Skip to main content
Log in

Effect of Inclusions’ Behavior on the Microstructure in Al-Ti Deoxidized and Magnesium-Treated Steel with Different Aluminum Contents

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To clarify the precipitation behavior of beneficial inclusions and mechanism of their effects on microstructure, the effect of aluminum content on inclusion’s characteristics and their influence on the refinement of microstructure in Al-Ti complex deoxidized magnesium-treated steels were systematically investigated based on experiment and calculation. The results showed that due to the dual effects of Ti and Mg deoxidation, a large amount of finely dispersed Al2O3-TiO x -MgO inclusions in low aluminum steel with a complex multilayer or mosaic structure were formed, whereas a relatively smaller amount of Al2O3-MgO inclusions with the simple bundle structure were observed in high aluminum steel. The Al2O3-TiO x -MgO core oxides are more conducive to the precipitation of multiple manganese sulfides with thinner thickness on their local surfaces. Thus, the inclusion deformation, which mainly depends on the surface manganese sulfides layer, is smaller in low aluminum steel than that in high aluminum steel. Complex inclusions in low aluminum steel can pin austenite grain boundaries and induce interlocking acicular ferrite effectively. In addition to the small size and chemical composition of inclusions, the complex structure of oxides and the precipitation of multiple MnS on their surface are important to the nucleation of interlocking AFs on inclusions in Ti-deoxidized Mg-treated steel. The AFs quantity is much more, and the grain size is more uniform in low aluminum steel than that in high aluminum steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. R. Maiti and E.B. Hawbolt: J. Mater. Energy Syst., 1985, vol. 6, pp. 242-50.

    Article  Google Scholar 

  2. [2] P. Kaushik, J. Lehmann and M. Nadif: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 710-25.

    Article  Google Scholar 

  3. P. Juvonen: Effects of Non-Metallic Inclusions on Fatigue Properties of Calcium Treated Steels. Helsinki University of Technology, PhD Thesis, 2004.

  4. [4] P. Fassina, M. F. Brunella, L. Lazzari, G. Re, L. Vergani and A. Sciuccati: Eng. Fract. Mech., 2013, vol. 103, pp. 10-25.

    Article  Google Scholar 

  5. [5] T. Y. Jin, Z. Y. Liu and Y. F. Cheng: Int. J. Hydrogen Energy, 2010, vol. 35, pp. 8014-8021.

    Article  Google Scholar 

  6. [6] G. H. Xiao, H. Dong, M. Q. Wang and W. J. Hui: J. Iron Steel Res. Int., 2011, vol. 18, pp. 58-64.

    Article  Google Scholar 

  7. [7] K. I. Yamamoto, H. Yamamura and Y. Suwa: ISIJ Int., 2011, vol. 51, pp. 1987-1994.

    Article  Google Scholar 

  8. [8] H. B. Xue and Y. F. Cheng: Corros. Sci., 2011, vol. 53, pp. 1201-1208.

    Article  Google Scholar 

  9. [9] R. Takata, J. Yang and M. Kuwabara: ISIJ Int., 2007, vol. 47, pp.1379-1386.

    Article  Google Scholar 

  10. [10] Z. Enno, V. H. Corrie, V. Henk, W. Albert and I. N. Jung: ISIJ Int., 2012, vol. 52, pp. 52-61.

    Article  Google Scholar 

  11. [11] H. K. Sung, S. Y. Shin, W. Cha, W. Cha, K. Oh, S. Lee and N. J. Kim: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3350-3357.

    Article  Google Scholar 

  12. [12] C. Liu and S. D. Bhole: Sci. Technol. Weld. Join., 2013, vol.18, pp. 169-181.

    Article  Google Scholar 

  13. [13] S. F. Medina, M. Chapa and P. Valles: ISIJ Int., 1999, vol.39, pp. 930-936.

    Article  Google Scholar 

  14. [14] F. Huang, J. Liu, Z. J. Deng, J. H. Cheng, Z. H. Lu and X. G. Li: Mater. Sci. Eng. A, 2010, vol.527, pp. 6997-7001.

    Article  Google Scholar 

  15. [15] N. Verma, P. C. Pistorius, R. J. Fruehan, M. S. Potter, H. G. Oltmann and E. B. Pretorius: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 830-840.

    Article  Google Scholar 

  16. [16] N. Verma, P. C. Pistorius, R. J. Fruehan, M. Potter, M. Lind and S. Story: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 711-719.

    Article  Google Scholar 

  17. [17] M. Lind and L. Holappa: Metall. Mater. Trans. B, 2010, vol.41B, pp. 359-366.

    Article  Google Scholar 

  18. [18] L. Luyckx, J. R. Bell, A. Mclean and M. Korchynsky: Metall. Trans., 1970, vol. 1, pp. 3341-3350.

    Google Scholar 

  19. [19] G. M. Faulring and S. Ramalingam: Metall. Trans. B, 1980, vol. 11B, pp. 125-30.

    Article  Google Scholar 

  20. [20] D. C. Gatellier: Tetsu-to-Hagané, 1984, vol. 70, pp. S872.

    Google Scholar 

  21. [21] S. Kimura, K. Nakajima and S. Mizoguchi: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 79-85.

    Article  Google Scholar 

  22. [22] M. Fattahi, N. Nabhani, M. Hosseini, N. Arabian and E. Rahimi: Micron, 2013, vol. 45, pp. 107-114.

    Article  Google Scholar 

  23. [23] J. S. Byun, J. H. Shim, Y. W. Cho and D. N. Lee: Acta Mater., 2003, vol.51, pp.1593-1606.

    Article  Google Scholar 

  24. [24] H. Ohta and H. Suito: ISIJ Int., 2006, vol. 46, pp. 480–89.

    Article  Google Scholar 

  25. [25] X. J. Zhuo, Y. Q. Wang, X. H. Wang and H. G. Lee: J. Iron Steel Res. Int., 2010, vol. 17, pp. 10-16.

    Article  Google Scholar 

  26. [26] B. Beidokhti, A. H. Koukabi and A. Dolati: J. Mater. Process Technol., 2009, vol. 209, pp. 4027–35.

    Article  Google Scholar 

  27. [27] D. Zhang, H. Terasaki and Y. I. Komizo: Acta Mater., 2010, vol. 58, pp. 1369-1378.

    Article  Google Scholar 

  28. [28] M. K. Sun, I. H. Jung and H. G. Lee: Met. Mater. Int., 2008, vol. 14, pp. 791–98.

    Article  Google Scholar 

  29. [29] C. Wang, N. T. Nuhfer and S. Sridhar: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 1005–19.

    Article  Google Scholar 

  30. [30] C. Wang, N. T. Nuhfer and S. Sridhar: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 1022-1034.

    Article  Google Scholar 

  31. [31] R. Piao, H. G. Lee and Y. B. Kang: Acta Mater., 2013, vol. 61, pp. 683-696.

    Article  Google Scholar 

  32. [32] H. Ohta and H. Suito: ISIJ Int., 2006, vol. 46, pp. 14–21.

    Article  Google Scholar 

  33. [34] A. V. Karasev and H. Suito: ISIJ Int., 2008, vol. 48, pp. 1507–16.

    Article  Google Scholar 

  34. [35] Y. Ren, L. F. Zhang, W. Yang and H. J. Duan: Metall. Mater. Trans. B, 2014, vol.45B, pp. 2057–71.

    Article  Google Scholar 

  35. [36] H. S. Kim, C. H. Chang and H. G. Lee: Scripta Mater., 2005, vol. 53B, pp. 1253−1258.

    Article  Google Scholar 

  36. [37] A. Kojima, A. Kiyose, M. Minagawa, A. Hirano, K. Yoshii, T. Nakajima, M. Hoshino and Y. Ueshima: CAMP-ISIJ, 2003, vol. 16, pp. 360–363.

    Google Scholar 

  37. [38] K. Zhu and Z. G. Yang: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2207–13.

    Article  Google Scholar 

  38. [39] C. L. Hu, B. Song, W. B. Xin and J. H. Mao: Trans. Mater. Heat Treat., 2013, vol. 34. pp. 37–41.

    Google Scholar 

  39. [40] F. Chai, C. F. Yang, H. Su, Y. Q. Zhang and Z. Xu: J. Iron Steel Res. Int., 2009, vol. 16, pp. 69–74.

    Article  Google Scholar 

  40. [41] Q. B. Yu, Y. Sun, H. L. Yu and X. H. Liu: Chin. J. Mech. Eng., 2011, vol. 47, pp. 44–56.

    Article  Google Scholar 

  41. [42] L. Cheng and K. M. Wu: Acta Mater., 2009, vol.57, pp. 3754–62.

    Article  Google Scholar 

  42. [43] H. Mitsutaka and I. Kimihisa: Thermodynamic Data for Steelmaking, p. 1, Tohoku University Press, Sendai, 2010.

    Google Scholar 

  43. [44] S. C. Park, I. H. Jung, K. S. Oh and H. G. Lee: ISIJ Int., 2004, vol. 44, pp. 1016–23.

    Article  Google Scholar 

  44. [45] W. Zheng, Z. H. Wu, G. Q. LI, Z. Zhang and C. Y. Zhu: ISIJ Int., 2014, vol. 54, pp. 1755–64.

    Article  Google Scholar 

  45. [46] S. Genichi: Tetsu-to-Hagané, 2001, vol. 87, pp. 93-100.

    Google Scholar 

  46. [47] Miia Kiviö and Lauri Holappa: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 233–40.

    Article  Google Scholar 

  47. [48]J. D. Seo and S. H. Kim: Steel Res., 2001, vol. 71, pp. 101–06.

    Google Scholar 

  48. [49] C. Zener: Trans. AIME, 1948. vol. 175, pp. 15-51.

    Google Scholar 

  49. [50] M. Enomoto: Met. Mater., 1998, vol. 4, pp. 115–23.

    Article  Google Scholar 

  50. [51] S. H. Zhang, N. Hattori, M. Enomoto and T. Tarui: ISIJ Int., 1996, vol. 36, pp. 1301–09.

    Article  Google Scholar 

  51. [52] T. Pan, Z. G. Yang, B. Z. Bai and H. S. Fang: Acta Metall. Sinica, 2003, vol. 39. pp. 1037–42.

    Google Scholar 

  52. [53] J. L. Lee and Y. T. Pan: ISIJ Int., 1995, vol. 35, pp. 1027–33.

    Article  Google Scholar 

  53. [54] B. L. Bramfitt: Metall. Trans., 1970, vol. 1, pp. 1987–95.

    Article  Google Scholar 

  54. [55] H. Zhao, S. P. Hu, H. B. Wu, T. Q. Li and H. H. An: Iron and Steel, 2010, vol. 45, pp. 82-85.

    Google Scholar 

  55. [56] Z. D. Guan, Z. T. Zhang and J. S. Jiao: Physical Properties of Inorganic Materials, first ed., p. 127, Tsinghua University Press, Beijing, 1992.

    Google Scholar 

Download references

Acknowledgments

The authors wish to express their appreciation to the National Natural Science Foundation of China (Grant No. 51210007, No. 51104109), Hubei province Natural Science Fund (2008CDA010) and the Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education (FMRU201201), Wuhan University of Science and Technology for providing financial support which enabled this study to be carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqiang Li.

Additional information

Manuscript submitted December 10, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Zheng, W., Li, G. et al. Effect of Inclusions’ Behavior on the Microstructure in Al-Ti Deoxidized and Magnesium-Treated Steel with Different Aluminum Contents. Metall Mater Trans B 46, 1226–1241 (2015). https://doi.org/10.1007/s11663-015-0311-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0311-4

Keywords

Navigation