Skip to main content
Log in

Elevating the performance of nanoporous bismuth selenide incorporated arch-shaped triboelectric nanogenerator by implementing piezo-tribo coupling effect: harvesting biomechanical energy and low scale energy sensing applications

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

With the increasing demand of environmental friendly and unlimited power supplies, the use of triboelectric nanogenerator (TENG) also increases due to its high mechanical energy to electrical energy conversion ability. Herein, an arch shaped, self-powered, and wearable piezoelectric thin film with bismuth selenide based triboelectric nanogenerator, named as PBTNG, is fabricated with the help of nanoporous bismuth selenide (Bi2Se3) incorporated poly(vinyldene fluoride) (PVDF) composite piezoelectric thin film (PBi). The mechanism of the PBTNG device is induced by piezo-tribo coupling effect. Furthermore, the surface area and distribution of pore size of Bi2Se3 have been measured from Brunnauer–Emmett–Teller (BET) analysis and also described by basal spacing, which helps in increment of β-crystalline phase of the thin film. The density functional theory (DFT) has been performed to find out the electrical band gap and density of states of Bi2Se3 nanoparticles. The interaction of nanoparticle with PVDF monomer and electrical properties of β-phase has been investigated with DFT calculations as well. The fabricated triboelectric device exhibits outstanding output performance with a maximum power density of 2.03 Wm−2 under continuous finger impartation and can illuminate light-emitting diodes (LEDs) under heel pressing and periodic finger tapping. Additionally, the wearable PBTNG device traps the biomechanical energy from different body movements like heel pressing, feet tapping, blood flow, single finger tapping, etc., and converts them into electrical energy easily. Furthermore, single electrode bismuth selenide based triboelectric nanogenerator, named as SBTNG exhibits high sensitivity value (20.2 V/kPa) at low pressure region (< 0.5 kPa) which helps in electricity generation from small scale mechanical energies such as writing on the device, mouse clicking, keyboard striking, external CD drive running, etc. Thus, self-powered and wearable energy harvester can be used in daily life as a substitute of batteries.

Graphical Abstract

Excellent output performance of PBTNG has been achieved from biomechanical and small scale mechanical energy, elevated by piezo-tribo coupling effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available from the corresponding author on reasonable request.

References

  1. Jiang D, Lian M, Xu M, Sun Q, Xu BB, Thabet HK, El-Bahy SM, Ibrahim MM, Huang M, Guo Z (2023) Advances in triboelectric nanogenerator technology—applications in self-powered sensors, Internet of things, biomedicine, and blue energy. Adv Compos Hybrid Mater 6:57. https://doi.org/10.1007/s42114-023-00632-5

    Article  CAS  Google Scholar 

  2. Li D, Hu J, Wang C, Guo L, Zhou J (2023) Metal-organic framework-induced edge-riched growth of layered Bi2Se3 towards ultrafast Na-ion storage. J Power Sources 555:232387. https://doi.org/10.1016/j.jpowsour.2022.232387

    Article  CAS  Google Scholar 

  3. Li D, Liu H, Liu H, Chen Y, Wang C, Guo L (2023) A NiCoSex/CG heterostructure with strong interfacial interaction showing rapid diffusion kinetics as a flexible anode for high-rate sodium storage. Dalton Trans 52:5192–5201. https://doi.org/10.1039/D3DT00273J

    Article  CAS  Google Scholar 

  4. Yuan G, Wan T, BaQais A, Mu Y, Cui D, Amin MA, Li X, Xu BB, Zhu X, Algadi H, Li H (2023) Boron and fluorine Co-doped laser-induced graphene towards high-performance micro-supercapacitors. Carbon 212:118101. https://doi.org/10.1016/j.carbon.2023.118101

    Article  CAS  Google Scholar 

  5. Lin Z, Li X, Zhang H, Xu BB, Wasnik P, Li H, Singh MV, Ma Y, Li T, Guo Z (2023) Research progress of MXenes and layered double hydroxides for supercapacitors. Inorg Chem Front 10:4358–4392. https://doi.org/10.1039/D3QI00819C

    Article  CAS  Google Scholar 

  6. Karthik A, Chiniwar DS, Das M, Prabhu P, Mulimani PA, Samanth K, Naik N (2021) Electric propulsion for fixed wing aircrafts–a review on classifications, designs, and challenges. Eng Sci 16:129–45. https://doi.org/10.30919/es8d573

  7. Li T, Wei H, Zhang Y, Wan T, Cui D, Zhao S, Zhang T, Ji Y, Algadi H, Guo Z, Chu L (2023) Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohydr Polym 309:120678. https://doi.org/10.1016/j.carbpol.2023.120678

    Article  CAS  Google Scholar 

  8. Akram W, Chen Q, Xia G, Fang J (2022) A review of single electrode triboelectric nanogenerators. Nano Energy 106:108043. https://doi.org/10.1016/j.nanoen.2022.108043

    Article  CAS  Google Scholar 

  9. He J, Cao S, Zhang H (2020) Cylinder-based hybrid rotary nanogenerator for harvesting rotational energy from axles and self-powered tire pressure monitoring. Energy Sci Eng 8:291–299. https://doi.org/10.1002/ese3.560

    Article  Google Scholar 

  10. Zou H, Zhang Y, Guo L, Wang P, He X, Dai G, Zheng H, Chen C, Wang AC, Xu C, Wang ZL (2019) Quantifying the triboelectric series Nat Commun 10:1427. https://doi.org/10.1038/s41467-019-09461-x

    Article  CAS  Google Scholar 

  11. Wei X, Wang B, Wu Z, Wang ZL (2022) Open-environment tactile sensing system: towards simple and efficient material identification. Adv Mater 34:2203073. https://doi.org/10.1002/adma.202203073

    Article  CAS  Google Scholar 

  12. Shawon SM, Sun AX, Vega VS, Chowdhury BD, Tran P, Carballo ZD, Tolentino JA, Li J, Rafaqut MS, Danti S, Uddin MJ (2021) Piezo-tribo dual effect hybrid nanogenerators for health monitoring. Nano Energy 82:105691. https://doi.org/10.1016/j.nanoen.2020.105691

    Article  CAS  Google Scholar 

  13. Lopez D, Chowdhury AR, Abdullah AM, Sadaf MU, Martinez I, Choudhury BD, Danti S, Ellison CJ, Lozano K, Uddin MJ (2021) Polymer based triboelectric nanogenerator for cost-effective green energy generation and implementation of surface-charge engineering. Energy Technol 9:2001088. https://doi.org/10.1002/ente.202001088

    Article  CAS  Google Scholar 

  14. Bhatta T, Maharjan P, Cho H, Park C, Yoon SH, Sharma S, Salauddin M, Rahman MT, Rana SS, Park JY (2021) High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers. Nano Energy 81:105670. https://doi.org/10.1016/j.nanoen.2020.105670

    Article  CAS  Google Scholar 

  15. He W, Fu X, Zhang D, Zhang Q, Zhuo K, Yuan Z, Ma R (2021) Recent progress of flexible/wearable self-charging power units based on triboelectric nanogenerators. Nano Energy 84:105880. https://doi.org/10.1016/j.nanoen.2021.105880

    Article  CAS  Google Scholar 

  16. Li R, Wei X, Shi Y, Yuan Z, Wang B, Xu J, Wang L, Wu Z, Wang ZL (2022) Low-grade heat energy harvesting system based on the shape memory effect and hybrid triboelectric-electromagnetic nanogenerator. Nano Energy 96:107106. https://doi.org/10.1016/j.nanoen.2022.107106

    Article  CAS  Google Scholar 

  17. Lin J, Li J, Feng S, Gu C, Li H, Lu H, Hu F, Pan D, Xu BB, Guo Z (2023) An active bacterial anti-adhesion strategy based on directional transportation of bacterial droplets driven by triboelectric nanogenerators. Nano Res 16:1052–1063. https://doi.org/10.1007/s12274-022-5177-6

    Article  CAS  Google Scholar 

  18. Jia B, Lei M, Zou Y, Qin G, Zhang C, Han L, Zhang Q, Lu P (2022) The electron transfer mechanism between metal and silicon oxide composites for triboelectric nanogenerators. Adv Compos Hybrid Mater 5:3223–3231. https://doi.org/10.1007/s42114-022-00561-9

    Article  CAS  Google Scholar 

  19. Zhang M, Du H, Liu K, Nie S, Xu T, Zhang X, Si C (2021) Fabrication and applications of cellulose-based nanogenerators. Adv Compos Hybrid Mater 4:865–884. https://doi.org/10.1007/s42114-021-00312-2

    Article  CAS  Google Scholar 

  20. Ghafari E, Nantung T, Lu N (2019) An efficient polyvinylidene fluoride (PVDF) nanogenerator for energy harvesting in low frequency range. ES Mater Manuf 5:72–77. https://doi.org/10.30919/esmm5f321

  21. Jirayupat C, Wongwiriyapan W, Kasamechonchung P, Wutikhun T, Tantisantisom K, Rayanasukha Y, Jiemsakul T, Tansarawiput C, Liangruksa M, Khanchaitit P, Horprathum M (2018) Piezoelectric-induced triboelectric hybrid nanogenerators based on the ZnO nanowire layer decorated on the Au/polydimethylsiloxane–Al structure for enhanced triboelectric performance. ACS Appl Mater Interfaces 10:6433–6440. https://doi.org/10.1021/acsami.7b17314

    Article  CAS  Google Scholar 

  22. Han C, Cao Z, Yuan Z, Zhang Z, Huo X, Zhang LA, Wu Z, Wang ZL (2022) Hybrid triboelectric-electromagnetic nanogenerator with a double-sided fluff and double Halbach array for wave energy harvesting. Adv Funct Mater 32:2205011. https://doi.org/10.1002/adfm.202205011

    Article  CAS  Google Scholar 

  23. Wei X, Zhao Z, Wang L, Jin X, Yuan Z, Wu Z, Wang ZL (2022) Energy conversion system based on Curie effect and triboelectric nanogenerator for low-grade heat energy harvesting. Nano Energy 91:106652. https://doi.org/10.1016/j.nanoen.2021.106652

    Article  CAS  Google Scholar 

  24. Suo G, Yu Y, Zhang Z, Wang S, Zhao P, Li J, Wang X (2016) Piezoelectric and triboelectric dual effects in mechanical-energy harvesting using BaTiO3/polydimethylsiloxane composite film. ACS Appl Mater Interfaces 8:34335–34341. https://doi.org/10.1021/acsami.6b11108

    Article  CAS  Google Scholar 

  25. Cheng H, Lu Z, Gao Q, Zuo Y, Liu X, Guo Z, Liu C, Shen C (2021) PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng Sci 16:331–40. https://doi.org/10.30919/es8d518

  26. Gao C, Deng W, Pan F, Feng X, Li Y (2020) Superhydrophobic electrospun PVDF membranes with silanization and fluorosilanization co-functionalized CNTs for improved direct contact membrane distillation. Eng Sci 9:35–43. https://doi.org/10.30919/es8d905

  27. Wu Z, Wang X, Annamareddy SH, Gao S, Xu Q, Algadi H, Sridhar D, Wasnik P, Xu BB, Weng L, Guo Z (2023) Dielectric properties and thermal conductivity of polyvinylidene fluoride synergistically enhanced with silica@ multi-walled carbon nanotubes and boron nitride. ES Mater Manuf. https://doi.org/10.30919/esmm5f847

  28. Sharafkhani S, Kokabi M (2022) Enhanced sensing performance of polyvinylidene fluoride nanofibers containing preferred oriented carbon nanotubes. Adv Compos Hybrid Mater 5:3081–3093. https://doi.org/10.1007/s42114-022-00565-5

    Article  CAS  Google Scholar 

  29. Li GY, Li J, Li ZJ, Zhang YP, Zhang X, Wang ZJ, Han WP, Sun B, Long YZ, Zhang HD (2022) Hierarchical PVDF-HFP/ZnO composite nanofiber–based highly sensitive piezoelectric sensor for wireless workout monitoring. Adv Compos Hybrid Mater 5:766–775. https://doi.org/10.1007/s42114-021-00331-z

    Article  CAS  Google Scholar 

  30. Liu Z, Li G, Qin Q, Mi L, Li G, Zheng G, Liu C, Li Q, Liu X (2021) Electrospun PVDF/PAN membrane for pressure sensor and sodium-ion battery separator. Adv Compos Hybrid Mater 4:1215–1225. https://doi.org/10.1007/s42114-021-00364-4

    Article  CAS  Google Scholar 

  31. Das N, Sarkar D, Saikh MM, Biswas P, Das S, Hoque NA, Ray PP (2022) Piezoelectric activity assessment of size-dependent naturally acquired mud volcano clay nanoparticles assisted highly pressure sensitive nanogenerator for green mechanical energy harvesting and body motion sensing. Nano Energy 102:107628. https://doi.org/10.1016/j.nanoen.2022.107628

    Article  CAS  Google Scholar 

  32. Hong M, Chasapis TC, Chen ZG, Yang L, Kanatzidis MG, Snyder GJ, Zou J (2016) n-type Bi2Te3–xSex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano 10:4719–4727. https://doi.org/10.1021/acsnano.6b01156

    Article  CAS  Google Scholar 

  33. Gautam S, Aggarwal V, Singh B, Awana VP, Ganesan R, Kushvaha SS (2022) Signature of weak-antilocalization in sputtered topological insulator Bi2Se3 thin films with varying thickness. Sci Rep 12:9770. https://doi.org/10.1038/s41598-022-13600-8

    Article  CAS  Google Scholar 

  34. Sun H, Jiang T, Zang Y, Zheng X, Gong Y, Yan Y, Xu Z, Liu Y, Fang L, He K (2017) Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures. Nanoscale 9:9325–9332. https://doi.org/10.1039/C7NR01715D

    Article  CAS  Google Scholar 

  35. Mishra SK, Satpathy S, Jepsen O (1997) Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. J Phys Condens Matter 9:461. https://doi.org/10.1088/0953-8984/9/2/014

    Article  CAS  Google Scholar 

  36. Yan Y, Wang LX, Yu DP, Liao ZM (2013) Large magnetoresistance in high mobility topological insulator Bi2Se3. Appl Phys Lett 103:033106. https://doi.org/10.1063/1.4813824

    Article  CAS  Google Scholar 

  37. Yang WJ, Lee CW, Kim DS, Kim HS, Kim JH, Choi HY, Choi YJ, Kim JH, Park K, Cho MH (2018) Tuning of topological Dirac states via modification of van der Waals gap in strained ultrathin Bi2Se3 films. J Phys Chem C 122:23739–23748. https://doi.org/10.1021/acs.jpcc.8b06296

    Article  CAS  Google Scholar 

  38. Mishra V, Baranwal V, Mishra RK, Sharma S, Paul B, Pandey AC (2017) Immunotoxicological impact and biodistribution assessment of bismuth selenide (Bi2Se3) nanoparticles following intratracheal instillation in mice. Sci Rep 7:18032. https://doi.org/10.1038/s41598-017-18126-y

    Article  CAS  Google Scholar 

  39. Sharma A, Bhattacharyya B, Srivastava AK, Senguttuvan TD, Husale S (2016) High performance broadband photodetector using fabricated nanowires of bismuth selenide. Sci Rep 6:19138. https://doi.org/10.1038/srep19138

    Article  CAS  Google Scholar 

  40. Zhang H, Zhang X, Liu C, Lee ST, Jie J (2016) High-responsivity, high-detectivity, ultrafast topological insulator Bi2Se3/silicon heterostructure broadband photodetectors. ACS Nano 10:5113–5122. https://doi.org/10.1021/acsnano.6b00272

    Article  CAS  Google Scholar 

  41. Tang H, Liang D, Qiu RL, Gao XP (2011) Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons. ACS Nano 5:7510–7516. https://doi.org/10.1021/nn2024607

    Article  CAS  Google Scholar 

  42. Zhang H, Liu CX, Qi XL, Dai X, Fang Z, Zhang SC (2009) Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys 5:438–442. https://doi.org/10.1038/nphys1270

    Article  CAS  Google Scholar 

  43. Li CH, Van ‘T Erve OM, Robinson JT, Liu Y, Li L, Jonker BT, (2014) Electrical detection of charge-current-induced spin polarization due to spin-momentum locking in Bi2Se3. Nat Nanotechnol 9:218–224. https://doi.org/10.1038/nnano.2014.16

    Article  CAS  Google Scholar 

  44. Mohyedin MZ, Taib MF, Malik NA, Alam NN, Mustaffa M, Ali AM, Hassan OH, Haq BU, Yahya MZ (2022) First-principles calculations of electronic and optical properties of orthorhombic Bi2Se3 nano thin film. Comput Condens Matter 30:e00618. https://doi.org/10.1016/j.cocom.2021.e00618

    Article  Google Scholar 

  45. Sarkar D, Das N, Saikh MM, Biswas P, Roy S, Paul S, Hoque NA, Basu R, Das S (2023) High β-crystallinity comprising nitrogenous carbon dot/PVDF nanocomposite decorated self-powered and flexible piezoelectric nanogenerator for harvesting human movement mediated energy and sensing weights. Ceram Int 49:5466–5478. https://doi.org/10.1016/j.ceramint.2022.10.070

    Article  CAS  Google Scholar 

  46. Wang ZL (2017) On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater Today 20:74–82. https://doi.org/10.1016/j.mattod.2016.12.001

    Article  Google Scholar 

  47. He J, Qian S, Niu X, Zhang N, Qian J, Hou X, Mu J, Geng W, Chou X (2019) Piezoelectric-enhanced triboelectric nanogenerator fabric for biomechanical energy harvesting. Nano Energy 64:103933. https://doi.org/10.1016/j.nanoen.2019.103933

    Article  CAS  Google Scholar 

  48. Guo Y, Zhang XS, Wang Y, Gong W, Zhang Q, Wang H, Brugger J (2018) All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 48:152–160. https://doi.org/10.1016/j.nanoen.2018.03.033

    Article  CAS  Google Scholar 

  49. Ajeel FN, Mohammed MH, Abd Ali RA (2017) Topological insulators in Bi2Se3 family nanostructured thin films: study topological nature and surface states. Uni Thi-Qar J 12:40_50-. https://doi.org/10.32792/utq/utj/vol12/1/5

  50. Gupta V, Kumar A, Mondal B, Babu A, Ranpariya S, Sinha DK, Mandal D (2023) Machine learning-aided all-organic air-permeable piezoelectric nanogenerator. ACS Sustain Chem Eng 11:6173–6182. https://doi.org/10.1021/acssuschemeng.2c06779

    Article  CAS  Google Scholar 

  51. Chen X, Song Y, Chen H, Zhang J, Zhang H (2017) An ultrathin stretchable triboelectric nanogenerator with coplanar electrode for energy harvesting and gesture sensing. J Mater Chem A 5:12361–12368. https://doi.org/10.1039/C7TA03092D

    Article  CAS  Google Scholar 

  52. Roy S, Bardhan S, Pal K, Ghosh S, Mandal P, Das S, Das S (2018) Crystallinity mediated variation in optical and electrical properties of hydrothermally synthesized boehmite (γ-AlOOH) nanoparticles. J Alloys Compd 763:749–758. https://doi.org/10.1016/j.jallcom.2018.05.356

    Article  CAS  Google Scholar 

  53. Das S, Das S, Sutradhar S (2017) Effect of Gd3+ and Al3+ on optical and dielectric properties of ZnO nanoparticle prepared by two-step hydrothermal method. Ceram Int 43:6932–6941. https://doi.org/10.1016/j.ceramint.2017.02.116

    Article  CAS  Google Scholar 

  54. Jalili MA, Khosroshahi Z, Kheirabadi NR, Karimzadeh F, Enayati MH (2021) Green triboelectric nanogenerator based on waste polymers for electrophoretic deposition of titania nanoparticles. Nano Energy 90:106581. https://doi.org/10.1016/j.nanoen.2021.106581

    Article  CAS  Google Scholar 

  55. Zheng F, Zhou Y, Hu S, Li R, Wang ZL, Wu Z (2022) A hybridized triboelectric-electromagnetic nanogenerator as a power supply of monitoring sensors for the ventilation system. Adv Energy Mater 12:2201966. https://doi.org/10.1002/aenm.202201966

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Moreover, authors would like to thank Jadavpur University, Department of Physics for the instrumental support through FIST and PURSE scheme of Department of Science and Technology, Govt. of India.

Funding

This work is financially assisted by University Grants Commission, Govt. of India (No. 1413/(CSIR-UGC NET DEC.2018), 191620153244); Swami Vivekananda Merit-Cum-Means Scholarship (No. WBP191577101345); Science & Engineering Research Board (No. PDF/2022/002773); Science and Research Board, Govt. of India (Grant No. PDF/2019/001498); Science & Engineering Research Board (No. EEQ/2018/000747).

Author information

Authors and Affiliations

Authors

Contributions

Debmalya Sarkar: writing original draft, designing, computation, conceptualization, data acquisition, and manuscript preparation. Namrata Das: data acquisition and conceptualization. Md. Minarul Saikh: visualization. Shubham Roy: computation. Sumana Paul: methodology. Nur Amin Hoque: supervision and editing. Ruma Basu: supervision and editing. Sukhen Das: supervision and editing.

Corresponding authors

Correspondence to Nur Amin Hoque, Ruma Basu or Sukhen Das.

Ethics declarations

Conflict of interest

Authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

42114_2023_807_MOESM1_ESM.docx

Supplementary file1 Fabrication of PBi, PVA and PDMS thin films; FESEM images of pure and PBi thin films; TGA analysis of PBi nanocomposites; β-phase content, thermal analysis graphs and α-phase image of PVDF with energy value; Synthesis procedure of Bi2Se3 nanoparticle; Stress vs. strain curve of PBi thin film; Elemental mapping of PBi thin film; Output performance graph of PTNG and sensitivity of SBTNG device; Table of Refinement parameters of Bi2Se3 nanoparticle; Comparison table of electrical properties between α and β-phase of PVDF; Output performance comparison table of PBTNG device with other nanoporous triboelectric nanogenerator; Brunauer–Emmett–Teller (BET) experiment of Bi2Se3 nanoparticles; Videos of lighting up LEDs by PBTNG device under continuous finger impartation and heel tapping (MP4). (DOCX 21928 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, D., Das, N., Saikh, M.M. et al. Elevating the performance of nanoporous bismuth selenide incorporated arch-shaped triboelectric nanogenerator by implementing piezo-tribo coupling effect: harvesting biomechanical energy and low scale energy sensing applications. Adv Compos Hybrid Mater 6, 232 (2023). https://doi.org/10.1007/s42114-023-00807-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00807-0

Keywords

Navigation