Skip to main content
Log in

Agricultural waste rice husk/poly(vinylidene fluoride) composite: a wearable triboelectric energy harvester for real-time smart IoT applications

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The ever-expanding demand for smart, wearable, and self-powered devices raises concerns regarding desirable power supplies. Again, this growing use of smart electronics continuously increases the burden on electronic waste (e-waste). Thus, a suitable power supply composed of environmentally friendly materials and assisted by adequate power density is quite enviable in today’s world. Herein, the designing and fabrication of an agricultural waste rice husk ash (RHA)/poly(vinylidene fluoride) (PVDF)-based flexible triboelectric energy harvesting device are demonstrated. The silica (SiO2)-enriched RHA effectively engineered the microstructure of the bio-compatible PVDF and effectively enhanced the electroactive phase fraction. The proof-of-concept of designing the flexible triboelectric energy harvester (TEH) using RHA/PVDF as a functional layer is studied. The fabricated lightweight, wearable TEH can generate a maximum voltage, current, and power density of ~ 463 V, 30 µAmp, and 1.94 mW.cm−2, respectively, under repetitive finger imparting. This significantly enhanced output performance of the optimized TEH is attributed to the coupling of the piezoelectric effect with the triboelectric phenomenon inside the device under each cycle of operation. Owing to the good dynamic pressure sensitivity, the device is quite capable of sensing and scavenging energy from the fine motions of fingers as well as other body joints. Finally, the device was used to assemble self-powered smart sensors in order to conduct smart home and smart library operations. The smart switches can operate the smart home electronic appliances wirelessly from the interior/exterior of the room of the respective building. In smart library applications, the signal generated from the smart sensors can convey useful information to the librarian or the users regarding occupied and empty positions of a particular book on a bookshelf. With the bio-degradable nature of the filler, easy processing of the device, excellent biomechanical energy harvesting capability, and efficacy towards IoT applications, this sustainable bio-organic device paves the way towards effective, flexible, self-powered electromechanical systems for next-generation smart artificial intelligence (AI) and Internet of Things (IoT) applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

 The authors confirm that the data supporting the findings of this study are available within the article and its Supplementary material. Raw data that support the findings of this study are available from the corresponding author upon reasonable request..

References

  1. Balakrishnan A, Medikonda J, Namboothiri PK, Natarajan M (2022) Role of wearable sensors with machine learning approaches in gait analysis for Parkinson’s disease assessment: a review. Eng Sci 19:5–19. https://doi.org/10.30919/es8e622

    Article  Google Scholar 

  2. Fan W, Wang Q, Rong K, Shi Y, Peng W, Li H, Guo Z, Bin Xu B, Hou H, Algadi H, Ge S (2024) MXene Enhanced 3D needled waste denim felt for high-performance flexible supercapacitors. Nanomicro Lett. https://doi.org/10.1007/s40820-023-01226-y

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yao C, Zhao W, Liu L, Liu Q, Li J (2023) Flexible, Programable sensing system with poly(Aam-HEMASA) for human motion detection. ES Mater Manuf. https://doi.org/10.30919/esmm5f818

    Article  Google Scholar 

  4. Liu Z, Zeng M, Wang H, Wang X, Li Y, Zeng C (2022) Toward flexible piezoelectrets with high environmental stability: a hybrid approach. ES Mater Manuf 17:73–82. https://doi.org/10.30919/esmm5f631

    Article  CAS  Google Scholar 

  5. Qin Z, Zhao G, Zhang Y, Gu Z, Tang Y, Aladejana JT, Ren J, Jiang Y, Guo Z, Peng X, Zhang X, Bin Xu B, Chen T (2023) A simple and effective physical ball-milling strategy to prepare super-tough and stretchable PVA@MXene@PPy hydrogel for flexible capacitive electronics. Small. https://doi.org/10.1002/smll.202303038

    Article  PubMed  Google Scholar 

  6. Pandey P, Jung DH, Choi GJ, Seo MK, Lee S, Kim JM, Park IK, Sohn JI (2023) Nafion-mediated barium titanate-polymer composite nanofibers-based triboelectric nanogenerator for self-powered smart street and home control system. Nano Energy 107:108134. https://doi.org/10.1016/j.nanoen.2022.108134

    Article  CAS  Google Scholar 

  7. Rahman MT, Rana SS, Zahed MA, Lee S, Yoon ES, Park JY (2022) Metal-organic framework-derived nanoporous carbon incorporated nanofibers for high-performance triboelectric nanogenerators and self-powered sensors. Nano Energy 94:106921. https://doi.org/10.1016/j.nanoen.2022.106921

    Article  CAS  Google Scholar 

  8. Goswami N, Raj S, Thakral D, Gonzáles JLA, Albornoz JF, Salazar E, Kapila D, Yadav S, Kumar S (2023) Preserving security in Internet of things healthcare system with metaheuristic driven intrusion detection. Eng Sci. https://doi.org/10.30919/es933

    Article  Google Scholar 

  9. Baig ZT, Ather D, Setia S, Quraishi SJ, Mian SM (2024) Towards advanced animal care: A Li-Fi and IoT-based sSystem for monitoring newborn livestock. ES Mater Manuf. https://doi.org/10.30919/esmm1038

    Article  Google Scholar 

  10. Modi A, Kishore B, Shetty DK, Sharma VP, Ibrahim S, Hunain R, Usman N, Nayak SG, Kumar S, Paul R (2022) Role of artificial intelligence in detecting colonic polyps during intestinal endoscopy. Eng Sci 20:23–30. https://doi.org/10.30919/es8d697

    Article  Google Scholar 

  11. Sudhi M, Shukla VK, Shetty DK, Gupta V, Desai AS, Naik N, Hameed BZ (2023) Advancements in bladder cancer management: a comprehensive review of artificial intelligence and machine learning applications. Eng Sci. https://doi.org/10.30919/es1003

    Article  Google Scholar 

  12. Wu C, Wang AC, Ding W, Guo H, Wang ZL (2019) Triboelectric nanogenerator: a foundation of the energy for the new era. Adv Energy Mater 9:1–25. https://doi.org/10.1002/aenm.201802906

    Article  CAS  Google Scholar 

  13. Jiang X, Chen Y, Meng X, Cao W, Liu C, Huang Q, Naik N, Murugadoss V, Huang M, Guo Z (2022) The impact of electrode with carbon materials on safety performance of lithium-ion batteries: a review. Carbon N Y 191:448–470. https://doi.org/10.1016/j.carbon.2022.02.011

    Article  CAS  Google Scholar 

  14. Song KY, Kim SW, Nguyen DC, Park JY, Luu TT, Choi D, Baik JM, An S (2023) Recent progress on nature-derived biomaterials for eco-friendly triboelectric nanogenerators. EcoMat. https://doi.org/10.1002/eom2.12357

    Article  Google Scholar 

  15. Lin Z, Li X, Zhang H, Bin Xu B, Wasnik P, Li H, Singh MV, Ma Y, Li T, Guo Z (2023) Research progress of MXenes and layered double hydroxides for supercapacitors. Inorg Chem Front 10:4358–4392. https://doi.org/10.1039/d3qi00819c

    Article  CAS  Google Scholar 

  16. Li T, Wei H, Zhang Y, Wan T, Cui D, Zhao S, Zhang T, Ji Y, Algadi H, Guo Z, Chu L, Cheng B (2023) Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2023.120678

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang H, Ahmed Khan S, Li N, Fang R, Huang Z, Zhang H (2023) Thermogalvanic gel patch for self-powered human motion recognition enabled by photo-thermal-electric conversion. Chem Eng J. https://doi.org/10.1016/j.cej.2023.145247

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tian C, Bai C, Wang T, Yan Z, Zhang Z, Zhuo K, Zhang H (2023) Thermogalvanic hydrogel electrolyte for harvesting biothermal energy enabled by a novel redox couple of SO4/32-ions. Nano Energy. https://doi.org/10.1016/j.nanoen.2022.108077

    Article  Google Scholar 

  19. Guo R, Fang Y, Wang Z, Libanori A, Xiao X, Wan D, Cui X, Sang S, Zhang W, Zhang H, Chen J (2022) Deep learning assisted body area triboelectric hydrogel sensor network for infant care. Adv Funct Mater. https://doi.org/10.1002/adfm.202204803

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang J, He T, Lee C (2019) Development of neural interfaces and energy harvesters towards self-powered implantable systems for healthcare monitoring and rehabilitation purposes. Nano Energy 65:104039. https://doi.org/10.1016/j.nanoen.2019.104039

    Article  CAS  Google Scholar 

  21. Zhu M, Yi Z, Yang B, Lee C (2021) Making use of nanoenergy from human – nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 36:101016. https://doi.org/10.1016/j.nantod.2020.101016

    Article  Google Scholar 

  22. Chen J, Wen X, Liu X, Cao J, Ding Z, Du Z (2021) Flexible hierarchical helical yarn with broad strain range for self-powered motion signal monitoring and human-machine interactive. Nano Energy 80:105446. https://doi.org/10.1016/j.nanoen.2020.105446

    Article  CAS  Google Scholar 

  23. Wang ZL (2014) Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives. Faraday Discuss 176:447–458. https://doi.org/10.1039/c4fd00159a

    Article  CAS  PubMed  Google Scholar 

  24. Zhang W, Gu G, Qin H, Li S, Shang W, Wang T, Zhang B, Cui P, Guo J, Yang F, Cheng G, Du Z (2020) Measuring the actual voltage of a triboelectric nanogenerator using the non-grounded method. Nano Energy 77:105108. https://doi.org/10.1016/j.nanoen.2020.105108

    Article  CAS  Google Scholar 

  25. Jiang D, Lian M, Xu M, Sun Q, Bin Xu B, Thabet HK, El-Bahy SM, Ibrahim MM, Huang M, Guo Z (2023) Advances in triboelectric nanogenerator technology—applications in self-powered sensors, Internet of things, biomedicine, and blue energy. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-023-00632-5

    Article  Google Scholar 

  26. Hu C, Wang F, Cui X, Zhu Y (2023) Recent progress in textile-based triboelectric force sensors for wearable electronics. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-023-00650-3

    Article  Google Scholar 

  27. Maharjan P, Bhatta T, Salauddin M, Rasel MS, Rahman MT, Rana SMS, Park JY (2020) A human skin-inspired self-powered flex sensor with thermally embossed microstructured triboelectric layers for sign language interpretation. Nano Energy 76:105071. https://doi.org/10.1016/j.nanoen.2020.105071

    Article  CAS  Google Scholar 

  28. Sarkar D, Das N, Saikh MM, Roy S, Paul S, Hoque NA, Basu R, Das S (2023) Elevating the performance of nanoporous bismuth selenide incorporated arch-shaped triboelectric nanogenerator by implementing piezo-tribo coupling effect: harvesting biomechanical energy and low scale energy sensing applications. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-023-00807-0

    Article  Google Scholar 

  29. Meena JS, Khanh TD, Jung S-B, Kim J-W (2023) Self-repairing and energy-harvesting triboelectric sensor for tracking limb motion and identifying breathing patterns. ACS Appl Mater Interfaces 15:29486–29498. https://doi.org/10.1021/acsami.3c06060

    Article  CAS  PubMed  Google Scholar 

  30. Xu Q, Wu Z, Zhao W, He M, Guo N, Weng L, Lin Z, Taleb MFA, Ibrahim MM, Singh MV, Ren J, El-Bahy ZM (2023) Strategies in the preparation of conductive polyvinyl alcohol hydrogels for applications in flexible strain sensors, flexible supercapacitors, and triboelectric nanogenerator sensors: an overview. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-023-00783-5

    Article  Google Scholar 

  31. Lin J, Li J, Feng S, Gu C, Li H, Lu H, Hu F, Pan D, Bin Xu B, Guo Z (2023) An active bacterial anti-adhesion strategy based on directional transportation of bacterial droplets driven by triboelectric nanogenerators. Nano Res 16:1052–1063. https://doi.org/10.1007/s12274-022-5177-6

    Article  CAS  Google Scholar 

  32. Jia B, Lei M, Zou Y, Qin G, Zhang C, Han L, Zhang Q, Lu P (2022) The electron transfer mechanism between metal and silicon oxide composites for triboelectric nanogenerators. Adv Compos Hybrid Mater 5:3223–3231. https://doi.org/10.1007/s42114-022-00561-9

    Article  CAS  Google Scholar 

  33. Liu C, Jiang L, Yue O, Feng Y, Zeng B, Wu Y, Wang Y, Wang J, Zhao L, Wang X, Shao C, Wu Q, Sun X (2023) Thermal enhancement of gelatin hydrogels for a multimodal sensor and self-powered triboelectric nanogenerator at low temperatures. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-023-00693-6

    Article  Google Scholar 

  34. Chen A, Zhang C, Zhu G, Wang ZL (2020) Polymer materials for high-performance triboelectric nanogenerators. Adv Sci 7:1–25. https://doi.org/10.1002/advs.202000186

    Article  CAS  Google Scholar 

  35. Ippili S, Jella V, Thomas AM, Yoon C, Jung JS, Yoon SG (2021) ZnAl-LDH-induced electroactive β-phase and controlled dielectrics of PVDF for a high-performance triboelectric nanogenerator for humidity and pressure sensing applications. J Mater Chem A Mater 9:15993–16005. https://doi.org/10.1039/d1ta02966e

    Article  CAS  Google Scholar 

  36. Vu DL, Ahn KK (2022) Triboelectric enhancement of polyvinylidene fluoride membrane using magnetic nanoparticle for water-based energy harvesting. Polymers (Basel). https://doi.org/10.3390/polym14081547

    Article  PubMed  PubMed Central  Google Scholar 

  37. Abdullah AM, Sadaf MUK, Tasnim F, Vasquez H, Lozano K, Uddin MJ (2021) KNN based piezo-triboelectric lead-free hybrid energy films. Nano Energy 86:106133. https://doi.org/10.1016/j.nanoen.2021.106133

    Article  CAS  Google Scholar 

  38. Manchi P, Graham SA, Dudem B, Patnam H, Yu JS (2021) Improved performance of nanogenerator via synergetic piezo/triboelectric effects of lithium niobate microparticles embedded composite films. Compos Sci Technol 201:108540. https://doi.org/10.1016/j.compscitech.2020.108540

    Article  CAS  Google Scholar 

  39. Tofel P, Částková K, Říha D, Sobola D, Papež N, Kaštyl J, Ţălu Ş, Hadaš Z (2022) Triboelectric response of electrospun stratified PVDF and PA structures. Nanomaterials 12:1–14. https://doi.org/10.3390/nano12030349

    Article  CAS  Google Scholar 

  40. Lin MF, Chang KW, Lee CH, Wu XX, Huang YC (2022) Electrospun P3HT/PVDF-HFP semiconductive nanofibers for triboelectric nanogenerators. Sci Rep 12:1–8. https://doi.org/10.1038/s41598-022-19306-1

    Article  CAS  Google Scholar 

  41. Kim HJ, Yim EC, Kim JH, Kim SJ, Park JY, Oh IK (2017) Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy 33:130–137. https://doi.org/10.1016/j.nanoen.2017.01.035

    Article  CAS  Google Scholar 

  42. Choi D, Kim DW, Yoo D, Cha KJ, La M, Kim DS (2017) Spontaneous occurrence of liquid-solid contact electrification in nature: toward a robust triboelectric nanogenerator inspired by the natural lotus leaf. Nano Energy 36:250–259. https://doi.org/10.1016/j.nanoen.2017.04.026

    Article  CAS  Google Scholar 

  43. Feng Y, Zhang L, Zheng Y, Wang D, Zhou F, Liu W (2019) Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting. Nano Energy 55:260–268. https://doi.org/10.1016/j.nanoen.2018.10.075

    Article  CAS  Google Scholar 

  44. Kim HJ, Kim JH, Jun KW, Kim JH, Seung WC, Kwon OH, Park JY, Kim SW, Oh IK (2016) Silk nanofiber-networked bio-triboelectric generator: silk Bio-TEG. Adv Energy Mater 6:1–6. https://doi.org/10.1002/aenm.201502329

    Article  CAS  Google Scholar 

  45. Wang R, Gao S, Yang Z, Li Y, Chen W, Wu B, Wu W (2018) Engineered and laser-processed chitosan biopolymers for sustainable and biodegradable triboelectric power generation. Adv Mater 30:1–8. https://doi.org/10.1002/adma.201706267

    Article  CAS  Google Scholar 

  46. Roy S, Das T, Dasgupta Ghosh B, Goh KL, Sharma K, Chang YW (2022) From hazardous waste to green applications: selective surface functionalization of waste cigarette filters for high-performance robust triboelectric nanogenerators and CO2 adsorbents. ACS Appl Mater Interfaces 14:31973–31985. https://doi.org/10.1021/acsami.2c06463

    Article  CAS  PubMed  Google Scholar 

  47. Varghese H, Chandran A (2021) Triboelectric nanogenerator from used surgical face mask and waste mylar materials aiding the circular economy. ACS Appl Mater Interfaces 13:51132–51140. https://doi.org/10.1021/acsami.1c16557

    Article  CAS  PubMed  Google Scholar 

  48. Khan MU, Mohammad E, Abbas Y, Rezeq M, Mohammad B (2023) Chicken skin based Milli Watt range biocompatible triboelectric nanogenerator for biomechanical energy harvesting. Sci Rep. https://doi.org/10.1038/s41598-023-36817-7

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li Y, Zhao Z, Gao Y, Li S, Zhou L, Wang J, Wang ZL (2021) Low-cost, environmentally friendly, and high-performance triboelectric nanogenerator based on a common waste material. ACS Appl Mater Interfaces 13:30776–30784. https://doi.org/10.1021/acsami.1c09192

    Article  CAS  PubMed  Google Scholar 

  50. Ghosal C, Ghosh SK, Roy K, Chattopadhyay B, Mandal D (2022) Environmental bacteria engineered piezoelectric bio-organic energy harvester towards clinical applications. Nano Energy 93:106843. https://doi.org/10.1016/j.nanoen.2021.106843

    Article  CAS  Google Scholar 

  51. Ghosh SK, Mandal D (2016) High-performance bio-piezoelectric nanogenerator made with fish scale. Appl Phys Lett. https://doi.org/10.1063/1.4961623

    Article  Google Scholar 

  52. Sahu M, Hajra S, Jadhav S, Panigrahi BK, Dubal D, Kim HJ (2022) Bio-waste composites for cost-effective self-powered breathing patterns monitoring: an insight into energy harvesting and storage properties. Sustain Mater Technol 32:e00396. https://doi.org/10.1016/j.susmat.2022.e00396

    Article  CAS  Google Scholar 

  53. Ghosh SK, Mandal D (2017) Bio-assembled, piezoelectric prawn shell made self-powered wearable sensor for non-invasive physiological signal monitoring. Appl Phys Lett. https://doi.org/10.1063/1.4979081

    Article  PubMed  PubMed Central  Google Scholar 

  54. Guo W, Li G, Zheng Y, Li K (2021) Nano-silica extracted from rice husk and its application in acetic acid steam reforming. RSC Adv 11:34915–34922. https://doi.org/10.1039/d1ra05255a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rengga WDP, Imani NAC, Wijayati N, Tohiran T, Cahyati WH, Saputra D (2023) Human adsorption and release of ibuprofen from silica-carbon composites based on rice husks (Oryza sativa) and banana peels (Musa acuminata). Eng Sci. https://doi.org/10.30919/es8d873

    Article  Google Scholar 

  56. Zhumakhan K, Tileuberdi Y, Biysenbayev M, Ongarbayev Y, Zhanbekov K, Godbert N, Tastambek K, Rossi CO (2023) Rice husk as a source for lightweight flameless heat-energy carbon briquettes. Eng Sci. https://doi.org/10.30919/es935

    Article  Google Scholar 

  57. Wu JM, Chang CK, Chang YT (2016) High-output current density of the triboelectric nanogenerator made from recycling rice husks. Nano Energy 19:39–47. https://doi.org/10.1016/j.nanoen.2015.11.014

    Article  CAS  Google Scholar 

  58. Lai SN, Chang CK, Yang CS, Su CW, Leu CM, Chu YH, Sha PW, Wu JM (2019) Ultrasensitivity of self-powered wireless triboelectric vibration sensor for operating in underwater environment based on surface functionalization of rice husks. Nano Energy 60:715–723. https://doi.org/10.1016/j.nanoen.2019.03.067

    Article  CAS  Google Scholar 

  59. Ban G, Song S, Lee HW, Kim HT (2019) Effect of acidity levels and feed rate on the porosity of aerogel extracted from rice husk under ambient pressure. Nanomater. https://doi.org/10.3390/nano9020300

    Article  Google Scholar 

  60. Zulfiqar U, Subhani T, Wilayat Husain S (2015) Towards tunable size of silica particles from rice husk. J Non Cryst Solids 429:61–69. https://doi.org/10.1016/j.jnoncrysol.2015.08.037

    Article  CAS  Google Scholar 

  61. Nayak PP, Datta AK (2021) Synthesis of SiO2-nanoparticles from rice husk ash and its comparison with commercial amorphous silica through material characterization. Silicon 13:1209–1214. https://doi.org/10.1007/s12633-020-00509-y

    Article  CAS  Google Scholar 

  62. Yusof AM, Nizam NA, Rashid NAA (2010) Hydrothermal conversion of rice husk ash to faujasite-types and NaA-type of zeolites. J Porous Mater 17:39–47. https://doi.org/10.1007/s10934-009-9262-y

    Article  CAS  Google Scholar 

  63. Napierska D, Thomassen LCJ, Lison D, Martens JA, Hoet PH (2010) The nanosilica hazard: another variable entity. Part Fibre Toxicol 7:1–32. https://doi.org/10.1186/1743-8977-7-39

    Article  CAS  Google Scholar 

  64. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39:683–706. https://doi.org/10.1016/j.progpolymsci.2013.07.006

    Article  CAS  Google Scholar 

  65. Kar E, Bose N, Dutta B, Mukherjee N, Mukherjee S (2017) Poly(vinylidene fluoride)/submicron graphite platelet composite A smart, lightweight flexible material with significantly enhanced β polymorphism, dielectric and microwave shielding properties. Eur Polym J 90:442–455. https://doi.org/10.1016/j.eurpolymj.2017.03.030

    Article  CAS  Google Scholar 

  66. Maity S, Sasmal A, Kar E, Sen S (2023) Morphotropic phase boundary-assisted lead-free BaTiO 3/PDMS composite-based hybrid energy harvester: a portable power source for wireless power transmission. ACS Appl Energy Mater. https://doi.org/10.1021/acsaem.3c00635

    Article  Google Scholar 

  67. Kar E, Bose N, Das S, Mukherjee N, Mukherjee S (2015) Enhancement of electroactive β phase crystallization and dielectric constant of PVDF by incorporating GeO2 and SiO2 nanoparticles. Phys Chem Chem Phys 17:22784–22798. https://doi.org/10.1039/c5cp03975d

    Article  CAS  PubMed  Google Scholar 

  68. Maity S, Kar E, Kar A, Sen S (2023) Multiphase coexisted perovskite/PVDF composite derived wearable piezo-tribo hybrid energy harvester for wireless smart applications. Chem Eng J. https://doi.org/10.1016/j.cej.2023.145959

    Article  Google Scholar 

  69. Maity S, Sasmal A, Sen S (2023) Barium titanate based paraelectric material incorporated poly(vinylidene fluoride) for biomechanical energy harvesting and self-powered mechanosensing. Mater Sci Semicond Process. https://doi.org/10.1016/j.mssp.2022.107128

    Article  Google Scholar 

  70. Kar E, Bose N, Dutta B, Mukherjee N, Mukherjee S (2018) MWCNT@SiO2 heterogeneous nanofiller-based polymer composites: a single key to the high-performance piezoelectric nanogenerator and X-band microwave shield. ACS Appl Nano Mater 1:4005–4018. https://doi.org/10.1021/acsanm.8b00770

    Article  CAS  Google Scholar 

  71. Kar E, Bose N, Dutta B, Mukherjee N, Mukherjee S (2019) Ultraviolet-and microwave-protecting, self-cleaning e-skin for efficient energy harvesting and tactile mechanosensing. ACS Appl Mater Interfaces 11:17501–17512. https://doi.org/10.1021/acsami.9b06452

    Article  CAS  PubMed  Google Scholar 

  72. Kar E, Bose N, Dutta B, Banerjee S, Mukherjee N, Mukherjee S (2019) 2D SnO2 nanosheet/PVDF composite based flexible, self-cleaning piezoelectric energy harvester. Energy Convers Manag 184:600–608. https://doi.org/10.1016/j.enconman.2019.01.073

    Article  CAS  Google Scholar 

  73. Peng Z, Xiao X, Song J, Libanori A, Lee C, Chen K, Gao Y, Fang Y, Wang J, Wang Z, Chen J, Leung MKH (2022) Improving relative permittivity and suppressing dielectric loss of triboelectric layers for high-performance wearable electricity generation. ACS Nano 16:20251–20262. https://doi.org/10.1021/acsnano.2c05820

    Article  CAS  PubMed  Google Scholar 

  74. Niu S, Wang S, Lin L, Liu Y, Zhou YS, Hu Y, Wang ZL (2013) Theoretical study of contact-mode riboelectric nanogenerators as an ffective power source. Energy Environ Sci 6:3576–3583. https://doi.org/10.1039/c3ee42571a

    Article  Google Scholar 

  75. Hajra S, Padhan AM, Sahu M, Alagarsamy P, Lee K, Kim HJ (2021) Lead-free flexible bismuth titanate-PDMS composites: a multifunctional colossal dielectric material for hybrid piezo-triboelectric nanogenerator to sustainably power portable electronics. Nano Energy. https://doi.org/10.1016/j.nanoen.2021.106316

    Article  Google Scholar 

  76. Sahu M, Hajra S, Bijelic J, Oh D, Djerdj I, Kim HJ (2021) Triple perovskite-based triboelectric nanogenerator: a facile method of energy harvesting and self-powered information generator. Mater Today Energy. https://doi.org/10.1016/j.mtener.2021.100639

    Article  Google Scholar 

  77. Guo Y, Zhang XS, Wang Y, Gong W, Zhang Q, Wang H, Brugger J (2018) All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 48:152–160. https://doi.org/10.1016/j.nanoen.2018.03.033

    Article  CAS  Google Scholar 

  78. Shaukat RA, Saqib QM, Khan MU, Chougale MY, Bae J (2021) Bio-waste sunflower husks powder based recycled triboelectric nanogenerator for energy harvesting. Energy Rep 7:724–731. https://doi.org/10.1016/j.egyr.2021.01.036

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, CSIR-CGCRI, for permitting them to carry out their work.

Funding

Epsita Kar thanks the CSIR-RA program, Government of India, for financial support Acknowledgment No. 364019/2K19/1(File No. 31/0015(11865)/2021-EMR-I). Sourav Maity thanks the Department of Science and Technology, Government of India for financial support through the INSPIRE fellowship (Grant No.: DST/INSPIRE Fellowship/2018/IF180801).

Author information

Authors and Affiliations

Authors

Contributions

Epsita Kar: device fabrication, methodology, data analysis, and writing the original draft. Sourav Maity: data analysis, reviewing, and editing of the manuscript. Animesh Kar: designing and executing the wireless control of home appliance circuits. Shrabanee Sen: supervision, data analysis, and finalizing the manuscript.

Corresponding authors

Correspondence to Epsita Kar or Shrabanee Sen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 4870 KB)

Supplementary file2 (MP4 17800 KB)

Supplementary file3 (MP4 23100 KB)

Supplementary file4 (DOCX 4220 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, E., Maity, S., Kar, A. et al. Agricultural waste rice husk/poly(vinylidene fluoride) composite: a wearable triboelectric energy harvester for real-time smart IoT applications. Adv Compos Hybrid Mater 7, 87 (2024). https://doi.org/10.1007/s42114-024-00896-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00896-5

Keywords

Navigation