Skip to main content

Salt Tolerance in Rice: Present Scenario and Future Prospects

  • Chapter
  • First Online:
Ecophysiology and Responses of Plants under Salt Stress

Abstract

The crops worldwide are generally affected by the abiotic stresses like salinity, drought, extreme temperatures, etc., resulting in limitation on their productivity. However certain crop species have an extraordinary strength to survive in most difficult circumstances. Rice crop (Oryza sativa) is the staple food in most countries of the world. This crop is moderately resistant to7 salinity caused by ionic and osmotic mechanism. Ionic toxicity of Na+ largely competes with K+ for binding sites which are crucial to metabolic process. While as osmotic component relates to the buildup of Na+ and Cl− in the apoplastic space in leaf tissues. Elevated levels of Na+ in the apoplastic spaces causes dehydration and consequently shoots accumulate more Na+ than do roots. Thus shoots appear more sensitive to osmotic and ionic Na+ stress than roots. In this regard, morphological, physiological and genetic characters are discussed to raise rice plant for enhanced salinity stress tolerance and high yield potentiality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah Z, Khan MA, Flowers TJ (2001) Causes of sterility in seed set of rice under salinity stress. J Agron Crop Sci 187:25–32

    Article  Google Scholar 

  • Ahmad P (2010) Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch Agro Soil Sci 56(5):575–588

    Article  CAS  Google Scholar 

  • Ahmad P, Prasad MNV (2012a) Environmental adaptations and stress tolerance in plants in the era of climate change. Springer Science+Business Media, New York

    Book  Google Scholar 

  • Ahmad P, Prasad MNV (2012b) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer Science+Business Media, New York

    Google Scholar 

  • Ahmad P, Umar S (2011) Oxidative stress: role of antioxidants in plants. Studium Press, New Delhi

    Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51(3):167–173

    Article  CAS  Google Scholar 

  • Ahmad P, Jeleel CA, Azooz MM, Nabi G (2009) Generation of ROS and non-enzymatic antioxidants during abiotic stress in plants. Bot Res Intern 2(1):11–20

    CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010a) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    Article  PubMed  CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Sharma S (2010b) Antioxidative defence system, lipid peroxidation, proline metabolizing enzymes and Biochemical activity in two genotypes of Morus alba L. subjected to NaCl stress. Russ J Plant Physiol 57(4):509–517

    Article  CAS  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011a) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South Afr J Bot 77:36–44

    Article  CAS  Google Scholar 

  • Ahmad P, Nabi G, Jeleel CA, Umar S (2011b) Free radical production, oxidative damage and antioxidant defense mechanisms in plants under abiotic stress. In: Ahmad P, Umar S (eds) Oxidative stress: role of antioxidants in plants. Studium Press, New Delhi, pp 19–53

    Google Scholar 

  • Ahmad P, Hakeem KR, Kumar A, Ashraf M, Akram NA (2012) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol 11(11):2694–2703

    CAS  Google Scholar 

  • Akbar M, Khush GS, Hillerislambers D (1985) Genetics of salt tolerance in rice. IRRI. Rice genetics. In: Proceeding of international rice genetics symposium, IRRI, Manila, pp 399–409

    Google Scholar 

  • Anil VS, Krishnamurthy H, Mathew M (2007) Limiting cytosolic Na confers salt tolerance to rice cells in culture: a two-photon microscopy study of SBFI-loaded cells. Physiol Plant 129:607–621

    Article  CAS  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  PubMed  CAS  Google Scholar 

  • Azooz MM, Youssef AM, Ahmad P (2011) Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. Inter J Plant Physiol Biochem 3:253–264

    CAS  Google Scholar 

  • Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K (2004) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166:919–928

    Article  Google Scholar 

  • Bajaj S, Mohanty A (2005) Recent advances in rice biotechnology-towards genetically superior transgenic rice. Plant Biotech J 3:275–307

    Article  CAS  Google Scholar 

  • Bhandal IS, Malik CP (1988) Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. Intl Rev Cyt 110:205–254

    Article  CAS  Google Scholar 

  • Bhumbla DR, Abrol IP (1978) Saline and sodic soils. In: Soils and rice. International Rice Research Institute, Los Baños, pp 719–738

    Google Scholar 

  • Breusegem FV, Vranova E, Dat JF, Inze D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414

    Article  Google Scholar 

  • Carden DE, Walker DJ, Flowers TJ, Miller AJ (2003) Single-cell measurements of the contributions of cytosolic Na− and K− to salt tolerance. Plant Physiol 131:676–683

    Article  PubMed  CAS  Google Scholar 

  • Chen H, An R, Tang JH, Cui XH, Hao FS, Chen J, Wang XC (2007) Over-expression of a vacuolar Na−/H− antiporter gene improves salt tolerance in an upland rice. Mol Breed 19:215–225

    Article  CAS  Google Scholar 

  • Cramer GR, Epstein E, Läuchli A (1989) Na+-Ca2+ interactions in barley seedlings: relationship to ion transport and growth. Plant Cell Environ 12:551–558

    Article  CAS  Google Scholar 

  • Cuin TA, Miller AJ, Laurie SA, Leigh RA (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54:657–661

    Article  PubMed  CAS  Google Scholar 

  • Faiyue B, Vijayalakshmi C, Nawaz S, Nagato Y, Taketa S, Ichii M, Al-Azzawi M, Flowers TJ (2010) Studies on sodium bypass flow in lateral rootless mutants lrt1 and lrt2, and crown rootless mutant crl1 of rice (Oryza sativa L.). Plant Cell Environ 33:687–701

    PubMed  CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1981) Variability of sodium chloride resistance within rice (Oryza sativa L.) varieties. New Phytol 88:363–373

    Article  CAS  Google Scholar 

  • Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45:146–159

    Article  PubMed  CAS  Google Scholar 

  • Gao JP, Chao DY, Lin HX (2007) Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. J Integr Plant Biol 49:742–750

    Article  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non halophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Greenway H, Osmond CB (1972) Salt responses of enzymes from species differing in salt tolerance. Plant Physiol 49:256–259

    Article  PubMed  CAS  Google Scholar 

  • Gregorio GB, Senadhira D (1993) Genetic analysis of salinity tolerance in rice (O. sativa L.). Theor Appl Genet 86:333–338

    Article  Google Scholar 

  • Grieve CM, Lesch SM, Maas EV, Francois LE (1993) Leaf and spikelet primordia initiation in salt-stressed wheat. Crop Sci 22:1286–1294

    Article  Google Scholar 

  • Gupta AS, Heinen JI, Holaday S, Burket JJ, Allen RD (1993a) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90:1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Gupta AS, Robert P, Webb A, Holaday S, Allen RD (1993b) Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiol 103:1067–1073

    PubMed  Google Scholar 

  • Haq TU, Gorham J, Akhtar J, Akhtar N, Steele KA (2010) Dynamic quantitative trait loci for salt stress components on chromosome 1of rice. Func Plant Biol 37:634–645

    Article  Google Scholar 

  • Hasegawa PM, Bressan RA, Pardo JM (2000) The dawn of plant salt tolerance genetics. Trends Plant Sci 5:317–319

    Article  PubMed  CAS  Google Scholar 

  • Heenan DP, Lewin LG, McCaffery DW (1988) Salinity tolerance in rice varieties at different growth stages. Aust J Exp Agric 28:343–349

    Article  Google Scholar 

  • Hong CY, Hsu Y, Tsai YC, Kao CH (2007) Expression of ascorbate peroxidase8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. J Exp Bot 58:3273–3283

    Article  PubMed  CAS  Google Scholar 

  • Hong CY, Chao Y, Yang M, Cheng S, Cho S, Kao CH (2009) NaCl-induced expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid. Plant Soil 320:103–115

    Article  CAS  Google Scholar 

  • Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27:129–138

    Article  PubMed  CAS  Google Scholar 

  • Joseph Baby, Jini D, Sujatha S (2010) Biological and physiological perspectives of specificity in abiotic salt stress response from various rice plants. Asian J Agricul Sci 2(3):99–105

    Google Scholar 

  • Kader MA, Lindberg S (2005) Uptake of sodium in protoplasts of salt-sensitive and salt-tolerant cultivars of rice, Oryza sativa L. determined by the fluorescent dye SBFI. J Exp Bot 56:3149–3158

    Article  PubMed  CAS  Google Scholar 

  • Katare DP, Nabi G, Azooz MM, Aeri V, Ahmad P (2012) Biochemical modifications and enhancement of psoralen content in salt-stressed seedlings of Psoralea corylifolia Linn. J Funct Environ Bot 2(1):65–74

    Google Scholar 

  • Kavitha PG, Miller AJ, Mathew MK, Maathuis FJM (2012) Rice cultivars with differing salt tolerance contain similar cation channels in their root cells. J Exp Bot 63(8):3289–3296

    Google Scholar 

  • Krishnamurthy P, Ranathunge R, Nayak S, Schreiber L, Mathew MK (2011) Root barriers block Na+ traffic to shoots in rice (Oryza sativa L.). J Exp Bot 62:4215–4228

    Article  PubMed  CAS  Google Scholar 

  • LeeI IS, Kim DS, Lee SJ, Song HS, Lim YP, Lee YI (2003) Selection and characterizations of radiation-induced salinity-tolerant lines in rice. Breed Sci 53:313–318

    Article  Google Scholar 

  • Lu Z, Liu D, Liu S (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26:1909–1917

    Article  PubMed  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1995) Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J Exp Bot 46:1843–1852

    Article  CAS  Google Scholar 

  • Maathuis FJM, Sanders D (2001) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127:1617–1625

    Article  PubMed  CAS  Google Scholar 

  • McKersie BD, Chen Y, deBeus M, Bowley SR, Bowler C, Inzé D, D’Halluin K, Botterman J (1993) Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol 103:1155–1163

    Article  PubMed  CAS  Google Scholar 

  • McKersie BD, Bowley SR, Harjanto E, Leprince O (1996) Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 111:1177–1181

    PubMed  CAS  Google Scholar 

  • McKersie BD, Bowley SR, Jones KS (1999) Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 119:839–848

    Article  PubMed  CAS  Google Scholar 

  • McKersie BD, Murnaghan J, Jones KS, Bowley SR (2000) Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol 122:1427–1437

    Article  PubMed  CAS  Google Scholar 

  • Michael JT, Marjorie de Ocampo, Egdane J, Akhlasur Rahman M, Andres GS, Dante LA, Ellen Tumimbang-Raiz E, Eduardo B, Zeba IS, Rakesh KS, Glenn BG Abdelbagi MI (2010) Characterizing the salt quantitative trait locus for salinity tolerance in rice. 3(2–3):148–160

    Google Scholar 

  • Mohammadi-Nejad G, Arzani A, Rezai AM, Singh RK, Gregorio GB (2008) Assessment of rice genotypes for salt tolerance using microsatellite markers associated with the saltol QTL. Afr J Biotech 7(6):730–736

    Google Scholar 

  • Mohammadi-Nejad G, Singh RK, Arzani A, Rezaie AM, Sabouri H, Gregorio GB (2010) Evaluation of salinity tolerance in rice genotypes. Inter J Plant Produc 4(3):199–208

    CAS  Google Scholar 

  • Mori IK, Kinoshita T (1987) Salt tolerance of rice callus clones. Rice Genet Newslett 4:112–113

    Google Scholar 

  • Munns R, Husain S, Rivelli AR, James RA, Condon AG, Lindsay MP, Lagudah ES, Schachtman DP, Hare RA (2002) Avenues for increasing salt tolerance of crops, and the role of physiologically-based selection traits. Plant Soil 247:93–105

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  PubMed  CAS  Google Scholar 

  • Natarajan SK, Ganapathy M, Krishnakumar S, Dhanalakshmi R, Saliha BB (2005) Grouping of rice genotypes for salinity tolerance based upon grain yield and Na: K ratio under coastal environment. Res J Agric Biol Sci 1:162–165

    Google Scholar 

  • Naz N, Hameed M, Ashraf M (2010) Eco-morphic response to salt stress in two halophytic grasses from the Cholistan desert, Pakistan. Pak J Bot 42:1343–1351

    Google Scholar 

  • Nejad GM, Arzani A, Rezai AM, Singh RK, Gregorio GB (2008) Assessment of rice genotypes for salt tolerance using microsatellite markers associated with the saltol QTL. Afr J Biotech 7:730–736

    Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2007) Overexpression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var pusa basmati-1 confers abiotic stress tolerance. Transgenic Res 17(2):281–291

    Article  PubMed  Google Scholar 

  • Rodríguez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotechnol Applic 22:1–10

    Google Scholar 

  • Sabouri H, Biabani A (2009) Toward the mapping of agronomic characters on a rice genetic map: quantitative trait loci analysis under saline condition. Biotech 8:144–149

    Article  Google Scholar 

  • Sabouri H, Sabouri A (2009) New evidence of QTLs attributed to salinity tolerance in rice. Afr J Biotech 7:4376–4383

    Google Scholar 

  • Sahi C, Singh A, Kumar K, Blumwald E, Grover A (2006) Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct Integr Genomics 6:263–284

    Article  PubMed  CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    PubMed  CAS  Google Scholar 

  • Shankhdhar D, Shankhdhar SC, Mani SC, Pant RC (2000) In vitro selection for salt tolerance in rice. Biol Plant 43(3):477–480

    Article  CAS  Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK (2001) Transgenic approach towards developing abiotic stress tolerance in plants. Proc Ind Nat Sci Acad 67:265–284

    CAS  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2007) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 17:171–180

    Article  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant Physiol, 3rd edn. Sinauer, Sunderland, 612

    Google Scholar 

  • Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S, Takabe T (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci 148:131–138

    Article  CAS  Google Scholar 

  • Tausz M, Sircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55:1955–1962

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  CAS  Google Scholar 

  • Thiyagarajan TM, Selvaraju R (2001) Water saving in rice cultivation in India. In: Proceedings of an international workshop on water saving rice production systems, Nanjing University, pp 15–45

    Google Scholar 

  • Tsai YC, Hong CY, Liu LF, Kao CH (2004) Relative importance of Na+ and Cl− in NaCl-induced antioxidant systems in roots of rice seedlings. Physiol Plant 122:86–94

    Article  CAS  Google Scholar 

  • Tsai YC, Hong CY, Liu LF, Kao CH (2005) Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. J Plant Physiol 162:291–299

    Article  PubMed  CAS  Google Scholar 

  • Van Camp W, Capiau K, Van Montagu M, Inze D, Slooten L (1996) Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol 112:1703–1714

    Article  PubMed  Google Scholar 

  • Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol J 5:361–380

    Article  PubMed  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotech 16:123–132

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Zhang H, Allen RD (1999) Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol 40:725–732

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Luttge U, Ratajczak R (2004) Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa L. J Plant Physiol 161:285–293

    Article  PubMed  CAS  Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472

    Article  PubMed  CAS  Google Scholar 

  • Wu CJ, Cheng ZQ, Huang XQ, Yin SH, Cao KM, Sun CR (2004) Genetic diversity among and within populations of Oryza granulate from Yunnan of China revealed by RAPD and ISSR markers: implications for conservation of the endangered species. Plant Sci 167:35–42

    Article  CAS  Google Scholar 

  • Xinjian H, Jianquan C, Zhigang Z, Jinsong Z, Shouyi C (2002) Identification of salt-stress responsive genes in rice (Oryza sativa L.) by cDNA array. Sci China (Series C) 45(5):477–484

    Article  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt tolerant crop plants: challenges and opportunities. Trends Plants Sci 10:615–620

    Article  CAS  Google Scholar 

  • Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565

    Article  CAS  Google Scholar 

  • Yousuf PY, Hakeem KR, Chandna R, Ahmad P (2012) Role of glutathione reductase in plant abiotic stress. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer Science+Business Media, New York, pp 149–158

    Google Scholar 

  • Zeng L, Shannon MC (2000) Salinity effects on seedling growth and yield components of rice. Crop Sci 40:996–1003

    Article  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asiya Hameed or Parvaiz Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hameed, A., Qadri, T.N., Azooz, M.M., Ahmad, P. (2013). Salt Tolerance in Rice: Present Scenario and Future Prospects. In: Ahmad, P., Azooz, M., Prasad, M. (eds) Ecophysiology and Responses of Plants under Salt Stress. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4747-4_7

Download citation

Publish with us

Policies and ethics