (2015) Tetrapyrrole-based drought stress signalling. Plant Biotechnol J 13:447–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam MH, Bang E, Kwon TY, Kim Y, Kim EH, Cho K, Park WJ, Kim BG, Yoon IS (2015) Metabolite profiling of diverse rice germplasm and identification of conserved metabolic markers of rice roots in response to long-term mild salinity stress. Int J Mol Sci 16:21959–21974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nath M, Yadav S, Sahoo RK, Passricha N, Tuteja R, Tuteja N (2016) PDH45 transgenic rice maintain cell viability through lower accumulation of Na+, ROS and calcium homeostasis in roots under salinity stress. J Plant Physiol 191:1–11

    Article  CAS  PubMed  Google Scholar 

  • Negrão S, Schmöckel S, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    Article  PubMed  Google Scholar 

  • Nishimura T, Cha-Um S, Takagaki M, Ohyama K, Kirdmanee C (2011) Survival percentage, photosynthetic abilities and growth characters of two indica rice (Oryza sativa L. spp. indica) cultivars in response to iso-osmotic stress. Spanish J Agri R 9:262–270

    Article  Google Scholar 

  • Nounjan N, Chansongkrow P, Charoensawan V, Siangliw JL, Toojinda T, Chadchawan S, Theerakulpisut P (2018) High performance of photosynthesis and osmotic adjustment are associated with salt tolerance ability in rice carrying drought tolerance QTL: physiological and co-expression network analysis. Front Plant Sci 9:1135

    Article  PubMed  PubMed Central  Google Scholar 

  • Nounjan N, Mahakham W, Siangliw JL, Toojinda T, Theerakulpisut P (2020) Chlorophyll retention and high photosynthetic performance contribute to salinity tolerance in rice carrying drought tolerance quantitative trait loci (QTLs). Agriculture 10:620

    Article  CAS  Google Scholar 

  • Pandit A, Rai V, Bal S, Sinha S, Kumar V, Chauhan M (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Genet Genom 284:121–136

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecot Environ Safety 6:324–349

    Article  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res Int 22:4056–4075

    Article  CAS  PubMed  Google Scholar 

  • Pla-Sentís I (2021) Prediction of soil salinization and sodification processes as affected by groundwater under different climate and management conditions. In: intensified land and water use: Springer; 25–42.

  • Platten JD, Egdane JA, Ismail AM (2013) Salinity tolerance, Na+ exclusion and allele mining of HKT1; 5 in Oryza sativa and O. glaberrima: many sources, many genes, one mechanism? BMC Plant Biol 13:1–16

    Article  Google Scholar 

  • Ponce KS, Guo L, Leng Y, Meng L, Ye G 2021 Advances in sensing, response and regulation mechanism of salt tolerance in rice. Int J Mol Sci 22:2254

  • Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Noble AD (2014) Economics of salt‐induced land degradation and restoration. In: Natural resources forum: Wiley Online Library 282–295

  • Rahman MA, Thomson MJ, Shah-E-Alam M, de Ocampo M, Egdane J, Ismail AM (2016) Exploring novel genetic sources of salinity tolerance in rice through molecular and physiological characterization. Ann Bot 117:1083–1097

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman A, Nahar K, Al Mahmud J, Hasanuzzaman M, Hossain MS, Fujita M (2017) Salt stress tolerance in rice: emerging role of exogenous phytoprotectants. Adv Int Rice Res 9:139–174

    Google Scholar 

  • Ramezani M, Seghatoleslami M, Mousavi G, Sayyari-Zahan M (2012) Effect of salinity and foliar application of iron and zinc on yield and water use efficiency of ajowan (Carum copticum). Int J Agri Crop Sci 4:421–426

    Google Scholar 

  • Rath KM, Rousk J (2015) Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: a review. Soil Biol Bioch 81:108–123

    Article  CAS  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razzaque MA, Talukder NM, Islam MT (2011) Dutta RK (2011) Salinity effect on mineral nutrient distribution along roots and shoots of rice (Oryza sativa L.) genotypes differing in salt tolerance. Arch Agron Soil Sci 57:33–45

    Article  CAS  Google Scholar 

  • Reddy INBL, Kim BK, Yoon IS, Kim KH, Kwon TR (2017) Salt tolerance in rice: focus on mechanisms and approaches. Rice Sci 24:123–144

    Article  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

  • Riaz M, Arif MS, Ashraf MA, Mahmood R, Yasmeen T, Shakoor MB, Shahzad SM, Ali M, Saleem I, Arif M (2019) A comprehensive review on rice responses and tolerance to salt stress. Advances in rice research for abiotic stress tolerance, 133–158.

  • Sardinha M, Müller T, Schmeisky H, Joergensen RG (2003) Microbial performance in soils along a salinity gradient under acidic conditions. Appl Soil Ecol 23:237–244

    Article  Google Scholar 

  • Sexcion FS, Egdane JA, Ismail AM, Dionisio-Sese ML (2006) Morpho-physiological traits associated with tolerance of salinity during seedling stage in rice (Oryza sativa L.). Phili J Crop Sci 34:27–37

    Google Scholar 

  • Shereen A, Mumtaz S, Raza S, Khan M, Solangi S (2005) Salinity effects on seedling growth and yield components of different inbred rice lines. Pak J Bot 37:131–139

    Google Scholar 

  • Shu S, Guo SR, Sun J, Yuan LY (2012) Effects of salt stress on the structure and function of the photosynthetic apparatus in cucumis sativus and its protection by exogenous putrescine. Physiol Plantarum 146:285–296

    Article  CAS  Google Scholar 

  • Singh R, Singh Y, Xalaxo S, Verulkar S, Yadav N, Singh S, Singh AK (2016) From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of india through a multi-institutional network. Plant Sci 242:278–287

    Article  CAS  PubMed  Google Scholar 

  • Soussi AR, Ferjani R, Marasco A, Guesmi H, Cherif E, Rolli F, Mapelli H, Ouzari I, Hadda D, Daffonchio A, Cherif A (2016) Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential. Plant Soil 405:357–370

    Article  CAS  Google Scholar 

  • Suriyan CU, Supaibulwattana K, Kirdmanee C (2009) Comparative effects of salt stress and extreme pH stress combined on glycinebetaine accumulation, photosynthetic abilities and growth characters of two rice genotypes. Rice Sci 16:274–282

    Article  Google Scholar 

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346

    Article  CAS  PubMed  Google Scholar 

  • Tatar Ö, Brueck H, Gevrek MN, Asch F (2010) Physiological responses of two turkish rice (Oryza sativa L.) varieties to salinity. Turk J Agric for 34:451–459

    Google Scholar 

  • Thompson GA, Goggin FL (2006) Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J Exper Bot 57:755–766

    Article  CAS  Google Scholar 

  • Todaka D, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K (2012) Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice 5:1–9

    Article  Google Scholar 

  • Tu Y, Jiang A, Gan L, Hossain M, Zhang J, Peng B, Xiong Y, Song Z, Cai D, Xu W, Zhang J, He J (2014a) Genome duplication improves rice root resistance to salt stress. Rice 7:1–13

    Article  CAS  Google Scholar 

  • Tu YA, Jiang L, Gan M, Hossain J, Zhang B, Peng Y, Xiong Z, Song D, Cai W, Xu Zhang J (2014b) Genome duplication improves rice root resistance to salt stress. Rice 7:1–13

    Article  CAS  Google Scholar 

  • Turner NC (2018) Turgor maintenance by osmotic adjustment: 40 years of progress. J Exp Bot 69:3223–3233

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Sun X, Li S, Zhang T, Zhang W, Zhai P (2014) Application of organic amendments to a coastal saline soil in north china: effects on soil physical and chemical properties and tree growth. PLoS ONE 9:e89185

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Xu Y, Chen T, Zhang H, Yang J, Zhang J (2015) Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling. Planta 241:1091–1107

    Article  CAS  PubMed  Google Scholar 

  • Wang W-S, Zhao X-Q, Li M, Huang L-Y, Xu J-L, Zhang F, Cui YR, Fu BY, Li ZK (2016) Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling. J Experi Bot 67:405–419

    Article  CAS  Google Scholar 

  • Wang X, Wang W, Huang J, Peng S, Xiong D (2018) Diffusional conductance to CO2 is the key limitation to photosynthesis in salt-stressed leaves of rice (Oryza sativa L.). Physiol Plantarum 163:45–58

    Article  Google Scholar 

  • Wimmer M, Muehling K, Läuchli A, Brown P, Goldbach H (2001) Interaction of salinity and boron toxicity in wheat (Triticum aestivum L) In: Plant nutrition: Springer Dordrecht 92:426–427

  • Xiang J, Chen X, Hu W, Xiang Y, Yan M, Wang J (2018) Overexpressing heat-shock protein OsHSP50. 2 improves drought tolerance in rice. Plant Cell Rep 37:1585–1595

  • Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144:1416–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao F, Zhou H (2023) Plant salt response: perception, signaling, and tolerance. Front Plant Sci 13:1053699

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhang L, Ou S, Wang R, Wang Y, Chu C, Yao S (2020) Natural variations of SLG1 confer high-temperature tolerance in indica rice. Nat Commun 11:5441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan G, Fan X, Peng M, Yin C, Xiao Z, Liang Y (2020) Silicon improves rice salinity resistance by alleviating ionic toxicity and osmotic constraint in an organ-specific pattern. Front Plant Sci 11:260

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G, Cai J, Wu T, Moran N, Yu L, Xu G (2014) The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiol 166:945–959

    Article  PubMed  PubMed Central  Google Scholar 

  • Yasmin F, Biswas S, Jewel GNA, Elias SM, Seraj ZI (2015) Constitutive overexpression of the plasma membrane Na+/H+ antiporter for conferring salinity tolerance in rice. Plant Tissue Cult Biotechnol 25:257–272

    Article  Google Scholar 

  • Yeo A, Flowers T (1983) Varietal differences in the toxicity of sodium ions in rice leaves. Physiol Plant 59:189–195

    Article  CAS  Google Scholar 

  • Yi X-P, Zhang Y-L, Yao H-S, Luo H-H, Gou L, Chow WS, Zhang WF (2016) Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems. J Plant Physiol 194:23–34

    Article  CAS  PubMed  Google Scholar 

  • Zayed B, Elkhoby W, Salem A, Ceesay M, Uphoff N (2013) Effect of integrated nitrogen fertilizer on rice productivity and soil fertility under saline soil conditions. J Plant Bio Res 2:14–24

    CAS  Google Scholar 

  • Zeng L, Shannon MC (2000) Effects of salinity on grain yield and yield components of rice at different seeding densities. Agron J 92:418–423

    Article  Google Scholar 

  • Zivcak M, Brestic M, Sytar O (2016) Osmotic adjustment and plant adaptation to drought stress. In Drought stress. Physiol Biochem 1: 105–143

  • Zhang L, Tian LH, Zhao JF, Song Y, Zhang CJ, Guo Y (2009) Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol 149:916–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, Wang J, Xiong L, Zhang Q, Fan L, Deng XW (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63:591–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Yang P, Cui F, Zhang F, Luo X, Xie J (2016) Transcriptome analysis of salt stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.). PLoS ONE 11:e0146242

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratified the National Natural Science Foundation of China (32101817), Jiangsu Agriculture Science and Technology Innovation Fund (JASTIF, Grant No. CX(21)3111), and Natural Science Foundation of the Jiangsu Higher Education Institutions (21KJD210001) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qigen Dai.

Additional information

Communicated by Ahmad Mohammad Alqudah.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Zhang, R., Chen, Y. et al. An overview on salt-induced physiological changes, molecular mechanism of salinity tolerance and application strategies for its management in rice. CEREAL RESEARCH COMMUNICATIONS (2024). https://doi.org/10.1007/s42976-023-00487-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42976-023-00487-y

Keywords

Navigation