Skip to main content

Advertisement

Log in

Thermal enhancement of gelatin hydrogels for a multimodal sensor and self-powered triboelectric nanogenerator at low temperatures

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Conductive hydrogels always suffer from weak mechanical capabilities, low adhesion, and lack of antifreeze performance, which seriously restrict their application in flexible wearable devices at low temperatures. To address these problems, a thermal enhancement strategy was creatively proposed to prepare PEDOT:PSS-gelatin-based (CHGP) hydrogels, which achieved excellent mechanical properties (tensile strength ≈ 7.38 MPa and strain ≈ 150%), good adhesion properties (adhesion strength ≈ 27.8 kPa), and the lowest freezing point (− 51.7 ℃) compared to other reported gelatin-based hydrogels. It was demonstrated that the data monitored by the CHGP-based multimodal sensors at − 25 ℃ and 25 ℃ have high consistency, which proved the sensors’ stability in sensing and monitoring highly sensitive strain and humidity. Furthermore, assembled with VHB tape, a self-powered triboelectric nanogenerator (C-TENG) was designed as a low-temperature monitoring sensor, which can monitor not only body or environment temperature but also human movement without being affected by humidity. C-TENG has the ability to monitor the vital signs and mobility of users at low temperatures to ensure the safety of outdoor workers. Therefore, this study provides a useful strategy for preparing antifreeze hydrogel-based flexible wearable devices with low-temperature monitoring functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Hell K, Thomas R, Robertson G, Porter A, Milner R, Wood A (2016) Freezing and non-freezing cold weather injuries: a systematic review[J]. Br Med Bull 117:79–93

    Google Scholar 

  2. Gupta A, Soni R, Ganguli M (2021) Frostbite-Manifestation and Mitigation[J]. Burn Open 5:96–103

    Google Scholar 

  3. Jurkovich GJ (2007) Environmental Cold-Induced Injury. Surg. Clin North Am 87:247–267

    Google Scholar 

  4. Handford C, Buxton P, Russell K, Imray CEA, Mclntosh SE, Freer L, Cochran A (2014) Imray, Frostbite: a practical approach to hospital management[J]. Extrem Physiol Med 3:1

    Google Scholar 

  5. Regli I, Strapazzon G, Falla M, Oberhammer R, Brugger H (2021) Long-term sequelae of Frostbite-A Scoping Review[J]. Int J Environ Res Public Health 18(18):9655

    Google Scholar 

  6. LEE J, Higgins M (2020) What interventional radiologists need to know about managing severe Frostbite: a Meta-analysis of thrombolytic Therapy[J]. AJR Am J Roentgenol 214(4):930–937

    Google Scholar 

  7. Chen X, Ren Z, Guo H, Cheng X, Zhang H (2020) Self-powered flexible and transparent smart patch for temperature sensing[J]. Appl Phys Lett 116:043902

    CAS  Google Scholar 

  8. Oh JH, Hong SY, Park H, Jin SW, Jeong YR, Oh SY, Yun J, Lee H, Kim JW, Ha JS (2018) Fabrication of high-sensitivity skin-attachable temperature sensors with Bioinspired Microstructured Adhesive[J]. ACS Appl Mater Inter 10:7263

    CAS  Google Scholar 

  9. Ho DH, Sun Q, Kim SY, Han JT, Kim DH (2016) Cho, Stretchable and Multimodal all Graphene Electronic Skin[J]. Adv Mater 28:2601

    CAS  Google Scholar 

  10. Jo HS, An S, Park C, Woo D, Yarin A, Yoon S (2019) Wearable, stretchable, transparent all-in-one Soft Sensor formed from supersonically sprayed silver Nanowires[J]. ACS Appl Mater Inter 11:40232–40242

    CAS  Google Scholar 

  11. He H, Liu J, Wang Y, Zhao Y, Qin Y, Zhu Z, Yu Z, Wang J (2022) An Ultralight Self-Powered Fire Alarm e-Textile based on Conductive Aerogel Fiber with repeatable temperature monitoring performance used in Firefighting Clothing[J]. ACS Nano 16:2953–2967

    CAS  Google Scholar 

  12. Xia M, Pan N, Zhang C, Zhang C, Fan W, Xia Y, Wang Z, Sui K (2022) Self-powered multifunction ionic skins based on gradient polyelectrolyte Hydrogels[J]. ACS Nano 16:4714–4725

    CAS  Google Scholar 

  13. Liu W, Xie R, Zhu J, Wu J, Hui J, Zheng X, Huo F, Fan D (2022) A temperature responsive adhesive hydrogel for fabrication of flexible electronic sensors[J]. npj Flex Electron 6:68

    CAS  Google Scholar 

  14. Zhang Z, Yang D, Yang H, Li Y, Lu S, Cai R, Tan W (2021) A hydrophobic sisal cellulose Microcrystal Film for Fire Alarm Sensors[J]. Nano Lett 21:2104–2110

    CAS  Google Scholar 

  15. Qu Z, Wu K, Xu CA, Li Y, Jiao E, Chen B, Meng H, Cui X, Wang K, Shi J (2021) Facile construction of a flexible film with ultrahigh thermal conductivity and excellent flame retardancy for a smart fire alarm[J]. Chem Mater 33:3228–3240

    CAS  Google Scholar 

  16. Bae J, Li Y, Zhang J, Zhou X, Zhao F, Shi Y, Goodenough JB, Yu G (2018) A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte[J]. Angew. Chem., Int. Ed, 57, 2096

  17. Rong Q, Lei W, Huang J, Liu M (2018) Low temperature tolerant Organohydrogel Electrolytes for flexible solid-state Supercapacitors[J]. Adv Energy Mater 8:1801967

    Google Scholar 

  18. Pang Y, Cao Y, Derakhshani M, Fang Y, Wang ZL, Cao C (2021) Hybrid Energy-Harvesting Systems based on triboelectric Nanogenerators[J]. Matter 4:116–143

    Google Scholar 

  19. Hajra S, Padhan AM, Sahu M, Alagarsamy P, Lee K, Kim HJ (2021) Lead-free flexible Bismuth Titanate-PDMS composites: a multifunctional colossal dielectric material for hybrid piezo-triboelectric nanogenerator to sustainably power portable electronics[J]. Nano Energy 89:106316

    CAS  Google Scholar 

  20. Sun W, Ding Z, Qin Z, Chu F, Han Q (2020) Wind energy harvesting based on fluttering double-flag type triboelectric nanogenerators[J]. Nano Energy 70:104526

    CAS  Google Scholar 

  21. Chortos A, Liu J, Bao Z (2016) Pursuing prosthetic electronic skin[J]. Nat Mater 15:937–950

    CAS  Google Scholar 

  22. He Z, Wu C, Hua M, Wu S, Wu D, Zhu X, Wang J, He X (2020) Bioinspired multifunctional anti-icing Hydrogel[J]. Matter 2:3

    Google Scholar 

  23. Qiu Z, Wang X, Wang T, Zhao X, Zhang J, Xu C, Xu J, Yin H (2022) Stretchable and self-healable double-network ionogel with strong adhesion and temperature tolerance for information encryption[J]. J Mol Liq 351:118626

    CAS  Google Scholar 

  24. Baumgartner M, Hartmann F, Drack M, Preninger D, Wirthl D, Gerstmayr R, Lehner L, Mao G, Pruckner R, Demchyshyn S, Reiter L, Strobel M, Stockinger T, Schiller D, Kimeswenger S, Greibich F, Buchberger G, Bradt E, Hild S, Bauer S, Kaltenbrunner M (2020) Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics[J]. Nat Mater 19:1102

    CAS  Google Scholar 

  25. Liu C, Zhang HJ, You X, Cui K, Wang X (2020) Electrically conductive tough gelatin Hydrogel[J]. Adv Electron Mater 6:4

    Google Scholar 

  26. Zhang C, Wang M, Jiang C, Zhu P, Sun B, Gao Q, Gao C, Liu R (2022) Highly adhesive and self-healing γ-PGA/PEDOT:PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics[J]. Nano Energy 95:106991

    CAS  Google Scholar 

  27. Shuai L, Guo ZH, Zhang P, Wan J, Pu X, Wang ZL (2020) Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles[J]. Nano Energy 78:105389

    CAS  Google Scholar 

  28. Komatsu S, Tago M, Ando Y, Asoh T-A, Kikuchi A (2021) Facile preparation of multi-stimuli-responsive degradable hydrogels for protein loading and release[J]. J Control Release 331:1–6

    CAS  Google Scholar 

  29. Kim Y, Parada GA, Liu S, Zhao X (2019) Ferromagnetic soft continuum robots[J] Sci Robot 4:33, 7329

    Google Scholar 

  30. Shit A, Gi S, Kim I, In SY, Park (2021) Self-repairable and recyclable self-powered human motion sensor with NIR/pH-responsive amplified stretchable, conductive, and Self-Healable hydrogel[J]. Chem Eng J 426:15

    Google Scholar 

  31. Qin Y, Mo J, Liu Y, Zhang S, Wang J, Fu Q, Wang S, Nie S (2022) Stretchable triboelectric self-powered sweat Sensor fabricated from Self-Healing nanocellulose Hydrogels[J]. Adv Funct Mater 32:27

    Google Scholar 

  32. Huang J, Peng S, Gu J, Chen G, Gao J, Zhang J, Hou L, Yang X, Jiang X, Guan L (2020) Self-powered integrated system of a strain sensor and flexible all-solid-state supercapacitor by using a high performance ionic organohydrogel[J]. Mater Horiz 7:2085–2096

    CAS  Google Scholar 

  33. Zhao Y, Hu M, Li H, Chu B, Huang Y, Jia C, Zhuo Z, Luo Y, Jiang J (2022) The role of adsorbed hydroxide reduction in hydrogen evolution and nitrogen reduction reactions in aqueous solution[J]. J Mater Chem A. https://doi.org/10.1039/D2TA04867A

    Article  Google Scholar 

  34. Sheng F, Yi J, Shen S, Cheng R, Ning C, Ma L, Peng X, Deng W, Dong K, Wang ZL (2021) Self-Powered Smart Arm Training Band Sensor based on extremely stretchable hydrogel Conductors[J]. ACS Appl Mater Inter 13:44868–44877

    CAS  Google Scholar 

  35. Liu H (2021) Highly tough, freezing-tolerant, healable and thermoplastic starch/poly(vinyl alcohol) organohydrogels for flexible electronic devices[J]. J Mater Chem A 9:18406X. Jiang

    Google Scholar 

  36. A. Z. Andreas, Properties of Water Solutions of Electrolytes and Nonelectrolytes[J]. J. Phys. Chem. B, 105, 32

  37. Handschuh-Wang S (2018) Rational fabrication of Anti-Freezing, non-drying tough organohydrogels by One-Pot Solvent Displacement[J]. Angew Chem Int Edit 130:22X. Zhou

    Google Scholar 

  38. Cao L, Zhao Z, Wang X, Huang X, Li J, Wei Y (2022) Tough, Antifreezing, and Conductive Hydrogel based on gelatin and oxidized Dextran[J]. Adv. Mater, Technol, 2101382

  39. Yin C, Liu X, Wei J, Tan R, Zhou J, Ouyang M, Wang H, Cooper SJ, Wu B, George C, Wang Q (2019) All-in-Gel” design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance[J]. J Mater Chem A 7:8826

    CAS  Google Scholar 

  40. Cao Z, Liu H, Jiang L (2020) Transparent, mechanically robust, and ultrastable ionogels enabled by hydrogen bonding between elastomers and ionic liquids[J]. Mater Horiz 7:912

    CAS  Google Scholar 

  41. Wei J, Wei G, Shang Y, Zhou J, Wu C, Wang Q (2019) Dissolution-crystallization transition within a Polymer Hydrogel for a Processable Ultratough Electrolyte[J]. Adv Mater 26:1900248

    Google Scholar 

  42. Yu C, Guo H, Cui K, Li X, Ye YN, Kurokawa T, Gong JP (2020) Hydrogels as dynamic memory with forgetting ability[J]. PNAS 117:32, 18962–18968

    Google Scholar 

  43. Haraguchi K (2002) Nanocomposite hydrogels: a Unique Organic–Inorganic Network structure with extraordinary mechanical, optical, and Swelling/De-swelling Properties[J]. Adv Mater 14:1120–1124T. Takehisa

    CAS  Google Scholar 

  44. Sun J-Y, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels[J]. Nature 489:133

    CAS  Google Scholar 

  45. Luo F, Sun TL, Nakajima T, King DR, Kurokawa T, Zhao Y, Ihsan AB, Li X, Guo H, Gong JP (2016) Strong and tough polyion-complex hydrogels from oppositely charged polyelectrolytes: a comparative study with polyampholyte Hydrogels[J]. Macromol 49:2750

    CAS  Google Scholar 

  46. Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung U (2008) Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like Macromonomers[J]. Macromol 41:5379

    CAS  Google Scholar 

  47. Dai X, Zhang Y, Gao L, Bai T, Wang W, Cui Y, Liu W (2015) A mechanically strong, highly stable, thermoplastic, and Self-Healable Supramolecular Polymer Hydrogel[J]. Adv Mater 27:3566

    CAS  Google Scholar 

  48. Luo F, Sun TL, Nakajima T, Kurokawa T, Zhao Y, Sato K, Ihsan AB, Li X, Guo H, Gong JP (2015) Free reprocessability of tough and Self-Healing Hydrogels based on Polyion Complex[J]. ACS Macro Lett 4:961–964

    CAS  Google Scholar 

  49. Dai X, Zhang Y, Gao L, Bai T, Wang W, Cui Y, Liu W (2015) Oppositely charged Polyelectrolytes form tough, Self-Healing, and Rebuildable Hydrogels[J]. Adv Mater 27:3566

    CAS  Google Scholar 

  50. Gong JP (2010) Why are double network hydrogels so tough?[J]. Soft Matter 6:2583

    CAS  Google Scholar 

  51. Zhang L, Zhao J, Zhu J, He C, Wang H (2012) Anisotropic tough poly(vinyl alcohol) hydrogels[J]. Soft Matter 8:10439

    CAS  Google Scholar 

  52. Wu M, Wang X, Xia Y, Zhu Y, Zhu S, Jia C, Guo W, Li Q, Yan Z (2022) Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel[J]. Nano Energy 95:106967

    CAS  Google Scholar 

  53. He Q, Huang Y, Wang S (2018) Hofmeister Effect-Assisted one step fabrication of Ductile and strong gelatin Hydrogels[J]. Adv Funct Mater 28:1705069

    Google Scholar 

  54. Shi X, Cui S, Song X, Rickel AP, Sanyour HJ, Zheng J, Hu J, Hong Z, Zhou Y, Liu Y (2020) Gelatin-crosslinked pectin nanofiber mats allowing cell infiltration[J]. Mater Sci Eng C 112:110941

    CAS  Google Scholar 

  55. Hivechi A, Hajir Bahrami S, Siegel RA (2019) Investigation of morphological, mechanical and biological properties of cellulose nanocrystal reinforced electrospun gelatin nanofibers[J]. Int J Biol Macromol 124:411

    CAS  Google Scholar 

  56. Wu X, Liao H, Ma D, Chao M, Wang Y, Jia X, Wan PL, Zhang A, Wearable (2020) Self-Adhesive, long-lastingly moist and healable epidermal sensor assembled from Conductive Mxene Nanocomposites[J]. J Mater Chem C 8:1788–1795

    CAS  Google Scholar 

  57. Yang N, Qi P, Ren J, Yu H, Liu SX, Li J, Chen W, Kaplan D, Ling S (2019) Polyvinyl Alcohol/Silk Fibroin/Borax Hydrogel Ionotronics: a highly stretchable, Self-Healable, and Biocompatible sensing Platform[J]. ACS Appl Mater Inter 11:23632

    CAS  Google Scholar 

  58. Su X, Wang H, Tian Z, Duan X, Chai Z, Feng Y, Wang Y, Fan Y, Huang J (2020) A solvent co-crosslinked organogel with fast selfhealing capability and reversible adhesiveness at extreme temperatures[J]. ACS Appl Mater Inter 12:26

    Google Scholar 

  59. Wang X, Yangchengyi LiuHuanyu, Cheng X, Ouyang (2022) Surface wettability for Skin-Interfaced Sensors and Devices[J]. Adv Funct Mater 32:27, 2200260

    CAS  Google Scholar 

  60. Coelho CC, Araújo R, Quadros PA, Sousa SR (2019) Antibacterial bone substitute of hydroxyapatite and magnesium oxide to prevent dental and orthopaedic infections[J]. J Mater Sci Eng: C 97:529

    CAS  Google Scholar 

  61. Kim J, Zhang G, Shi M, Suo Z (2021) Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links[J]. Science 374:6564

    Google Scholar 

  62. Norioka C, Inamoto Y, Hajime C, Kawamura A, Miyata T (2021) A universal method to easily design tough and stretchable hydrogels[J]. NPG Asia Mater 13:34

    CAS  Google Scholar 

  63. Lu H, Liu K, Wang M, Wang K, Fang L, Chen H, Jie Z, Xiong L (2018) Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and Extreme temperature Tolerance[J]. Adv Funct Mater 28:3

    Google Scholar 

  64. Li B, Whalen JJ, Humayun MS, Thompson ME (2020) Reversible bioadhesives using tannic acid primed thermally-responsive Polymers[J]. Adv Funct Mater 30:5

    Google Scholar 

  65. Kord Forooshani P, Lee BP (2017) Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein[J]. J Polym Sci Part A: Polym Chem 55:9

    CAS  Google Scholar 

  66. Liao M, Wan P, Wen J, Gong M, Wu X, Wang Y, Shi R, Zhang L (2017) Wearable, Healable, and adhesive epidermal sensors assembled from mussel-inspired Conductive Hybrid Hydrogel Framework[J]. Adv Funct Mater 27:48

    Google Scholar 

  67. Nele V, Wojciechowski JP, Armstrong JPK, Stevens MM (2020) Tailoring gelation mechanisms for Advanced Hydrogel Applications[J]. Adv Funct Mater 30:2002759

    CAS  Google Scholar 

  68. Jiang Y, Zhang X, Zhang W, Wang M, Yan L, Wang K, Han L, Lu X (2022) Infant skin friendly adhesive hydrogel patch activated at body temperature for bioelectronics securing and diabetic wound healing[J]. ACS Nano 16(6):8662–8676

    CAS  Google Scholar 

  69. Yang K, He J, Zhou Q, Hao X, Yang H, You Y (2020) An anti-freezing/drying, adhesive and self-healing motion sensor with humidity-enhanced conductivity[J]. Polymer 214:7460

    Google Scholar 

  70. Zheng X, Gao Y, Ren X, Gao G (2021) Polysaccharide-tackified composite hydrogel for skin-attached sensors[J]. J Mater Chem C 9:9

    Google Scholar 

  71. Feng Y, Yu J, Sun D, Dang C, Ren W, Shao C, Sun R (2022) Extreme environment-adaptable and fast self-healable eutectogel triboelectric nanogenerator for energy harvesting and self-powered sensing[J]. Nano Energy 98:107284

    CAS  Google Scholar 

  72. Chen S, Huang T, Zuo H, Qian S, Guo Y, Sun L, Lei D, Wu Q, Zhu B, He C, Mo X, Jeffries E, Yu H (2018) You. A single integrated 3D-printing process customizes elastic and sustainable triboelectric nanogenerators for wearable electronics[J]. Adv Funct Mater 28:1805108

    Google Scholar 

  73. Wang S, Lin L, Wang ZL (2012) Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics[J]. Nano Lett 12:6339–6346

    CAS  Google Scholar 

  74. Yang Y, Zhang H, Chen J, Jing Q, Zhou YS, Wen X, Wang ZL (2013) Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system[J]. ACS Nano 7:7342–7351

    CAS  Google Scholar 

  75. Wang SH, Xie YN, Niu SM, Lin L, Wang ZL (2014) Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes[J]. Adv Mater 26:2818–2824

    CAS  Google Scholar 

  76. Wang S, Lin L, Xie Y, Jing Q, Niu S, Wang ZL (2013) Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism[J]. Nano Lett 13:2226–2233

    CAS  Google Scholar 

  77. Chen S, Huang T, Zuo H, Qian S, Guo Y, Sun L, Lei D, Wu Q, Zhu B, He C, Mo X, Jeffries E, Yu H (2018) You. A single integrated 3D-printing process customizes elastic and sustainable triboelectric nanogenerators for wearable electronics[J]. Adv Funct Mater 28:46

    Google Scholar 

  78. Mallineni SSK, Behlow H, Dong Y, Bhattacharya S, Rao AM (2017) Podila. Facile and robust triboelectric nanogenerators assembled using off-the-shelf materials[J]. Nano Energy 35:263–227

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (Grant Number 52072210, 52111530230); Key R&D projects of social development of Hainan Provincial Department of science and technology (Grant Number ZDYF2020137); Tsinghua University Beijing Union Medical College Hospital cooperation project (Grant Number 20191080871).

Author information

Authors and Affiliations

Authors

Contributions

Chunlin Liu, Le Jiang and Ouyang Yue contributed equally to this work. Xiaodan Sun supervised the project. Chunlin Liu, Le Jiang and Ouyang Yue designed the experiments. Yufan Feng and Boxiang Zeng: material preparation and characterization analysis; Yixian Wu: data plotting and scientific drawing; Yifan Wang and Jingyun Wang: SEM and scientific drawing; Lingyun Zhao and Xiumei Wang: review and editing and supervision; Changyou Shao and Qiong Wu: resources, writing—review and editing, and data curation. All authors discussed experiments and results. All authors have given approval for the final version of the manuscript.

Corresponding authors

Correspondence to Changyou Shao, Qiong Wu or Xiaodan Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Jiang, L., Yue, O. et al. Thermal enhancement of gelatin hydrogels for a multimodal sensor and self-powered triboelectric nanogenerator at low temperatures. Adv Compos Hybrid Mater 6, 112 (2023). https://doi.org/10.1007/s42114-023-00693-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00693-6

Keywords

Navigation