Skip to main content
Log in

Development of microstructural banding in low-alloy steel with simulated Mn segregation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The development of microstructural banding in low-alloy steel with Mn segregation has been investigated through the use of artificially segregated steel, interrupted cooling techniques, and optical microscopy. Mn segregation was simulated by hot roll bonding thin sheets of 5140 steel with 0.82 wt pct Mn and modified 5140M with 1.83 wt pct Mn into a plate with 20- and 160-µm-thick segregated layers. Samples were austenitized at 850 °C, continuously cooled at 1 °C/s and 0.1 °C/s, and quenched from progressively lower temperatures to observe the evolution of the microstructure. The segregated band thickness had a striking effect on microstructural development. Samples with 160 µm bands cooled at 1 °C/s had martensite and bainite in high-Mn bands. In contrast, samples with 20 µm bands cooled at the same rate had pearlite in high-Mn bands. The dramatic effect of band thickness on microstructural development was due to growth of a fully pearlitic band at the interface between segregated layers. The formation of interfacial pearlite is discussed relative to redistribution of carbon between adjacent high- and low-Mn bands during cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.F. Smith: Structure and Properties of Engineering Alloys, McGraw-Hill, New York, NY, 1993, pp. 125–28.

    Google Scholar 

  2. R.E. Reed-Hill and R. Abbashian: Physical Metallurgy Principles, PWS-Kent, Boston, MA, 1992, pp. 459–61.

    Google Scholar 

  3. T.B. Smith, J.S. Thomas, and R. Goodall: J. Iron Steel Inst., 1963, July, pp. 602–09.

  4. J.D. Lavender and F.W. Jones: J. Iron Steel Inst., 1949, vol. 163, pp. 14–17.

    CAS  Google Scholar 

  5. R.G. Ward: J. Iron Steel Inst., 1965, Sept., pp. 930–33.

  6. R.M. Fisher, G.R. Speich, L.J. Cudy, and H. Hu: Physical Chemistry in Metallurgy: Proc. Darken Conf., United States Steel, Monroeville, PA, 1976, pp. 466–73.

    Google Scholar 

  7. E.T. Turkdogan and R.A. Grange: J. Iron Steel Inst., 1970, vol. 208, pp. 482–94.

    CAS  Google Scholar 

  8. R.D. Doherty and D.A. Melford: J. Iron Steel Inst., 1966, Nov., pp. 1131–43.

  9. T.Z. Kattamis and M.C. Flemings: Trans. TMS-AIME, 1965, vol. 233, pp. 992–99.

    CAS  Google Scholar 

  10. F. Weinberg and R.K. Buhr: J. Iron Steel Inst., 1969, Aug., pp. 1114–20.

  11. R.A. Grange: Metall. Trans., 1971, vol. 2, pp. 417–26.

    CAS  Google Scholar 

  12. G. Mukherjee: Tool Alloy Steel, 1977, vol. 11, pp. 55–58.

    CAS  Google Scholar 

  13. R. Grossterlinden, R. Kawalla, U. Lotter, and H. Pircher: Steel Res., 1992, vol. 63, pp. 331–36.

    CAS  Google Scholar 

  14. S.W. Thompson and P.R. Howell: Mater. Sci. Technol., 1992, vol. 8, pp. 777–84.

    CAS  Google Scholar 

  15. J.A. Eckert, P.R. Howell, and S.W. Thompson: J. Mater. Sci., 1993, vol. 28, pp. 4412–20.

    Article  CAS  Google Scholar 

  16. P.G. Bastien: J. Iron Steel Inst., 1957, vol. 174, pp. 281–91.

    Google Scholar 

  17. W.C. Leslie: The Physical Metallurgy of Steels, Tech Books, New York, NY, 1981, pp. 172–73.

    Google Scholar 

  18. C.B. Voldrich: Suppl. J. Am. Welding Soc., 1947, vol. 26, pp. 153s-69s.

    CAS  Google Scholar 

  19. J.S. Kirkaldy, J. von Destinon-Forstmann, and R.J. Brigham: Can. Met. Q., 1962, vol. 1, pp. 59–81.

    CAS  Google Scholar 

  20. L.E. Samuels: Optical Microscopy of Carbon Steels, ASM INTERNATIONAL, Metals Park, OH, 1980, pp. 127–28.

    Google Scholar 

  21. B. Sundman, B. Jansson, and J.O. Anderson: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Elsevier Science, New York, NY, 1985, pp. 153–190.

    Google Scholar 

  22. T.F. Majka: Master’s Thesis, Colorado School of Mines, Golden, CO, 2000.

    Google Scholar 

  23. J.D. Verhoeven and E.D. Gibson: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1181–89.

    Article  CAS  Google Scholar 

  24. G. Krauss: Steels: Heat Treatment and Processing Principles, ASM INTERNATIONAL, Materials Park, OH, 1990, p. 152.

    Google Scholar 

  25. T.F. Majka, D.K. Matlock, G. Krauss, and M.T. Lusk: 42nd MWSP Conf. Proc., ISS, Warrendale, PA, 2000, pp. 75–87.

    Google Scholar 

  26. R.F. Mehl and W.C. Hagel: Progr. Met. Phys., Pergamon Press, New York, NY, 1956, pp. 74–134.

    Google Scholar 

  27. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, Van Nostrand Reinhold, Berkshire, United Kingdom, 1981, pp. 333–34.

    Google Scholar 

  28. M.P. Puls and J.S. Kirkaldy: Metall. Mater. Trans., 1972, vol. 3, pp. 2777–96.

    CAS  Google Scholar 

  29. B.E. Sundquist: Acta Metall., 1968, vol. 16, p. 1413.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majka, T.F., Matlock, D.K. & Krauss, G. Development of microstructural banding in low-alloy steel with simulated Mn segregation. Metall Mater Trans A 33, 1627–1637 (2002). https://doi.org/10.1007/s11661-002-0172-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0172-8

Keywords

Navigation