Skip to main content
Log in

Banded structure control of low carbon microalloyed steel based on oxide metallurgy

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Banded structure is a common harmful microstructure for low carbon microalloyed steel, which seriously shortens the service life of processed parts. In order to study the effect of oxide metallurgy on improving banded structure, the Ti–Zr deoxidized low carbon microalloyed steel that can play the oxide metallurgical role of inclusion was chosen as the research object, and the inclusion characteristics, microstructure and transverse and longitudinal mechanical properties after hot rolling were analyzed. The results showed the inclusion number density increased in all experimental steels after hot rolling, and a large number of long strip inclusions with aspect ratio greater than 3 appeared along the rolling direction. In addition, after hot rolling, there were element segregation bands in the experimental steels, and granular bainite bands were formed in the element enrichment zone. However, the intragranular ferrite generated in the cooling process destroyed the continuity of granular bainite bands, so that the microstructure anisotropy indexes of experimental steels were small. The mechanical properties analysis showed that the anisotropy of performance was mainly reflected in plasticity and toughness in the experimental steels. Among them, the difference ratio of elongation, section shrinkage and impact energy of No. 2 steel was 1.69%, 3.87% and 1.69%, respectively, which were less than those of No. 1 steel and No. 3 steel. The anisotropy of microstructure and mechanical properties of No. 2 steel that full played the role of oxide metallurgy were improved, and the banded structure control of low carbon microalloyed steel can be realized by oxide metallurgy technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D.L. Liu, W.R. Shao, X.W. Sun, X.D. Huo, X.P. Mao, L.J. Li, J. Univ. Sci. Technol. Beijing 27 (1994) 40–44.

    Google Scholar 

  2. E. Ervasti, U. Ståhlberg, J. Mater. Process Technol. 101 (2000) 312–321.

    Article  Google Scholar 

  3. M.S. Joo, D.W. Suh, H.K.D.H. Bhadeshia, ISIJ Int. 53 (2013) 1305–1314.

    Article  Google Scholar 

  4. S.C. Zhang, J.T. Yu, H.B. Li, Z.H. Jiang, Y.F. Geng, H. Feng, B.B. Zhang, H.C. Zhu, J. Mater. Sci. Technol. 102 (2022) 105–114.

    Article  Google Scholar 

  5. J.D. Verhoeven, J. Mater. Eng. Perform. 9 (2000) 286–296.

    Article  Google Scholar 

  6. J.S. Kirkaldy, J.V. Destinon-Forstmann, R.J. Brigham, Can. Metall. Quart. 1 (1962) 59–81.

    Article  Google Scholar 

  7. S.W. Thompson, P.R. Howell, Mater. Sci. Technol. 8 (1992) 777–784.

    Article  Google Scholar 

  8. T.F. Majka, D.K. Matlock, G. Krauss, Metall. Mater. Trans. A 33 (2002) 1627–1637.

    Article  Google Scholar 

  9. R Großterlinden, R. Kawalla, U. Lotter, H. Pircher, Steel Res. 63 (1992) 331–336.

    Article  Google Scholar 

  10. Y. Ji, Y.F. Min, S.P. Li, H.S. Liu, J.Q. Zhang, China Metall. 26 (2016) No. 4, 1–9.

    Google Scholar 

  11. B. Krebs, L. Germain, A. Hazotte, M. Gouné, J. Mater. Sci. 46 (2011) 7026–7038.

    Article  Google Scholar 

  12. T. Tanaka, Int. Met. Rev. 26 (1981) 185–212.

    Article  Google Scholar 

  13. X.J. Di, S.X. Ji, F.J. Cheng, D.P. Wang, J. Chao, Mater. Des. 88 (2015) 505–513.

    Article  Google Scholar 

  14. Y.K. Yang, D.P. Zhan, H. Lei, Y.L. Li, Z.H. Hua, H.S. Zhang, Metall. Mater. Trans. B 52 (2021) 1839–1853.

    Article  Google Scholar 

  15. J.M. Gregg, H.K.D.H. Bheadeshia, Metall. Mater. Trans. A 25 (1994) 1603–1611.

    Article  Google Scholar 

  16. X.L. Wan, B.W. Zhou, K.C. Nune, Y. Li, K. Wu, G. Li, Sci. Technol. Weld. Joining 22 (2017) 343–352.

    Article  Google Scholar 

  17. Y.K. Yang, D.P. Zhan, H. Lei, G.X. Qiu, Y.L. Li, Z.H. Jiang, H.S. Zhang, Metall. Mater. Trans. B 50 (2019) 2536–2546.

    Article  Google Scholar 

  18. Y.K. Yang, D.P. Zhan, Z.H. Jiang, H. Lei, J. Northeast. Univ. Nat. Sci. 42 (2021) 1709–1716.

    Google Scholar 

  19. Y.K. Yang, J.Y. Zhu, X.M. Li, Y. Wang, D.P. Zhan, C.J. Liu, J. Iron Steel Res. (2022) https://doi.org/10.13228/j.boyuan.issn1001-0963.20220305.

  20. Y.K. Yang, D.P. Zhan, H. Lei, Y.L. Li, R.J. Wang, J.X. Wang, Z.H. Jiang, H.S. Zhang, ISIJ Int. 60 (2020) 1948–1956.

    Article  Google Scholar 

  21. A.M. Guo, S.R. Li, J. Guo, P.H. Li, Q.F. Ding, K.M. Wu, X.L. He, Mater. Charact. 59 (2008) 134–139.

  22. C. Wang, R.D.K. Misra, M.H. Shi, P.Y. Zhang, Z.D. Wang, F.X. Zhu, G.D. Wang, Mater. Sci. Eng. A 594 (2014) 218–228.

    Article  Google Scholar 

  23. Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, K. Okamoto, ISIJ Int. 34 (1994) 829–835.

    Article  Google Scholar 

  24. B.L. Bramfitt, Metall. Trans. 1 (1970) 1987–1995.

    Article  Google Scholar 

  25. T.J. Baker, K.B. Gave, J.A. Charles, Met. Technol. 3 (1976) 183–193.

    Article  Google Scholar 

  26. F.Y. Huang, Y.H.F. Su, J.C. Kuo, Met. Mater. Int. 24 (2018) 1333–1345.

    Article  Google Scholar 

  27. Y.K. Yang, D.P. Zhan, G.X. Qiu, X.M. Li, Z.H. Jiang, H.S. Zhang, J. Mater. Res. Technol. 18 (2022) 5103–5115.

    Article  Google Scholar 

  28. S. Ashok, Scripta Metall. 14 (1980) 31–34.

    Article  Google Scholar 

  29. K. Miao, M. Nabeel, N. Dogan, S. Sun, Metall. Mater. Trans. B 52 (2021) 3151–3166.

    Article  Google Scholar 

  30. Z.H. Wu, W. Zheng, G.Q. Li, H. Matsuura, F. Tsukihashi, Metall. Mater. Trans. B 46 (2015) 1226–1241.

    Article  Google Scholar 

  31. N. Matsuoka, M. Terano, T. Ishiguro, E. Abe, N. Yukawa, T. Ishikawa, K. Isobe, Proced. Eng. 81 (2014) 120–125.

    Article  Google Scholar 

  32. T.N. Baker, Mater. Sci. Technol. 31 (2015) 265–294.

    Article  Google Scholar 

  33. C.H. Ren, X.C. Zhang, H.W. Ji, N. Zhan, Z. Qiao, Mater. Sci. Eng. A 705 (2017) 394–401.

    Article  Google Scholar 

  34. M.V. Li, D.V. Niebuhr, L.L. Meekisho, D.G. Atteridge, Metall. Mater. Trans. B 29 (1998) 661–672.

    Article  Google Scholar 

  35. F.G. Caballero, A. García-Junceda, C. Capdevila, C. García de Andrés, Mater. Trans. 47 (2006) 2269–2276.

  36. L.E. Samuels, Light microscopy of carbon steel, ASM Internaitonal, Ohio, USA, 1999.

  37. Q.C. Ma, X.M. Zhao, D.X. Meng, C. Dong, Z. Hou, R. Misra, Steel Res. Int. 90 (2019) 1800332.

    Article  Google Scholar 

  38. H.T. Zhao, E.J. Palmiere, Metall. Mater. Trans. A 48 (2017) 3389–3399.

    Article  Google Scholar 

  39. Y.M. Kim, H. Lee, N. J. Kim, Mater. Sci. Eng. A 478 (2008) 361–370.

    Article  Google Scholar 

  40. S.K. Kim, Y.M. Kim, Y.J. Lim, N.J. Kim, Met. Mater. Int. 12 (2006) 131–135.

    Article  Google Scholar 

  41. Y.F. Li, Q.Y. Huang, Y.C. Wu, Z. Yi, S. Zhu, Fusion Eng. Des. 82 (2007) 2683–2688.

    Article  Google Scholar 

  42. R.A. Grange, Metall. Trans. 2 (1971) 417–426.

    Article  Google Scholar 

  43. F.A. Khalid, M. Farooque, A. ul Haq, A.Q. Khan, Mater. Sci. Technol. 15 (1999) 1209–1215.

  44. X.C. Zhang, Y. Wang, J. Yang, Z. Qiao, C. Ren, C. Chen, Opt. Laser. Eng. 84 (2016) 24–28.

    Article  Google Scholar 

  45. R.A. Ricks, P.R. Howell, G.S. Barritte, J. Mater. Sci. 17 (1982) 732–740.

    Article  Google Scholar 

Download references

Acknowledgements

The present work was financially supported by the Shaanxi Natural Science Basic Research Program (No. 2023-JC-QN-0376) and the National Natural Science Foundation of China (Nos. 52074207 and 51874081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-ming Li or Dong-ping Zhan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Yk., Zhu, Jy., Li, Xm. et al. Banded structure control of low carbon microalloyed steel based on oxide metallurgy. J. Iron Steel Res. Int. 30, 2242–2253 (2023). https://doi.org/10.1007/s42243-023-00916-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00916-6

Keywords

Navigation