Skip to main content
Log in

A computational model for the prediction of steel hardenability

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A computational model is presented in this article for the prediction of microstructural development during heat treating of steels and resultant room-temperature hardness. This model was applied in this study to predict the hardness distribution in end-quench bars (Jominy hardness) of heat treatable steels. It consists of a thermodynamics model for the computation of equilibria in multicomponent Fe-C-M systems, a finite element model to simulate the heat transfer induced by end quenching of Jominy bars, and a reaction kinetics model for austenite decomposition. The overall methodology used in this study was similar to the one in the original work of Kirkaldy. Significant efforts were made to reconstitute the reaction kinetics model for austenite decomposition in order to better correlate the phase transformation theory with empiricism and to allow correct phase transformation predictions under continuous cooling conditions. The present model also expanded the applicable chemical composition range. The predictions given by the present model were found to be in good agreement with experimental measurements and showed considerable improvement over the original model developed by Kirkaldy et al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.V. Li, D. Niebuhr, D.G. Atteridge, and L. Meekisho: Phase Transformations during the Thermal/Mechanical Processing of Steel, E.B. Hawbolt and S. Yue, eds., CIM, Montreal, 1995, pp. 485–501.

    Google Scholar 

  2. M. Li: Ph.D. Thesis, Oregon Graduate Institute of Science and Technology, Portland, OR, 1996.

    Google Scholar 

  3. J.S. Kirkaldy and D. Venugopalan: Phase Transformations in Ferrous Alloys, D.A.R. Marder and J.I. Goldstein, eds., AIME, New York, NY, 1983, pp. 128–48.

    Google Scholar 

  4. J.L. Lee and H.K.D.H. Bhadeshia: China Steel Technical Report No. 7, China Steel Corporation, Hsiao Kang, Kaohsiung, Taiwan, 1993, pp. 16–25.

    Google Scholar 

  5. J.S. Kirkaldy and E.A. Baganis: Metall. Trans. A, 1978, vol. 9A, pp. 495–501.

    CAS  Google Scholar 

  6. J.S. Kirkaldy, B.A. Thomson, and E.A. Baganis: Hardenability Concepts with Applications to Steel, D.V. Doane and J.S. Kirkaldy, eds., AIME, New York, NY, 1977, pp. 82–125.

    Google Scholar 

  7. K. Hashiguchi, J.S. Kirkaldy, T. Fukuzumi, and V. Pavaska: CALPHAD, 1984, vol. 8 (2), pp. 173–86.

    Article  CAS  Google Scholar 

  8. A. Kroupa and J.S. Kirkaldy: J. Phase Equilibria, 1993, vol. 14 (2), pp. 150–61.

    CAS  Google Scholar 

  9. C. Wagner: Thermodynamics of Alloys, Addison-Wesley Publishing Co., Reading, MA, 1952.

    Google Scholar 

  10. B. Uhrenius: Hardenability Concepts with Applications to Steel, D.V. Doane and J.S. Kirkaldy, eds., AIME, New York, NY, 1977, pp. 28–81.

    Google Scholar 

  11. F.D. Richardson: J. Iron Steel Inst., 1953, vol. 175, pp. 33–51.

    Google Scholar 

  12. M. Hillert and L.I. Staffansson: Acta Chem. Scand., 1970, vol. 24 (10), pp. 3618–26.

    Article  CAS  Google Scholar 

  13. R.A. Grange: Met. Progr., 1961, vol. 70 (4), pp. 73–75.

    Google Scholar 

  14. The British Iron and Steel Research Association: Physical Constants of Some Commercial Steels at Elevated Temperatures, Butterworth and Co., London, 1953.

    Google Scholar 

  15. A.J. Chapman: Fundamentals of Heat Transfer, Macmillan Publishing Company, New York, NY, 1987.

    Google Scholar 

  16. S.W. Churchill and H.H.S. Chu: Int. J. Heat Mass Transfer, 1975, vol. 18, pp. 1323–29.

    Article  CAS  Google Scholar 

  17. R.J. Goldstein, E.M. Sparrow, and D.C. Jones: Int. J. Heat Mass Transfer, 1973, vol. 16, pp. 1025–34.

    Article  CAS  Google Scholar 

  18. F.P. Incropera and D.P. DeWitt: Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, 1985.

    Google Scholar 

  19. Smithells Metals Reference Book, 7th ed., E.A. Brandes and G.B. Brook, eds., Butterworths-Heinemann, London, 1992.

    Google Scholar 

  20. A.J. Chapman: Fundamentals of Heat Transfer, Macmillan Publishing Co., New York, NY, 1987.

    Google Scholar 

  21. M.P. DeAndrés and M. Carsí: J. Mater. Sci., 1987, vol. 22, pp. 2707–16.

    Article  Google Scholar 

  22. C. Zener: Trans. AIME, 1946, vol. 167, pp. 550–83.

    Google Scholar 

  23. M. Hillert: Jernkont. Ann., 1957, vol. 141, pp. 557–85.

    Google Scholar 

  24. Atlas of Isothermal Transformation Diagrams, 3rd ed., U.S. Steel, Inc., Pittsburgh, PA, 1963.

  25. W. Steven and A.G. Haynes: J. Iron Steel Inst., 1956, vol. 183, pp. 349–59.

    CAS  Google Scholar 

  26. C.Y. Kung and J.J. Rayment: Metall. Trans. A, 1982, vol. 13A, pp. 328–31.

    CAS  Google Scholar 

  27. K.W. Andrews: J. Iron Steel Inst., 1969, vol. 203, pp. 721–27.

    Google Scholar 

  28. P. Maynier, J. Dollet, and P. Bastien: Hardenability Concepts with Applications to Steels, D.V. Doane and J.S. Kirkaldy, eds., AIME, New York, NY, 1978, pp. 518–44.

    Google Scholar 

  29. Atlas of Time-Temperature Diagrams for Irons and Steels, G.F. Vander Voort, ed., ASM INTERNATIONAL, Materials Park, OH, 1991.

    Google Scholar 

  30. J.S. Kirkaldy and S.E. Feldman: J. Heat Treatment, 1989, vol. 1, pp. 57–64.

    Google Scholar 

  31. J. Birtanlan, R.G. Henley, Jr., and A.L. Christenson: Trans. ASM, 1954, vol. 46, pp. 927–47.

    Google Scholar 

  32. Atlas of Isothermal Transformation Diagram, ASM, Metals Park, OH, 1977.

  33. M. Atkin: Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, British Steel, Sheffield, England, 1977.

    Google Scholar 

  34. W.W. Cias: Phase Transformation Kinetics and Hardenability of Medium-Carbon Alloy Steels, Climax Molybdenum Company, Greenwich, CT, 1972.

    Google Scholar 

  35. W.W. Cias: Phase Transformation Kinetics of Selected Wrought Constructional Steels, Climax Molybdenum Company, Greenwich, CT, 1977.

    Google Scholar 

  36. P. Maynier, J. Dollet, and P. Bastien: Hardenability Concepts with Applications to Steels, D.V. Doane and J.S. Kirkaldy, eds., AIME, New York, NY, 1978, pp. 163–76.

    Google Scholar 

  37. J.B. Austin and R.L. Rickett: Trans. AIME, 1939, vol. 135, pp. 396–415.

    Google Scholar 

  38. J.S. Kirkaldy: Scand. J. Metall., 1991, vol. 20, pp. 50–61.

    CAS  Google Scholar 

  39. J.W. Cahn: Acta Metall., 1956, vol. 4, pp. 449–59.

    Article  CAS  Google Scholar 

  40. W.A. Johnson and R.F. Mehl: Trans. AIME, 1939, vol. 135, pp. 416–42.

    Google Scholar 

  41. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M.V., Niebuhr, D.V., Meekisho, L.L. et al. A computational model for the prediction of steel hardenability. Metall Mater Trans B 29, 661–672 (1998). https://doi.org/10.1007/s11663-998-0101-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-998-0101-3

Keywords

Navigation