Skip to main content
Log in

High-Temperature Deformation Behavior of MnS in 1215MS Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effect of manganese sulfide (MnS) inclusions on the machinability of free-cutting steel is based on their morphology, size and distribution. Furthermore, the plasticity of MnS is high during the hot working caused different characterization of MnS. In this study, the deformation behavior of MnS in 1215MS steel after a thermomechanical process was investigated at 1323 K. The microstructures of MnS inclusions were characterized by optical microscopy, scanning electron microscopy, energy-dispersive spectrometry, and electron backscattering diffraction (EBSD). As the thickness reduction of the inclusions increased from 10 to 70%, their average aspect ratio increased from 1.20 to 2.39. In addition, the deformability of MnS inclusions was lower than that of the matrix. The possible slip systems of A, B, C, and D plane traces were \(\left( {\bar{1}0\bar{1}} \right)\left[ {\bar{1}01} \right],\left( {10\bar{1}} \right)\left[ {101} \right],\left( {011} \right)\left[ {01\bar{1}} \right]\), and \(\left( {110} \right)\left[ {1\bar{1}0} \right]\). Furthermore, the EBSD measurements suggested that slip planes in MnS inclusions occur on {110} planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D.C.J. Farrugia, Ironmak. Steelmak. 37, 298 (2010)

    Article  CAS  Google Scholar 

  2. A.S.M.I.H. Committee. Asm Handbook, Volume 01 - Properties and Selection: Irons, Steels, and High- Performance Alloys, vol 1 (1990), pp. 591–602

  3. R. Kiessling, Nonmetallic Inclusions and Their Effects on the Properties of Ferrous Alloys (Elsevier, Oxford, 2001), pp. 6278–6283

    Google Scholar 

  4. C.E. Sims, F.B. Dahle, Trans. Am. Foundarymen’s Ass. 46, 65 (1938)

    Google Scholar 

  5. T.J. Baker, J.A. Charles, J. Iron Steel Inst. 210, 702 (1972)

    CAS  Google Scholar 

  6. C.E. Sims, Trans. Am. Inst. Min. Metall. Eng. 215, 367 (1959)

    CAS  Google Scholar 

  7. T.J. Baker, J.A. Charles, J. Iron Steel Inst. 210, 680 (1972)

    CAS  Google Scholar 

  8. L. Luyckx, J.R. Bell, A. McLean, M. Korchynsky, Metall. Trans. 1, 3341 (1970)

    CAS  Google Scholar 

  9. T.J. Baker, J.A. Charles, J. Iron Steel Inst. 211, 187 (1973)

    CAS  Google Scholar 

  10. P.J.H. Maunder, J.A. Charles, J. Iron Steel Inst. 206, 705 (1968)

    CAS  Google Scholar 

  11. K.B. Gove, J.A. Charles, Met. Technol. 1, 279 (1974)

    Article  Google Scholar 

  12. K.B. Gove, J.A. Charles, Met. Technol. 1, 425 (1974)

    Article  Google Scholar 

  13. A. Segal, J.A. Charles, Met. Technol. 4, 177 (1977)

    Article  Google Scholar 

  14. T.M. Banks, T. Gladman, Met. Technol. 6, 81 (1979)

    Article  CAS  Google Scholar 

  15. H.C. Chao, L. Thomassen, L.H. Van Vlack, ASM Trans. Quart. 57, 386 (1964)

    CAS  Google Scholar 

  16. H.C. Chao, L.H. Van Vlack, ASM Trans. Quart. 58, 335 (1965)

    CAS  Google Scholar 

  17. F. Matsuno, S.I. Nishikida, H. Ikesaki, Trans. Iron Steel Jpn. 25, 989 (1985)

    Article  CAS  Google Scholar 

  18. A.J. Mardinly, H. Lawrence, Texture Microstruct. 22, 127 (1993)

    Article  Google Scholar 

  19. Y.T. Zhou, Y.B. Xue, D. Chen, Y.J. Wang, B. Zhang, X.L. Ma, Sci. Rep. 4, 6 (2014)

    Google Scholar 

  20. R. Kiessling, N. Lange, Non-Metallic Inclusions in Steel, 2nd edn. (The Institute of Materials, London, 1978), pp. 97–154

    Google Scholar 

  21. C. Igathinathane, L.O. Pordesimo, Comput. Electron. Agric. 63, 168 (2008)

    Article  Google Scholar 

  22. J.A. Rice, Mathematical Statistics and Data Analysis, 3rd edn. (Cengage Learning, Boston, 2006), pp. 138–146

    Google Scholar 

  23. E. Limpert, W.A. Stahel, M. Abbt, Bioscience 51, 341 (2001)

    Article  Google Scholar 

  24. D.F. Lee, P.M. Martin, D.M. Kroeger, M.W. Rupich, Q. Li, G.N. Riley Jr., Supercond. Sci. Technol. 10, 702 (1997)

    Article  CAS  Google Scholar 

  25. T. Malkiewicz, S. Rudnik, J. Iron Steel Inst. 201, 33 (1963)

    CAS  Google Scholar 

  26. A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field, Electron Backscatter Diffraction in Materials Science, 2nd edn. (Springer, New York, 2009), pp. 251–258

    Book  Google Scholar 

  27. G.I. Taylor, J. Inst. Metals. 62, 307 (1938)

    Google Scholar 

Download references

Acknowledgements

The authors would gratefully like to thank the Ministry of Science and Technology and China Steel Corporation for supporting the fund in the project under MOST 103-2221-E-006-060-MY3 and MOST 104-2622-8-006-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jui-Chao Kuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, FY., Su, YH.F. & Kuo, JC. High-Temperature Deformation Behavior of MnS in 1215MS Steel. Met. Mater. Int. 24, 1333–1345 (2018). https://doi.org/10.1007/s12540-018-0137-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0137-0

Keywords

Navigation