Skip to main content
Log in

Nanocellulose-based functional materials for advanced energy and sensor applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Advanced energy and sensor devices with novel applications (e.g., mobile equipment, electric vehicles, and medical-healthcare systems) are one of the important foundations of modern intelligent life. However, there are still some scientific issues that seriously hinder the further development of devices, including unsustainability, high material cost, complex fabrication process, safety issues, and unsatisfactory performance. Nanocellulose has aroused tremendous attention in recent decades, because of its abundant resources, renewability, degradability, low-cost, and unique physical/chemical properties. These merits make nanocellulose as matrix materials to fabricate advanced functional composites for use in energy-related fields extremely competitive. Here, we comprehensively discuss the recent progress of nanocellulose for emerging energy storage/harvesting and sensor applications. The preparation methodologies of nanocellulose combined with conductive materials are firstly highlighted, including carbon materials, conductive polymers, metal/metal oxide nanoparticles, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs). We then focus on the nanocellulose-based advanced materials for the application in the areas of supercapacitors, lithium-ion batteries, solar cells, triboelectric nanogenerators, moisture-enabled electric generators, and sensors. Lastly, the future research directions of nanocellulose-based functional materials in energy-related devices are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, L. N.; Bi, Z. J.; Xue, Y.; Zhang, W.; Huang, Q. Y.; Zhang, L. X.; Huang, Y. D. Bacterial cellulose: An encouraging eco-friendly nano-candidate for energy storage and energy conversion. J. Mater. Chem. A 2020, 8, 5812–5842.

    Article  CAS  Google Scholar 

  2. Tang, X. F.; Liu, D.; Wang, Y. J.; Cui, L. F.; Ignaszak, A.; Yu, Y.; Zhang, J. J. Research advances in biomass-derived nanostructured carbons and their composite materials for electrochemical energy technologies. Prog. Mater. Sci. 2021, 118, 100770.

    Article  CAS  Google Scholar 

  3. Krishnamoorthy, K.; Pazhamalai, P.; Kim, S. J. Two-dimensional siloxene nanosheets: Novel high-performance supercapacitor electrode materials. Energy Environ. Sci. 2018, 11, 1595–1602.

    Article  CAS  Google Scholar 

  4. Dutta, S.; Kim, J.; Ide, Y.; Kim, J. H.; Hossain, S. A.; Bando, Y.; Yamauchi, Y.; Wu, K. C. W. 3D network of cellulose-based energy storage devices and related emerging applications. Mater. Horiz. 2017, 4, 522–545.

    Article  CAS  Google Scholar 

  5. Thomas, B.; Raj, M. C.; Athira, B. K.; Rubiyah, H. M.; Joy, J.; Moores, A.; Drisko, G. L.; Sanchez, C. Nanocellulose, a versatile green platform: From biosources to materials and their applications. Chem. Rev. 2018, 118, 11575–11625.

    Article  CAS  Google Scholar 

  6. García, A.; Gandini, A.; Labidi, J.; Belgacem, N.; Bras, J. Industrial and crop wastes: A new source for nanocellulose biorefinery. Ind. Crops Prod. 2016, 93, 26–38.

    Article  Google Scholar 

  7. Kontturi, E.; Laaksonen, P.; Linder, M. B.; Nonappa; Gröschel, A. H.; Rojas, O. J.; Ikkala, O. Advanced materials through assembly of nanocelluloses. Adv. Mater. 2018, 30, 1703779.

    Article  Google Scholar 

  8. Chen, W. S.; Yu, H. P.; Lee, S. Y.; Wei, T.; Li, J.; Fan, Z. J. Nanocellulose: A promising nanomaterial for advanced electrochemical energy storage. Chem. Soc. Rev. 2018, 47, 2837–2872.

    Article  CAS  Google Scholar 

  9. Zhang, Q.; Zhang, L.; Wu, W. B.; Xiao, H. N. Methods and applications of nanocellulose loaded with inorganic nanomaterials: A review. Carbohydr. Polym. 2020, 229, 115454.

    Article  CAS  Google Scholar 

  10. Wang, X. D.; Yao, C. H.; Wang, F.; Li, Z. D. Cellulose-based nanomaterials for energy applications. Small 2017, 13, 1702240.

    Article  Google Scholar 

  11. Wang, Z. H.; Tammela, P.; Strømme, M.; Nyholm, L. Cellulose-based supercapacitors: Material and performance considerations. Adv. Energy Mater. 2017, 7, 1700130.

    Article  Google Scholar 

  12. Lin, P. C.; Hsieh, C. T.; Liu, X.; Chang, F. C.; Chen, W. C.; Yu, J. S.; Chueh, C. C. Fabricating efficient flexible organic photovoltaics using an eco-friendly cellulose nanofibers/silver nanowires conductive substrate. Chem. Eng. J. 2021, 405, 126996.

    Article  CAS  Google Scholar 

  13. Wang, D. C.; Yu, H. Y.; Qi, D. M.; Ramasamy, M.; Yao, J. M.; Tang, F.; Tam, K. C.; Ni, Q. Q. Supramolecular self-assembly of 3D conductive cellulose nanofiber aerogels for flexible supercapacitors and ultrasensitive sensors. ACS Appl. Mater. Interfaces 2019, 11, 24435–24446.

    Article  CAS  Google Scholar 

  14. Lee, T. W.; Lee, S. E.; Jeong, Y. G. Carbon nanotube/cellulose papers with high performance in electric heating and electromagnetic interference shielding. Compos. Sci. Technol. 2016, 131, 77–87.

    Article  CAS  Google Scholar 

  15. Chen, L. M.; Yu, H. Y.; Wang, D. C.; Yang, T.; Yao, J. M.; Tam, K. C. Simple synthesis of flower-like manganese dioxide nanostructures on cellulose nanocrystals for high-performance supercapacitors and wearable electrodes. ACS Sustainable Chem. Eng. 2019, 7, 11823–11831.

    Article  CAS  Google Scholar 

  16. Shan, D. D.; Yang, J.; Liu, W.; Yan, J.; Fan, Z. J. Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 13589–13602.

    Article  CAS  Google Scholar 

  17. Golmohammadi, H.; Morales-Narváez, E.; Naghdi, T.; Merkoçi, A. Nanocellulose in sensing and biosensing. Chem. Mater. 2017, 29, 5426–5446.

    Article  CAS  Google Scholar 

  18. Nirmale, T. C.; Kale, B. B.; Varma, A. J. A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery. Int. J. Biol. Macromol. 2017, 103, 1032–1043.

    Article  CAS  Google Scholar 

  19. Du, X.; Zhang, Z.; Liu, W.; Deng, Y. L. Nanocellulose-based conductive materials and their emerging applications in energy devices—A review. Nano Energy 2017, 35, 299–320.

    Article  CAS  Google Scholar 

  20. Zhang, Y. H.; Hao, N. K.; Lin, X. J.; Nie, S. X. Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: A review. Carbohydr. Polym 2020, 234, 115888.

    Article  CAS  Google Scholar 

  21. Hu, L. B.; Zheng, G. Y.; Yao, J.; Liu, N.; Weil, B.; Eskilsson, M.; Karabulut, E.; Ruan, Z. C.; Fan, S. H.; Bloking, J. T. et al. Transparent and conductive paper from nanocellulose fibers. Energy Environ. Sci. 2013, 6, 513–518.

    Article  CAS  Google Scholar 

  22. Hamedi, M. M.; Hajian, A.; Fall, A. B.; Håkansson, K.; Salajkova, M.; Lundell, F.; Wågberg, L.; Berglund, L. A. Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano 2014, 8, 2467–2476.

    Article  CAS  Google Scholar 

  23. Zhou, T.; Chen, D.; Jiu, J.; Nge, T. T.; Sugahara, T.; Nagao, S.; Koga, H.; Nogi, M.; Suganuma, K.; Wang, X. et al. Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes. eXPRESS Polym. Lett. 2013, 7, 756–766.

    Article  CAS  Google Scholar 

  24. Valentini, L.; Cardinali, M.; Fortunati, E.; Torre, L.; Kenny, J. M. A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films. Mater. Lett. 2013, 105, 4–7.

    Article  CAS  Google Scholar 

  25. Gao, K. Z.; Shao, Z. Q.; Wu, X.; Wang, X.; Li, J.; Zhang, Y. H.; Wang, W. J.; Wang, F. J. Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper. Carbohydr. Polym. 2013, 97, 243–251.

    Article  CAS  Google Scholar 

  26. Dang, L. N.; Seppälä, J. Electrically conductive nanocellulose/graphene composites exhibiting improved mechanical properties in high-moisture condition. Cellulose 2015, 22, 1799–1812.

    Article  CAS  Google Scholar 

  27. Flandin, L.; Cavaillé, J. Y.; Bidan, G.; Brechet, Y. New nanocomposite materials made of an insulating matrix and conducting fillers: Processing and properties. Polym. Compos. 2000, 21, 165–174.

    Article  CAS  Google Scholar 

  28. Mihranyan, A.; Esmaeili, M.; Razaq, A.; Alexeichik, D.; Lindström, T. Influence of the nanocellulose raw material characteristics on the electrochemical and mechanical properties of conductive paper electrodes. J. Mater. Sci. 2012, 47, 4463–4472.

    Article  CAS  Google Scholar 

  29. Carlsson, D. O.; Sjödin, M.; Nyholm, L.; Strømme, M. A comparative study of the effects of rinsing and aging of polypyrrole/nanocellulose composites on their electrochemical properties. J. Phys. Chem. B 2013, 117, 3900–3910.

    Article  CAS  Google Scholar 

  30. Sasso, C.; Zeno, E.; Petit-Conil, M.; Chaussy, D.; Belgacem, M. N.; Tapin-Lingua, S.; Beneventi, D. Highly conducting polypyrrole/cellulose nanocomposite films with enhanced mechanical properties. Macromol. Mater. Eng. 2010, 295, 934–941.

    Article  CAS  Google Scholar 

  31. Wang, H. H.; Bian, L. Y.; Zhou, P. P.; Tang, J.; Tang, W. H. Core–sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors. J. Mater. Chem. A. 2013, 1, 578–584.

    Article  CAS  Google Scholar 

  32. Yuan, L. Y.; Yao, B.; Hu, B.; Huo, K. F.; Chen, W.; Zhou, J. Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ. Sci. 2013, 6, 470–476.

    Article  CAS  Google Scholar 

  33. Xu, D. F.; Xiao, X.; Cai, J.; Zhou, J.; Zhang, L. N. Highly rate and cycling stable electrode materials constructed from polyaniline/cellulose nanoporous microspheres. J. Mater. Chem. A 2015, 3, 16424–16429.

    Article  CAS  Google Scholar 

  34. Jradi, K.; Bideau, B.; Chabot, B.; Daneault, C. Characterization of conductive composite films based on TEMPO-oxidized cellulose nanofibers and polypyrrole. J. Mater. Sci. 2012, 47, 3752–3762.

    Article  CAS  Google Scholar 

  35. Hsieh, M. C.; Kim, C.; Nogi, M.; Suganuma, K. Electrically conductive lines on cellulose nanopaper for flexible electrical devices. Nanoscale 2013, 5, 9289–9295.

    Article  CAS  Google Scholar 

  36. Song, Y. Y.; Jiang, Y. Q.; Shi, L. Y.; Cao, S. M.; Feng, X.; Miao, M.; Fang, J. H. Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs. Nanoscale 2015, 7, 13694–13701.

    Article  CAS  Google Scholar 

  37. Hoeng, F.; Denneulin, A.; Reverdy-Bruas, N., Krosnicki, G, Bras, J. Rheology of cellulose nanofibrils/silver nanowires suspension for the production of transparent and conductive electrodes by screen printing. Appl. Surf. Sci. 2017, 394, 160–168.

    Article  CAS  Google Scholar 

  38. Kim, D.; Ko, Y.; Kwon, G.; Kim, U. J.; You, J. Micropatterning silver nanowire networks on cellulose nanopaper for transparent paper electronics. ACS Appl. Mater. Interfaces 2018, 10, 38517–38525.

    Article  CAS  Google Scholar 

  39. Pras, O.; Beneventi, D.; Chaussy, D.; Piette, P.; Tapin-Lingua, S. Use of microfibrillated cellulose and dendritic copper for the elaboration of conductive films from water-and ethanol-based dispersions. J. Mater. Sci. 2013, 48, 6911–6920.

    Article  CAS  Google Scholar 

  40. Gopiraman, M.; Bang, H.; Yuan, G. H.; Yin, C.; Song, K. H.; Lee, J. S.; Chung, I. M.; Karvembu, R.; Kim, I. S. Noble metal/functionalized cellulose nanofiber composites for catalytic applications. Carbohydr. Polym. 2015, 132, 554–564.

    Article  CAS  Google Scholar 

  41. Jiao, L.; Li, Q. X.; Deng, J. J.; Okosi, N.; Xia, J. F.; Su, M. Nanocellulose templated growth of ultra-small bismuth nanoparticles for enhanced radiation therapy. Nanoscale 2018, 10, 6751–6757.

    Article  CAS  Google Scholar 

  42. Yang, Y.; Huang, Q. B.; Payne, G. F.; Sun, R. C.; Wang, X. H. A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles. Nanoscale 2019, 11, 725–732.

    Article  CAS  Google Scholar 

  43. Zhan, H.; Peng, N.; Lei, X. J.; Huang, Y. N.; Li, D.; Tao, R. J.; Chang, C. Y. UV-induced self-cleanable TiO2/nanocellulose membrane for selective separation of oil/water emulsion. Carbohydr. Polym. 2018, 201, 464–470.

    Article  CAS  Google Scholar 

  44. Lefatshe, K.; Muiva, C. M.; Kebaabetswe, L. P. Extraction of nanocellulose and in-situ casting of ZnO/cellulose nanocomposite with enhanced photocatalytic and antibacterial activity. Carbohydr. Polym. 2017, 164, 301–308.

    Article  CAS  Google Scholar 

  45. Almasi, H.; Mehryar, L.; Ghadertaj, A. Characterization of CuO-bacterial cellulose nanohybrids fabricated by in-situ and ex-situ impregnation methods. Carbohydr. Polym. 2019, 222, 114995.

    Article  CAS  Google Scholar 

  46. Zarei, S.; Niad, M.; Raanaei, H. The removal of mercury ion pollution by using Fe3O4-nanocellulose: Synthesis, characterizations and DFT studies. J. Hazard. Mater. 2018, 344, 258–273.

    Article  CAS  Google Scholar 

  47. Tran, Q. N.; Kim, I. T.; Park, S.; Choi, H. W.; Park, S. J. SnO2 nanoflower-nanocrystalline cellulose composites as anode materials for lithium-ion batteries. Materials 2020, 13, 3165.

    Article  CAS  Google Scholar 

  48. Xiao, L. D.; Qi, H. J.; Qu, K. Q.; Shi, C.; Cheng, Y.; Sun, Z.; Yuan, B. N.; Huang, Z. H. et al. Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes. Adv. Compos. Hybrid Mater. 2021, 4, 306–316.

    Article  CAS  Google Scholar 

  49. Gutierrez, J.; Tercjak, A.; Algar, I.; Retegi, A.; Mondragon, I. Conductive properties of TiO2/bacterial cellulose hybrid fibres. J. Colloid Interface Sci. 2012, 377, 88–93.

    Article  CAS  Google Scholar 

  50. Li, W. B.; Li, L. F.; Wu, X.; Li, J. Y.; Jiang, L.; Yang, H. J.; Ke, G. Z.; Cao, G. Y.; Deng, B.; Xu, W. L. High infrared blocking cellulose film based on amorphous to anatase transition of TiO2 via atomic layer deposition. ACS Appl. Mater. Interfaces 2018, 10, 21056–21060.

    Article  CAS  Google Scholar 

  51. Yadav, H. M.; Park, J. D.; Kang, H. C.; Kim, J.; Lee, J. J. Cellulose nanofiber composite with bimetallic zeolite imidazole framework for electrochemical supercapacitors. Nanomaterials 2021, 11, 395.

    Article  CAS  Google Scholar 

  52. Zhu, L. T.; Zong, L.; Wu, X. C.; Li, M. J.; Wang, H. S.; You, J.; Li, C. X. Shapeable fibrous aerogels of metal-organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano 2018, 12, 4462–4468.

    Article  CAS  Google Scholar 

  53. Zhang, X. F.; Feng, Y.; Wang, Z. G.; Jia, M. M.; Yao, J. F. Fabrication of cellulose nanofibrils/UiO-66-NH2 composite membrane for CO2/N2 separation. J. Memb. Sci. 2018, 568, 10–16.

    Article  CAS  Google Scholar 

  54. Zhou, S. Y.; Kong, X. Y.; Zheng, B.; Huo, F. W.; Strømme, M.; Xu, C. Cellulose nanofiber @ conductive metal-organic frameworks for high-performance flexible supercapacitors. ACS Nano 2019, 13, 9578–9586.

    Article  CAS  Google Scholar 

  55. Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585.

    Article  Google Scholar 

  56. Wang, Z. F.; Zhang, S. N.; Chen, Y.; Zhang, Z. J.; Ma, S. Q. Covalent organic frameworks for separation applications. Chem. Soc. Rev. 2020, 49, 708–735.

    Article  CAS  Google Scholar 

  57. Wan, X. F.; Wang, X. Y.; Chen, G. X.; Guo, C. B.; Zhang, B. W. Covalent organic framework/nanofibrillated cellulose composite membrane loaded with Pd nanoparticles for dechlorination of dichlorobenzene. Mater. Chem. Phys. 2020, 246, 122574.

    Article  Google Scholar 

  58. Yang, H.; Yang, L. X.; Wang, H. J.; Xu, Z. A.; Zhao, Y. M.; Luo, Y.; Nasir, N.; Song, Y. M.; Wu, H.; Pan, F. S. et al. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nat. Commun. 2019, 10, 2101.

    Article  Google Scholar 

  59. Kong, X. Y.; Zhou, S. Y.; Strømme, M.; Xu, C. Redox active covalent organic framework-based conductive nanofibers for flexible energy storage device. Carbon 2021, 171, 248–256.

    Article  CAS  Google Scholar 

  60. Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 2008, 130, 2730–2731.

    Article  CAS  Google Scholar 

  61. Kandalkar, S. G.; Dhawale, D. S.; Kim, C. K.; Lokhande, C. D. Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application. Synth. Met. 2010, 160, 1299–1302.

    Article  CAS  Google Scholar 

  62. Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828.

    Article  CAS  Google Scholar 

  63. Huang, M.; Li, F.; Dong, F.; Zhang, Y. X.; Zhang, L. L. MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A 2015, 3, 21380–21423.

    Article  CAS  Google Scholar 

  64. Zhang, Y. Z.; Wang, Y.; Cheng, T.; Lai, W. Y.; Pang, H.; Huang, W. Flexible supercapacitors based on paper substrates: A new paradigm for low-cost energy storage. Chem. Soc. Rev. 2015, 44, 5181–5199.

    Article  CAS  Google Scholar 

  65. Fan, Z. J.; Yan, J.; Wei, T.; Zhi, L. J.; Ning, G. Q.; Li, T. Y.; Wei, F. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 2011, 21, 2366–2375.

    Article  CAS  Google Scholar 

  66. Wei, J. S.; Ding, C.; Zhang, P.; Ding, H.; Niu, X. Q.; Ma, Y. Y.; Li, C.; Wang, Y. G.; Xiong, H. M. Robust negative electrode materials derived from carbon dots and porous hydrogels for high-performance hybrid supercapacitors. Adv. Mater. 2019, 31, 1806197.

    Google Scholar 

  67. Pääkkö, M.; Vapaavuori, J.; Silvennoinen, R.; Kosonen, H.; Ankerfors, M.; Lindström, T.; Berglund, L. A.; Ikkala, O. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 2008, 4, 2492–2499.

    Article  Google Scholar 

  68. Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994.

    Article  CAS  Google Scholar 

  69. Zheng, Q. F.; Kvit, A.; Cai, Z. Y.; Ma, Z. Q.; Gong, S. Q. A freestanding cellulose nanofibril-reduced graphene oxide-molybdenum oxynitride aerogel film electrode for all-solid-state supercapacitors with ultrahigh energy density. J. Mater. Chem. A 2017, 5, 12528–12541.

    Article  CAS  Google Scholar 

  70. Gogotsi, Y.; Simon, P. True performance metrics in electrochemical energy storage. Science 2011, 334, 917–918.

    Article  CAS  Google Scholar 

  71. Niu, Q. Y.; Gao, K. Z.; Shao, Z. Q. Cellulose nanofiber/single-walled carbon nanotube hybrid non-woven macrofiber mats as novel wearable supercapacitors with excellent stability, tailorability and reliability. Nanoscale 2014, 6, 4083–4088.

    Article  CAS  Google Scholar 

  72. Liu, Y.; Zhou, J.; Zhu, E. W.; Tang, J.; Liu, X. H.; Tang, W. H. Facile synthesis of bacterial cellulose fibres covalently intercalated with graphene oxide by one-step cross-linking for robust supercapacitors. J. Mater. Chem. C 2015, 3, 1011–1017.

    Article  CAS  Google Scholar 

  73. Zheng, Q. F.; Cai, Z. Y.; Ma, Z. Q.; Gong, S. Q. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 3263–3271.

    Article  CAS  Google Scholar 

  74. Gui, Z.; Zhu, H. L.; Gillette, E.; Han, X. G.; Rubloff, G. W.; Hu, L. B.; Lee, S. B. Natural cellulose fiber as substrate for supercapacitor. ACS Nano 2013, 7, 6037–6046.

    Article  CAS  Google Scholar 

  75. Karthika, P.; Rajalakshmi, N.; Dhathathreyan, K. S. Flexible polyester cellulose paper supercapacitor with a gel electrolyte. ChemPhysChem 2013, 14, 3822–3826.

    Article  CAS  Google Scholar 

  76. Yuan, L. Y.; Xiao, X.; Ding, T. P.; Zhong, J. W.; Zhang, X. H.; Shen, Y.; Hu, B.; Huang, Y. H.; Zhou, J.; Wang, Z. L. Paper-based supercapacitors for self-powered nanosystems. Angew. Chem., Int. Ed. 2012, 51, 4934–4938.

    Article  CAS  Google Scholar 

  77. Wang, Z. H.; Carlsson, D. O.; Tammela, P.; Hua, K.; Zhang, P.; Nyholm, L.; Strømme, M. Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano 2015, 9, 7563–7571.

    Article  CAS  Google Scholar 

  78. Kang, Y. J.; Chun, S. J.; Lee, S. S.; Kim, B. Y.; Kim, J. H.; Chung, H.; Lee, S. Y.; Kim, W. All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano 2012, 6, 6400–6406.

    Article  CAS  Google Scholar 

  79. Zhao, D. W.; Chen, C. J.; Zhang, Q.; Chen, W. S.; Liu, S. X.; Wang, Q. W.; Liu, Y. X.; Li, J.; Yu, H. P. High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane. Adv. Energy Mater. 2017, 7, 1700739.

    Article  Google Scholar 

  80. Yang, X.; Shi, K. Y.; Zhitomirsky, I.; Cranston, E. D. Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv. Mater. 2015, 27, 6104–6109.

    Article  CAS  Google Scholar 

  81. Chen, L. M.; Yu, H. Y.; Li, Z. H.; Chen, X.; Zhou, W. L. Cellulose nanofiber derived carbon aerogel with 3D multiscale pore architecture for high-performance supercapacitors. Nanoscale 2021, 13, 17837–17845.

    Article  CAS  Google Scholar 

  82. Wang, D. C.; Yu, H. Y.; Qi, D. M.; Wu, Y. H.; Chen, L. M.; Li, Z. H. Confined chemical transitions for direct extraction of conductive cellulose nanofibers with graphitized carbon shell at low temperature and pressure. J. Am. Chem. Soc. 2021, 143, 11620–11630.

    Article  CAS  Google Scholar 

  83. Cheng, F. Y.; Tao, Z. L.; Liang, J.; Chen, J. Template-directed materials for rechargeable lithium-ion batteries. Chem. Mater. 2008, 20, 667–681.

    Article  CAS  Google Scholar 

  84. Li, H.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Research on advanced materials for li-ion batteries. Adv. Mater. 2009, 21, 4593–4607.

    Article  Google Scholar 

  85. Hu, L. B.; Liu, N.; Eskilsson, M.; Zheng, G. Y.; McDonough, J.; Wågberg, L.; Cui, Y. Silicon-conductive nanopaper for Li-ion batteries. Nano Energy 2013, 2, 138–145.

    Article  CAS  Google Scholar 

  86. Zhou, X. M.; Liu, Y.; Du, C. Y.; Ren, Y.; Li, X. L.; Zuo, P. J.; Yin, G. P.; Ma, Y. L.; Cheng, X. Q.; Gao, Y. Z. Free-standing sandwich-type graphene/nanocellulose/silicon laminar anode for flexible rechargeable lithium ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 29638–29646.

    Article  CAS  Google Scholar 

  87. Wang, W.; Sun, Y.; Liu, B.; Wang, S. G.; Cao, M. H. Porous carbon nanofiber webs derived from bacterial cellulose as an anode for high performance lithium ion batteries. Carbon 2015, 91, 56–65.

    Article  CAS  Google Scholar 

  88. Wang, B.; Li, X. L.; Luo, B.; Yang, J. X.; Wang, X. J.; Song, Q.; Chen, S. Y.; Zhi, L. J. Pyrolyzed bacterial cellulose: A versatile support for lithium ion battery anode materials. Small 2013, 9, 2399–2404.

    Article  CAS  Google Scholar 

  89. Huang, Y.; Lin, Z. X.; Zheng, M. B.; Wang, T. H.; Yang, J. Z.; Yuan, F. S.; Lu, X. Y.; Liu, L.; Sun, D. P. Amorphous Fe2O3 nanoshells coated on carbonized bacterial cellulose nanofibers as a flexible anode for high-performance lithium ion batteries. J. Power Sources 2016, 307, 649–656.

    Article  CAS  Google Scholar 

  90. Wan, Y. Z.; Yang, Z. W.; Xiong, G. Y.; Guo, R. S.; Liu, Z.; Luo, H. L. Anchoring Fe3O4 nanoparticles on three-dimensional carbon nanofibers toward flexible high-performance anodes for lithium-ion batteries. J. Power Sources 2015, 294, 414–419.

    Article  CAS  Google Scholar 

  91. Zhang, F.; Tang, Y. B.; Yang, Y.; Zhang, X. L.; Lee, C. S. In-Situ assembly of three-dimensional MoS2 nanoleaves/carbon nanofiber composites derived from bacterial cellulose as flexible and binder-free anodes for enhanced lithium-ion batteries. Electrochim. Acta 2016, 211, 404–410.

    Article  CAS  Google Scholar 

  92. Wan, Y. Z.; Yang, Z. W.; Xiong, G. Y.; Luo, H. L. A general strategy of decorating 3D carbon nanofiber aerogels derived from bacterial cellulose with nano-Fe3O4 for high-performance flexible and binder-free lithium-ion battery anodes. J. Mater. Chem. A 2015, 3, 15386–15393.

    Article  CAS  Google Scholar 

  93. Leijonmarck, S.; Cornell, A.; Lindbergh, G.; Wågberg, L. Flexible nano-paper-based positive electrodes for Li-ion batteries-preparation process and properties. Nano Energy 2013, 2, 794–800.

    Article  CAS  Google Scholar 

  94. Cao, S. M.; Feng, X.; Song, Y. Y.; Xue, X.; Liu, H. J.; Miao, M.; Fang, J. H.; Shi, L. Y. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 10695–10701.

    Article  CAS  Google Scholar 

  95. Zhang, S. S. A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 2007, 164, 351–364.

    Article  CAS  Google Scholar 

  96. Chun, S. J.; Choi, E. S.; Lee, E. H.; Kim, J. H.; Lee, S. Y.; Lee, S. Y. Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J. Mater. Chem. 2012, 22, 16618–16626.

    Article  CAS  Google Scholar 

  97. Sheng, J.; Tong, S. H.; He, Z. B.; Yang, R. D. Recent developments of cellulose materials for lithium-ion battery separators. Cellulose 2017, 24, 4103–4122.

    Article  CAS  Google Scholar 

  98. Yu, B. C.; Park, K.; Jang, J. H.; Goodenough, J. B. Cellulose-based porous membrane for suppressing Li dendrite formation in lithium-sulfur battery. ACS Energy Lett. 2016, 1, 633–637.

    Article  CAS  Google Scholar 

  99. Kim, J. H.; Kim, J. H.; Choi, E. S.; Yu, H. K.; Kim, J. H.; Wu, Q. L.; Chun, S. J.; Lee, S. Y.; Lee, S. Y. Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries. J. Power Sources 2013, 242, 533–540.

    Article  CAS  Google Scholar 

  100. Pan, R. J.; Sun, R.; Wang, Z. H.; Lindh, J.; Edström, K.; Strømme, M.; Nyholm, L. Sandwich-structured nano/micro fiber-based separators for lithium metal batteries. Nano Energy 2019, 55, 316–326.

    Article  CAS  Google Scholar 

  101. Leijonmarck, S.; Cornell, A.; Lindbergh, G.; Wågberg, L. Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J. Mater. Chem. A 2013, 1, 4671–4677.

    Article  CAS  Google Scholar 

  102. Wang, Z. H.; Pan, R. J.; Sun, R.; Edström, K.; Strømme, M.; Nyholm, L. Nanocellulose structured paper-based lithium metal batteries. ACS Appl. Energy Mater. 2018, 1, 4341–4350.

    Article  CAS  Google Scholar 

  103. Chiappone, A.; Nair, J. R.; Gerbaldi, C.; Jabbour, L.; Bongiovanni, R.; Zeno, E.; Beneventi, D.; Penazzi, N. Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent mechanical stability. J. Power Sources 2011, 196, 10280–10288.

    Article  CAS  Google Scholar 

  104. Samir, M. A. S. A.; Mateos, A. M.; Alloin, F.; Sanchez, J. Y.; Dufresne, A. Plasticized nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers. Electrochim. Acta 2004, 49, 4667–4677.

    Article  Google Scholar 

  105. Willgert, M.; Leijonmarck, S.; Lindbergh, G.; Malmström, E.; Johansson, M. Cellulose nanofibril reinforced composite electrolytes for lithium ion battery applications. J. Mater. Chem. A 2014, 2, 13556–13564.

    Article  CAS  Google Scholar 

  106. Samir, M. A. S. A.; Alloin, F.; Sanchez, J. Y.; Dufresne, A. Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 2004, 45, 4149–4157.

    Article  Google Scholar 

  107. Samir, M. A. S. A.; Chazeau, L.; Alloin, F.; Cavaillé, J. Y.; Dufresne, A.; Sanchez, J. Y. POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers. Electrochim. Acta 2005, 50, 3897–3903.

    Article  Google Scholar 

  108. Samir, M. A. S. A.; Alloin, F.; Sanchez, J. Y.; Dufresne, A. Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers. Macromolecules 2004, 37, 4839–4844.

    Article  CAS  Google Scholar 

  109. Zhou, Y. H.; Fuentes-Hernandez, C.; Khan, T. M.; Liu, J. C.; Hsu, J.; Shim, J. W.; Dindar, A.; Youngblood, J. P.; Moon, R. J.; Kippelen, B. Recyclable organic solar cells on cellulose nanocrystal substrates. Sci. Rep. 2013, 3, 1536.

    Article  Google Scholar 

  110. Zhou, Y. H.; Khan, T. M.; Liu, J. C.; Fuentes-Hernandez, C.; Shim, J. W.; Najafabadi, E.; Youngblood, J. P.; Moon, R. J.; Kippelen, B. Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination. Org. Electron. 2014, 15, 661–666.

    Article  CAS  Google Scholar 

  111. Gao, L.; Chao, L. F.; Hou, M. H.; Liang, J.; Chen, Y. H.; Yu, H. D.; Huang, W. Flexible, transparent nanocellulose paper-based perovskite solar cells. npj Flex. Electron. 2019, 3, 4.

    Article  Google Scholar 

  112. Fang, Z. Q.; Zhu, H. L.; Yuan, Y. B.; Ha, D.; Zhu, S. Z.; Preston, C.; Chen, Q. X.; Li, Y. Y.; Han, X. G.; Lee, S. et al. Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 2014, 14, 765–773.

    Article  CAS  Google Scholar 

  113. Gao, C. M.; Yuan, S.; Cui, K.; Qiu, Z. W.; Ge, S. G.; Cao, B. Q.; Yu, J. H. Flexible and biocompatibility power source for electronics: A cellulose paper based hole-transport-materials-free perovskite solar cell. Sol. RRL 2018, 2, 1800175.

    Article  Google Scholar 

  114. Ghadiri, E.; Taghavinia, N.; Zakeeruddin, S. M.; Grätzel, M.; Moser, J. E. Enhanced electron collection efficiency in dyesensitized solar cells based on nanostructured TiO2 hollow fibers. Nano Lett. 2010, 10, 1632–1638.

    Article  CAS  Google Scholar 

  115. La Notte, L.; Cataldi, P.; Ceseracciu, L.; Bayer, I. S.; Athanassiou, A.; Marras, S.; Villari, E.; Brunetti, F.; Reale, A. Fully-sprayed flexible polymer solar cells with a cellulose-graphene electrode. Mater. Today Energy 2018, 7, 105–112.

    Article  Google Scholar 

  116. Ma, X. J.; Deng, Q. D.; Wang, L.; Zheng, X.; Wang, S. S.; Wang, Q. H.; Chen, L. H.; Huang, L. L.; Ouyang, X. H.; Cao, S. L. Cellulose transparent conductive film and its feasible use in perovskite solar cells. RSC Adv. 2019, 9, 9348–9353.

    Article  Google Scholar 

  117. Yuwawech, K.; Wootthikanokkhan, J.; Tanpichai, S. Enhancement of thermal, mechanical and barrier properties of EVA solar cell encapsulating films by reinforcing with esterified cellulose nanofibres. Polym. Test. 2015, 48, 12–22.

    Article  CAS  Google Scholar 

  118. Liu, Z.; Li, H.; Shi, B. J.; Fan, Y.; Wang, Z. L.; Li, Z. Wearable and implantable triboelectric nanogenerators. Adv. Funct. Mater. 2019, 29, 1808820.

    Article  Google Scholar 

  119. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  120. Yao, C. H.; Hernandez, A.; Yu, Y. H.; Cai, Z. Y.; Wang, X. D. Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy 2016, 30, 103–108.

    Article  CAS  Google Scholar 

  121. Guo, Y. L.; Chen, Y. D.; Ma, J. M.; Zhu, H. R.; Cao, X.; Wang, N.; Wang, Z. L. Harvesting wind energy: A hybridized design of pinwheel by coupling triboelectrification and electromagnetic induction effects. Nano Energy 2019, 60, 641–648.

    Article  CAS  Google Scholar 

  122. Zhao, K.; Wang, Z. L.; Yang, Y. Self-powered wireless smart sensor node enabled by an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator. ACS Nano 2016, 10, 9044–9052.

    Article  CAS  Google Scholar 

  123. Anaya, D. V.; He, T. Y. Y.; Lee, C.; Yuce, M. R. Self-powered eye motion sensor based on triboelectric interaction and near-field electrostatic induction for wearable assistive technologies. Nano Energy 2020, 72, 104675.

    Article  Google Scholar 

  124. Shi, X. X.; Zhang, S. D.; Gong, S. Q. A self-powered and archstructured triboelectric nanogenerator for portable electronics and human–machine communication. J. Mater. Chem. A 2020, 8, 8997–9005.

    Article  CAS  Google Scholar 

  125. Han, Y. J.; Han, Y. F.; Zhang, X. P.; Li, L.; Zhang, C. W.; Liu, J. H.; Lu, G.; Yu, H. D.; Huang, W. Fish gelatin based triboelectric nanogenerator for harvesting biomechanical energy and self-powered sensing of human physiological signals. ACS Appl. Mater. Interfaces 2020, 12, 16442–16450.

    Article  CAS  Google Scholar 

  126. Yao, C. H.; Yin, X.; Yu, Y. H.; Cai, Z. Y.; Wang, X. D. Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development. Adv. Funct. Mater. 2017, 27, 1700794.

    Article  Google Scholar 

  127. Song, Y. H.; Shi, Z. Q.; Hu, G. H.; Xiong, C. X.; Isogai, A.; Yang, Q. L. Recent advances in cellulose-based piezoelectric and triboelectric nanogenerators for energy harvesting: A review. J. Mater. Chem. A 2021, 9, 1910–1937.

    Article  CAS  Google Scholar 

  128. Kim, H. J.; Yim, E. C.; Kim, J. H.; Kim, S. J.; Park, J. Y.; Oh, I. K. Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy 2017, 33, 130–137.

    Article  CAS  Google Scholar 

  129. Zheng, Q. F.; Fang, L. M.; Guo, H. Q.; Yang, K. F.; Cai, Z. Y.; Meador, M. A. B.; Gong, S. Q. Highly porous polymer aerogel film-based triboelectric nanogenerators. Adv. Funct. Mater. 2018, 28, 1706365.

    Article  Google Scholar 

  130. Qian, C. C.; Li, L. H.; Gao, M.; Yang, H. Y.; Cai, Z. R.; Chen, B. D.; Xiang, Z. Y.; Zhang, Z. J.; Song, Y. L. All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy 2019, 63, 103885.

    Article  CAS  Google Scholar 

  131. He, X.; Zou, H. Y.; Geng, Z. S.; Wang, X. F.; Ding, W. B.; Hu, F.; Zi, Y. L.; Xu, C.; Zhang, S. L.; Yu, H. et al. A hierarchically nanostructured cellulose fiber-based triboelectric nanogenerator for self-powered healthcare products. Adv. Funct. Mater. 2018, 28, 1805540.

    Article  Google Scholar 

  132. Oh, H.; Kwak, S. S.; Kim, B.; Han, E.; Lim, G. H.; Kim, S. W.; Lim, B. Highly conductive ferroelectric cellulose composite papers for efficient triboelectric nanogenerators. Adv. Funct. Mater. 2019, 29, 1904066.

    Article  Google Scholar 

  133. Shao, Y.; Feng, C. P.; Deng, B. W.; Yin, B.; Yang, M. B. Facile method to enhance output performance of bacterial cellulose nanofiber based triboelectric nanogenerator by controlling micro-nano structure and dielectric constant. Nano Energy 2019, 62, 620–627.

    Article  CAS  Google Scholar 

  134. Peng, J.; Zhang, H. L.; Zheng, Q. F.; Clemons, C. M.; Sabo, R. C.; Gong, S. Q.; Ma, Z. Q.; Turng, L. S. A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance. Nanoscale 2017, 9, 1428–1433.

    Article  CAS  Google Scholar 

  135. Zhao, F.; Cheng, H. H.; Zhang, Z. P.; Jiang, L.; Qu, L. T. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351–4357.

    Article  CAS  Google Scholar 

  136. Liu, X. M.; Gao, H. Y.; Ward, J. E.; Liu, X. R.; Yin, B.; Fu, T. D.; Chen, J. H.; Lovley, D. R.; Yao, J. Power generation from ambient humidity using protein nanowires. Nature 2020, 578, 550–554.

    Article  CAS  Google Scholar 

  137. Bai, J. X.; Huang, Y. X.; Cheng, H. H.; Qu, L. T. Moist-electric generation. Nanoscale 2019, 11, 23083–23091.

    Article  CAS  Google Scholar 

  138. Lyu, Q. Q.; Peng, B. L.; Xie, Z. J.; Du, S.; Zhang, L. B.; Zhu, J. T. Moist-induced electricity generation by electrospun cellulose acetate membranes with optimized porous structures. ACS Appl. Mater. Interfaces 2020, 12, 57373–57381.

    Article  CAS  Google Scholar 

  139. Wang, H. Y.; Sun, Y. L.; He, T. C.; Huang, Y. X.; Cheng, H. H.; Li, C.; Xie, D.; Yang, P. F.; Zhang, Y. F.; Qu, L. T. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1, 000 V output. Nat. Nanotechnol. 2021, 16, 811–819.

    Article  CAS  Google Scholar 

  140. Yang, W. Q.; Li, X. K.; Han, X.; Zhang, W. H.; Wang, Z. B.; Ma, X. M.; Li, M. J.; Li, C. X. Asymmetric ionic aerogel of biologic nanofibrils for harvesting electricity from moisture. Nano Energy 2020, 71, 104610.

    Article  CAS  Google Scholar 

  141. Li, Y.; Cui, J. D.; Shen, H. Y.; Liu, C. C.; Wu, P. L.; Qian, Z. Y.; Duan, Y. L.; Liu, D. T. Useful spontaneous hygroelectricity from ambient air by ionic wood. Nano Energy 2022, 96, 107065.

    Article  CAS  Google Scholar 

  142. Eun, J.; Jeon, S. Direct fabrication of high performance moisture-driven power generators using laser induced graphitization of sodium chloride-impregnated cellulose nanofiber films. Nano Energy 2022, 92, 106772.

    Article  CAS  Google Scholar 

  143. Lee, S.; Eun, J.; Jeon, S. Facile fabrication of a highly efficient moisture-driven power generator using laser-induced graphitization under ambient conditions. Nano Energy 2020, 68, 104364.

    Article  CAS  Google Scholar 

  144. Wang, D. C.; Yu, H. Y.; Jiang, L. R.; Qi, D. M.; Zhang, X. X.; Chen, L. M.; Lv, W. T.; Xu, W. Q.; Tam, K. C. Flexible, anti-damage, and non-contact sensing electronic skin implanted with MWCNT to block public pathogens contact infection. Nano Res. 2022, 15, 2616–2625.

    Article  CAS  Google Scholar 

  145. Koga, H.; Nagashima, K.; Huang, Y. T.; Zhang, G. Z.; Wang, C.; Takahashi, T.; Inoue, A.; Yan, H.; Kanai, M.; He, Y. et al. Paper-based disposable molecular sensor constructed from oxide nanowires, cellulose nanofibers, and pencil-drawn electrodes. ACS Appl. Mater. Interfaces 2019, 11, 15044–15050.

    Article  CAS  Google Scholar 

  146. Wei, H. R.; Rodriguez, K.; Renneckar, S.; Leng, W. N.; Vikesland, P. J. Preparation and evaluation of nanocellulose-gold nanoparticle nanocomposites for SERS applications. Analyst 2015, 140, 5640–5649.

    Article  CAS  Google Scholar 

  147. Park, M.; Chang, H.; Jeong, D. H.; Hyun, J. Spatial deformation of nanocellulose hydrogel enhances SERS. BioChip J. 2013, 7, 234–241.

    Article  CAS  Google Scholar 

  148. Kim, W.; Lee, J. C.; Lee, G. J.; Park, H. K.; Lee, A.; Choi, S. Low-cost label-free biosensing bimetallic cellulose strip with SILAR-synthesized silver core-gold shell nanoparticle structures. Anal. Chem. 2017, 89, 6448–6454.

    Article  CAS  Google Scholar 

  149. Kim, W.; Lee, S. H.; Kim, J. H.; Ahn, Y. J.; Kim, Y. H.; Yu, J. S.; Choi, S. Paper-based surface-enhanced Raman spectroscopy for diagnosing prenatal diseases in women. ACS Nano 2018, 12, 7100–7108.

    Article  CAS  Google Scholar 

  150. Kim, W.; Lee, S. H.; Ahn, Y. J.; Lee, S. H.; Ryu, J.; Choi, S. K.; Choi, S. A label-free cellulose SERS biosensor chip with improvement of nanoparticle-enhanced LSPR effects for early diagnosis of subarachnoid hemorrhage-induced complications. Biosens. Bioelectron. 2018, 111, 59–65.

    Article  CAS  Google Scholar 

  151. Wang, W.; Li, H. Y.; Zhang, D. W.; Jiang, J.; Cui, Y. R.; Qiu, S.; Zhou, Y. L.; Zhang, X. X. Fabrication of bienzymatic glucose biosensor based on novel gold nanoparticles-bacteria cellulose nanofibers nanocomposite. Electroanalysis 2010, 22, 2543–2550.

    Article  CAS  Google Scholar 

  152. Gao, X. F.; Zheng, P.; Kasani, S.; Wu, S.; Yang, F.; Lewis, S.; Nayeem, S.; Engler-Chiurazzi, E. B.; Wigginton, J. G.; Simpkins, J. W. et al. Paper-based surface-enhanced Raman scattering lateral flow strip for detection of neuron-specific enolase in blood plasma. Anal. Chem. 2017, 89, 10104–10110.

    Article  CAS  Google Scholar 

  153. Naghdi, T.; Golmohammadi, H.; Vosough, M.; Atashi, M.; Saeedi, I.; Maghsoudi, M. T. Lab-on-nanopaper: An optical sensing bioplatform based on curcumin embedded in bacterial nanocellulose as an albumin assay kit. Anal. Chim. Acta 2019, 1070, 104–111.

    Article  CAS  Google Scholar 

  154. Park, M.; Jung, H.; Jeong, Y.; Jeong, K. H. Plasmonic schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering. ACS Nano 2017, 11, 438–443.

    Article  CAS  Google Scholar 

  155. Uddin, K. M. A.; Jokinen, V.; Jahangiri, F.; Franssila, S.; Rojas, O. J.; Tuukkanen, S. Disposable microfluidic sensor based on nanocellulose for glucose detection. Glob. Challenges 2019, 3, 1800079.

    Article  Google Scholar 

  156. Tabatabaee, R. S.; Golmohammadi, H.; Ahmadi, S. H. Easy diagnosis of jaundice: A smartphone-based nanosensor bioplatform using photoluminescent bacterial nanopaper for point-of-care diagnosis of hyperbilirubinemia. ACS Sens. 2019, 4, 1063–1071.

    Article  CAS  Google Scholar 

  157. Ouyang, Z. F.; Xu, D. W.; Yu, H. Y.; Li, S. H.; Song, Y.; Tam, K. C. Novel ultrasonic-coating technology to design robust, highly sensitive and wearable textile sensors with conductive nanocelluloses. Chem. Eng. J. 2022, 428, 131289.

    Article  CAS  Google Scholar 

  158. Wang, C.; Li, Y. Z.; Yu, H. Y.; Abdalkarim, S. Y. H.; Zhou, J. P.; Yao, J. M.; Zhang, L. N. Continuous meter-scale wet-spinning of cornlike composite fibers for eco-friendly multifunctional electronics. ACS Appl. Mater. Interfaces 2021, 13, 40953–40963.

    Article  CAS  Google Scholar 

  159. Ouyang, Z. F.; Cui, S. B.; Yu, H. Y.; Xu, D. W.; Wang, C.; Tang, D. P.; Tam, K. C. Versatile sensing devices for self-driven designated therapy based on robust breathable composite films. Nano Res. 2022, 15, 1027–1038.

    Article  CAS  Google Scholar 

  160. Han, L.; Zhang, H. Y.; Yu, H. Y.; Ouyang, Z. F.; Yao, J. M.; Krucinska, I.; Kim, D.; Tam, K. C. Highly sensitive self-healable strain biosensors based on robust transparent conductive nanocellulose nanocomposites: Relationship between percolated network and sensing mechanism. Biosens. Bioelectron. 2021, 191, 113467.

    Article  CAS  Google Scholar 

  161. Wang, C.; Zhu, M. H.; Yu, H. Y.; Abdalkarim, S. Y. H.; Ouyang, Z. F.; Zhu, J. Y.; Yao, J. M. Multifunctional biosensors made with self-healable silk fibroin imitating skin. ACS Appl. Mater. Interfaces 2021, 13, 33371–33382.

    Article  CAS  Google Scholar 

  162. Zhu, M. H.; Yu, H. Y.; Tang, F.; Li, Y. Z.; Liu, Y. N.; Yao, J. M. Robust natural biomaterial based flexible artificial skin sensor with high transparency and multiple signals capture. Chem. Eng. J. 2020, 394, 124855.

    Article  CAS  Google Scholar 

  163. Ouyang, Z. F.; Yu, H. Y.; Song, M. L.; Zhu, J. Y.; Wang, D. C. Ultrasensitive and robust self-healing composite films with reinforcement of multi-branched cellulose nanocrystals. Compos. Sci. Technol. 2020, 198, 108300.

    Article  CAS  Google Scholar 

  164. Wang, M.; Anoshkin, I. V.; Nasibulin, A. G.; Korhonen, J. T.; Seitsonen, J.; Pere, J.; Kauppinen, E. I.; Ras, R. H. A.; Ikkala, O. Modifying native nanocellulose aerogels with carbon nanotubes for mechanoresponsive conductivity and pressure sensing. Adv. Mater. 2013, 25, 2428–2432.

    Article  CAS  Google Scholar 

  165. Song, M. L.; Yu, H. Y.; Zhu, J. Y.; Ouyang, Z. F.; Abdalkarim, S. Y. H.; Tam, K. C.; Li, Y. Z. Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrystals. Chem. Eng. J. 2020, 398, 125547.

    Article  CAS  Google Scholar 

  166. Chen, Z. H.; Hu, Y. J.; Zhuo, H.; Liu, L. X.; Jing, S. S.; Zhong, L. X.; Peng, X. W.; Sun, R. C. Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 2019, 31, 3301–3312.

    Article  CAS  Google Scholar 

  167. Jung, M.; Kim, K.; Kim, B.; Lee, K. J.; Kang, J. W.; Jeon, S. Vertically stacked nanocellulose tactile sensor. Nanoscale 2017, 9, 17212–17219.

    Article  CAS  Google Scholar 

  168. Zhang, L. F.; Lyu, S. Y.; Zhang, Q. J.; Wu, Y. T.; Melcher, C.; Chmely, S. C.; Chen, Z. L.; Wang, S. Q. Dual-emitting film with cellulose nanocrystal-assisted carbon dots grafted SrAl2O4, Eu2+, Dy3+ phosphors for temperature sensing. Carbohydr. Polym. 2019, 206, 767–777.

    Article  CAS  Google Scholar 

  169. Wang, M.; Tian, X. L.; Ras, R. H. A.; Ikkala, O. Sensitive humidity-driven reversible and bidirectional bending of nanocellulose thin films as bio-inspired actuation. Adv. Mater. Interfaces 2015, 2, 1500080.

    Article  Google Scholar 

  170. Xu, S. M.; Yu, W. J.; Yao, X. L.; Zhang, Q.; Fu, Q. Nanocellulose-assisted dispersion of graphene to fabricate poly(vinyl alcohol)/graphene nanocomposite for humidity sensing. Compos. Sci. Technol. 2016, 131, 67–76.

    Article  CAS  Google Scholar 

  171. Zhu, P. H.; Liu, Y.; Fang, Z. Q.; Kuang, Y. D.; Zhang, Y. Z.; Peng, C. X.; Chen, G. Flexible and highly sensitive humidity sensor based on cellulose nanofibers and carbon nanotube composite film. Langmuir 2019, 35, 4834–4842.

    Article  CAS  Google Scholar 

  172. Zhang, L. Z.; Li, Q.; Zhou, J. P.; Zhang, L. N. Synthesis and photophysical behavior of pyrene-bearing cellulose nanocrystals for Fe3+ sensing. Macromol. Chem. Phys. 2012, 213, 1612–1617.

    Article  CAS  Google Scholar 

  173. Weishaupt, R.; Siqueira, G.; Schubert, M.; Kämpf, M. M.; Zimmermann, T.; Maniura-Weber, K.; Faccio, G. A protein-nanocellulose paper for sensing copper ions at the nano-to micromolar level. Adv. Funct. Mater. 2017, 27, 1604291.

    Article  Google Scholar 

  174. Abbasi-Moayed, S.; Golmohammadi, H.; Hormozi-Nezhad, M. R. A nanopaper-based artificial tongue: A ratiometric fluorescent sensor array on bacterial nanocellulose for chemical discrimination applications. Nanoscale 2018, 10, 2492–2502.

    Article  CAS  Google Scholar 

  175. Dai, S. D.; Prempeh, N.; Liu, D. G.; Fan, Y. M.; Gu, M. Y.; Chang, Y. Cholesteric film of Cu(II)-doped cellulose nanocrystals for colorimetric sensing of ammonia gas. Carbohydr. Polym. 2017, 174, 531–539.

    Article  CAS  Google Scholar 

  176. Zhang, J.; Jiang, G. P.; Goledzinowski, M.; Comeau, F. J. E.; Li, K. C.; Cumberland, T.; Lenos, J.; Xu, P.; Li, M.; Yu, A. P. et al. Green solid electrolyte with cofunctionalized nanocellulose/graphene oxide interpenetrating network for electrochemical gas sensors. Small Methods 2017, 1, 1700237.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Outstanding Youth Project of Zhejiang Provincial Natural Science Foundation (No. LR22E030002) and Zhejiang Provincial Natural Science Key Foundation of China (Nos. LZ20E030003 and LY21E030020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houyong Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Abdalkarim, S.Y.H., Yu, H. et al. Nanocellulose-based functional materials for advanced energy and sensor applications. Nano Res. 15, 7432–7452 (2022). https://doi.org/10.1007/s12274-022-4374-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4374-7

Keywords

Navigation