Skip to main content
Log in

Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.)

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Identification of genes for quantitative traits is difficult using any single approach due to complex inheritance of the traits and limited resolving power of the individual techniques. Here a combination of genetic mapping and bulked transcriptome profiling was used to narrow down the number of differentially expressed salt-responsive genes in rice in order to identify functional polymorphism of genes underlying the quantitative trait loci (QTL). A population of recombinant inbred lines (RILs) derived from cross between salt-tolerant variety CSR 27 and salt-sensitive variety MI 48 was used to map QTL for salt ion concentrations in different tissues and salt stress susceptibility index (SSI) for spikelet fertility, grain weight, and grain yield. Eight significant QTL intervals were mapped on chromosomes 1, 8, and 12 for the salt ion concentrations and a QTL controlling SSI for spikelet fertility was co-located in one of these intervals on chromosome 8. However, there were total 2,681 genes in these QTL intervals, making it difficult to pinpoint the genes responsible for the functional differences for the traits. Similarly, transcriptome profiling of the seedlings of tolerant and sensitive parents grown under control and salt-stress conditions showed 798 and 2,407 differentially expressed gene probes, respectively. By analyzing pools of RNA extracted from ten each of extremely tolerant and extremely sensitive RILs to normalize the background noise, the number of differentially expressed genes under salt stress was drastically reduced to 30 only. Two of these genes, an integral transmembrane protein DUF6 and a cation chloride cotransporter, were not only co-located in the QTL intervals but also showed the expected distortion of allele frequencies in the extreme tolerant and sensitive RILs, and therefore are suitable for future validation studies and development of functional markers for salt tolerance in rice to facilitate marker-assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ammar MHM, Pandit A, Singh RK, Sameena S, Chauhan MS, Singh AK, Sharma PC, Gaikwad K, Sharma TR, Mohapatra T, Singh NK (2009) Mapping of QTLs controlling Na+, K+ and Cl ion concentrations in salt tolerant indica rice variety CSR27. J Plant Biochem Biotechnol 18:139–150

    CAS  Google Scholar 

  • Amrutha RN, Sekhar PN, Varshney RK, Kishor PBK (2007) Genome-wide analysis and identification of genes related to potassium transporter families in rice (Oryza sativa L.). Plant Sci 172:708–721

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Bonilla P, Dvorak J, Mackill D, Deal K, Gregorio G (2002) RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp Agric Sci 85:68–76

    Google Scholar 

  • Brumos J, Colmenero-Flores JM, Conesa A, Izquierdo P, Sánchez G, J-Iglesias D, López-Climent MF, Gómez-Cadenas A, Talon M (2009) Membrane transporters and carbon metabolism implicated in chloride homeostasis differentiate salt stress responses in tolerant and sensitive Citrus rootstocks. Funct Integr Genomics 9:293–309

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530

    Article  CAS  Google Scholar 

  • Colmenero-Flores MJ, Martinez G, Gamba G, Va’zquez N, Lglesias DJ, Brumo J, Talo M (2007) Identification and functional characterization of cation-chloride cotransporters in plants. Plant J 50:278–292

    Article  CAS  PubMed  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    CAS  PubMed  Google Scholar 

  • Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust J Agric Res 29:897–912

    Article  Google Scholar 

  • Giovannoni JJ, Wing RA, Ganal MW, Tanksley SD (1991) Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res 19(23):6553–6555

    Article  CAS  PubMed  Google Scholar 

  • Gong JM, He P, Qian Q, Shen LS, Zhu LH, Chen SY (1999) Identification of salt-tolerance QTL in rice (Oryza sativa L.). Chin Sci Bull 44:68–71

    Article  Google Scholar 

  • Gregorio GB (1997) Tagging salinity tolerance genes in rice using amplified fragment length polymorphism (AFLP). PhD thesis, Univ Philippines, Los Banos, Philippines

  • Heazlewood JL, Howell KA, Whelan J, Millar AH (2003) Towards an analysis of the rice mitochondrial proteome. Plant Physiol 132(1):230–242

    Article  CAS  PubMed  Google Scholar 

  • IRGSP (2005) The map based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651

    Article  CAS  PubMed  Google Scholar 

  • Kathiresan A, Lafitte HR, Chen J, Mansueto L, Bruskiewich R, Bennett J (2006) Gene expression microarray and their application in drought stress research. Field Crops Res 97:101–110

    Article  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    Article  CAS  PubMed  Google Scholar 

  • Korol A, Ronin Y, Itzcovich A, Nevo E (2001) Enhanced efficiency of QTL mapping analysis based on multivariate complexes of quantitative traits. Genetics 157:1789–1803

    CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Koyama ML, Aurora L, Koebner RMD, Flowers TJ, Yeo AR (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125:406–422

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha HR, Singh AK, Sopory AK, Singla-Pareek SL, Pareek A (2009) Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation. BMC Genomics 10:200

    Google Scholar 

  • Lanceras JC, Pantuwan G, Jongdee B, Toojinda T (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol 135:384–399

    Article  CAS  PubMed  Google Scholar 

  • Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na + and K + uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260

    Article  CAS  PubMed  Google Scholar 

  • Lin HX, Yangihara S, Zhuang JY, Senboku T, Zheng KL, Yashima S, Lin HX, Zhuang JY, Zheng KL (1997) Mapping of QTL for salt tolerance in rice (Oryza sativa L.) via molecular markers. Chin Rice Res Newslett 5(4):1–2

    CAS  Google Scholar 

  • Marino R, Ponnaiah M, Krajewski P, Frova C, Gianfranceschi L, Pe EM, Gorla SM (2009) Addressing drought tolerance in maize by transcriptional profiling and mapping. Mol Genet Genomics 218:163–179

    Article  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88(21):9828–9832

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–3425

    Google Scholar 

  • Prasad SR, Bagali PG, Shailaja H, Shashidhar HE, Hittalmani S (2000) Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr Sci 78:162–164

    CAS  Google Scholar 

  • Price A (2006) Believe it or not, QTLs are accurate!. Trends Plant Sci 11:213–216

    Article  CAS  PubMed  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Sabouri H, Sabouri A (2008) New evidence of QTLs attributed to salinity tolerance in rice. Afr J Biotechnol 7:4376–4388

    CAS  Google Scholar 

  • Sahi C, Singh A, Kumar K, Blumwald E, Grover A (2006) Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct Integr Genomics 6:263–284

    Article  CAS  PubMed  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  CAS  PubMed  Google Scholar 

  • Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102:509–514

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Mishra B (2004) Role of Central Soil Salinity Research Institute in Genetic improvement of rice varieties in India. In: Sharma SD, Rao UP (eds) Genetic improvement of rice varieties in India, pp 189–242

  • Singh H, Deshmukh RK, Singh A, Singh AK, Gaikward K, Sharma TR, Mohapatra T, Singh NK (2010) Highly variable SSR markers suitable for rice genotyping using agarose gels. Mol Breed 25:359–364

    Article  CAS  Google Scholar 

  • Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32(6):891–904

    Article  CAS  PubMed  Google Scholar 

  • Tanji KK (1990) Nature and extent of agricultural salinity. In: Tanji KK (ed) Agricultural salinity assessment and management 71, pp 1–17

  • Thomson MJ, Ocampo DM, Egdane J, Katimbang M, Singh RK, Gregorio G, Ismail M (2007) QTL mapping and marker assisted backcrossing for improved salinity tolerance in rice. In: Plant and animal genomes XV conference, San Diego, CA, 13–17 January 2007

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835

    Article  CAS  PubMed  Google Scholar 

  • Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ (2007) Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol 63:609–623

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL cartographer 2.5. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Wayne ML, Mcintyre LM (2002) Combining mapping and arraying: an approach to candidate gene identification. Proc Natl Acad Sci USA 99:14903–14906

    Google Scholar 

  • Wu R, Garg A (2003) Engineering rice plants with trehalose-producing genes improves tolerance to drought, salt and low temperature. ISBN News Report, February 2003. http://www.isb.vt.edu/

  • Xinjian H, Jianquan C, Zhigang Z, Jinsong Z, Chen Shouyi (2002) Identification of salt-stress responsive genes in rice (Oryza sativa L.) by cDNA array. Sci China Ser C Life Sci 45:477–484

    Article  Google Scholar 

  • Yamagami M, Haga K, Napier RM, Lino M (2004) Two distinct signaling pathways participate in auxin-induced swelling of pea epidermal protoplasts. Plant Physiol 134:735–747

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Forna DA, Kock JH, Gomez KA (1972) Laboratory manual for physiological studies of rice. IRRI, Manila, p 34

  • Zang JP, Sun Y, Wang Y, Yang J, Li F, Zhou YL, Zhu LH, Jessica R, Mohammadhosein F, Xu JL, Li ZK (2008) Dissection of genetic overlap of salt tolerance QTLs at the seedling and tillering stages using backcross introgression lines in rice. Sci China Ser C Life Sci 51:583–591

    Article  Google Scholar 

  • Zeng ZB (1993) Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  CAS  PubMed  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  Google Scholar 

  • Zhang GY, Guo Y, Chen SL, Chen SY (1995) RFLP tagging of a salt tolerance gene in rice. Plant Sci 110:227–234

    Article  CAS  Google Scholar 

  • Zhu J-K, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis thaliana: evidence of a critical role for potassium nutrition. Plant Cell 10:1181–1192

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to the Indian Council of Agricultural Research, New Delhi, for financial support of the NPTC project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagendra K. Singh.

Additional information

Communicated by R. Waugh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandit, A., Rai, V., Bal, S. et al. Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Genet Genomics 284, 121–136 (2010). https://doi.org/10.1007/s00438-010-0551-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0551-6

Keywords

Navigation