Skip to main content
Log in

Recent progress in advanced covalent organic framework composites for environmental remediation

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

With the rapid development of industry, this leads to sewage discharge and air pollution that seriously affect human health and ecosystem. Therefore, environmental remediation has attracted wide attention in academia in recent years. Covalent organic frameworks, a new type of porous materials, have been widely developed in this field due to their advantages of easy modification and high specific surface area. Here, we summarize the research progress of covalent organic framework materials in the field of environmental remediation in recent years, including sewage treatment, antibacterial application, atmospheric water extraction, iodine vapor adsorption, and flue gas separation. The synthesis strategies, structures, morphologies, and modification methods of covalent organic frameworks were discussed as a whole to show how their properties and long-term use were affected, and the structure–activity relationship between molecular structures and application properties of covalent organic frameworks was summarized. This review is of great significance for researchers to fully understand the development status and future trends of covalent organic frameworks in the field of environmental remediation.

Graphical abstract

Covalent organic frameworks with structured channels for easy molecular design have great potential applications in the field of environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. Zhang D, He W, Ye J, Gao X, Wang D, Song J (2021) Polymeric carbon nitride-derived photocatalysts for water splitting and nitrogen fixation. Small 17(13):2005149. https://doi.org/10.1002/smll.202005149

    Article  Google Scholar 

  2. Wu C, Shen C, Gong Y, Wang J (2019) Domino reactions for biofuel production from zymotic biomass wastes over bifunctional mg-containing catalysts. ACS Sustain Chem Eng 7(23):18943–18954. https://doi.org/10.1021/acssuschemeng.9b04311

    Article  Google Scholar 

  3. Lai C, An N, Li B, Zhang M, Yi H, Liu S, Qin L, Liu X, Li L, Fu Y, Xu F, Wang Z, Shi X, An Z, Zhou X (2021) Future roadmap on nonmetal-based 2D ultrathin nanomaterials for photocatalysis. Chem Eng J 406:126780. https://doi.org/10.1016/j.cej.2020.126780

    Article  Google Scholar 

  4. Zhou L, Li X, Cao K, Jia Z, Long H, Li Y, Tao G, Liu N, Zhang J, Ma L (2022) Covalent organic framework membrane with turing structures for deacidification of highly acidic solutions. Adv Funct Mater 32(9):2108178. https://doi.org/10.1002/adfm.202108178

    Article  Google Scholar 

  5. Xu M, He Q, Chen F, Zhao Z, Wang Z, Hua D (2023) Thermal-responsive conjugated micropore polymers for smart capture of volatile iodine. ACS Appl Mater Interfaces 15(26):31421–31429. https://doi.org/10.1021/acsami.3c03922

    Article  Google Scholar 

  6. Lv D, Chen J, Yang K, Wu H, Chen Y, Duan C, Wu Y, Xiao J, Xi H, Li Z, Xia Q (2019) Ultrahigh CO2/CH4 and CO2/N-2 adsorption selectivities on a cost-effectively L-aspartic acid based metal-organic framework. Chem Eng J 375:122074. https://doi.org/10.1016/j.cej.2019.122074

    Article  Google Scholar 

  7. Dura G, Budarin VL, Castro-Osma JA, Shuttleworth PS, Quek SCZ, Clark JH, North M (2016) Importance of micropore-mesopore interfaces in carbon dioxide capture by carbon-based materials. Angew Chem-Int Edit 55(32):9173–9177. https://doi.org/10.1002/anie.201602226

    Article  Google Scholar 

  8. Wang P, Peng Y, Zhu C, Yao R, Song H, Kun L, Yang W (2021) Single-phase covalent organic framework staggered stacking nanosheet membrane for CO2-selective separation. Angew Chem-Int Edit 60(35):19047–19052. https://doi.org/10.1002/anie.202106346

    Article  Google Scholar 

  9. Song H, Peng Y, Wang C, Shu L, Zhu C, Wang Y, He H, Yang W (2023) Structure regulation of MOF nanosheet membrane for accurate H-2/CO2 separation. Angew Chem-Int Edit. https://doi.org/10.1002/anie.202218472

  10. Gao H, Bai L, Han J, Yang B, Zhang S, Zhang X (2018) Functionalized ionic liquid membranes for CO2 separation. Chem Commun 54(90):12671–12685. https://doi.org/10.1039/c8cc07348a

    Article  Google Scholar 

  11. Xue R, Guo H, Yang W, Huang S-L, Yang G-Y (2022) Cooperation between covalent organic frameworks (COFs) and metal organic frameworks (MOFs): application of COFs-MOFs hybrids. Adv Compos Hybrid Mater 5(3):1595–1611. https://doi.org/10.1007/s42114-022-00432-3

    Article  Google Scholar 

  12. Qiao X, Chung T-S, Rajagopalan R (2006) Zeolite filled P84 co-polyimide membranes for dehydration of isopropanol through pervaporation process. Chem Eng Sci 61(20):6816–6825. https://doi.org/10.1016/j.ces.2006.07.024

    Article  Google Scholar 

  13. Liu X, Yang C, Wang Y, Guo Y, Guo Y, Lu G (2014) Effect of the diatomite pretreatment on the catalytic performance of TS-1/diatomite for toluene hydroxylation by H2O2 in fixed-bed reactor. Chem Eng J 243:192–196. https://doi.org/10.1016/j.cej.2013.12.055

    Article  Google Scholar 

  14. You YY, Liu XJ (2019) Modeling of CO2 adsorption and recovery from wet flue gas by using activated carbon. Chem Eng J 369:672–685. https://doi.org/10.1016/j.cej.2019.03.118

    Article  Google Scholar 

  15. He Y, Sun M, Zhao Q, Shang J, Tian Y, Xiao P, Gu Q, Li L, Webley PA (2019) Effective gas separation performance enhancement obtained by constructing polymorphous core-shell metal-organic frameworks. ACS Appl Mater Interfaces 11(33):30234–30239. https://doi.org/10.1021/acsami.9b08592

    Article  Google Scholar 

  16. Lourenco MAO, Nunes C, Gomes JRB, Pires J, Pinto ML, Ferreira P (2019) Pyrolyzed chitosan-based materials for CO2/CH4 separation. Chem Eng J 362:364–374. https://doi.org/10.1016/j.cej.2018.12.180

    Article  Google Scholar 

  17. Chang H, Qin J, Xiao P, Yang Y, Zhang T, Ma Y, Huang Y, Chen Y (2016) Highly reversible and recyclable absorption under both hydrophobic and hydrophilic conditions using a reduced bulk graphene oxide material. Adv Mater 28(18):3504-+. https://doi.org/10.1002/adma.201505420

  18. Guo Z, Wu H, Chen Y, Zhu S, Jiang H, Song S, Ren Y, Wang Y, Liang X, He G, Li Y, Jiang Z (2022) Missing-linker defects in covalent organic framework membranes for efficient CO2 separation. Angew Chem-Int Edit 61(41):e202210466. https://doi.org/10.1002/anie.202210466

    Article  Google Scholar 

  19. Bi X, Di H, Liu J, Meng Y, Song Y, Meng W, Qu H, Fang L, Song P, Xu J (2022) A core-shell-structured APP@COFs hybrid for enhanced flame retardancy and mechanical property of epoxy resin (EP). Adv Compos Hybrid Mater 5(3):1743–1755. https://doi.org/10.1007/s42114-021-00411-0

    Article  Google Scholar 

  20. Yuan S, Li X, Zhu J, Zhang G, Van Puyvelde P, Van der Bruggen B (2019) Covalent organic frameworks for membrane separation. Chem Soc Rev 48(10):2665–2681. https://doi.org/10.1039/c8cs00919h

    Article  Google Scholar 

  21. Zhang C, Wu B-H, Ma M-Q, Wang Z, Xu Z-K (2019) Ultrathin metal/covalent-organic framework membranes towards ultimate separation. Chem Soc Rev 48(14):3811–3841. https://doi.org/10.1039/c9cs00322c

    Article  Google Scholar 

  22. Chen B, Xie H, Shen L, Xu Y, Zhang M, Zhou M, Li B, Li R, Lin H (2023) Covalent organic frameworks: the rising-star platforms for the design of CO2 separation membranes. Small 19(17). https://doi.org/10.1002/smll.202207313

  23. Jin Y, Hu Y, Zhang W (2017) Tessellated multiporous two-dimensional covalent organic frameworks. Nat Rev Chem 1(7):0056. https://doi.org/10.1038/s41570-017-0056

    Article  Google Scholar 

  24. Cote AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310(5751):1166–1170. https://doi.org/10.1126/science.1120411

    Article  Google Scholar 

  25. Zhang Z, Liu M, Ibrahim MM, Wu H, Wu Y, Li Y, Mersal GAM, El Azab IH, El-Bahy SM, Huang M, Jiang Y, Liang G, Xie P, Liu C (2022) Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv Compos Hybrid Mater 5(2):1054–1066. https://doi.org/10.1007/s42114-022-00486-3

    Article  Google Scholar 

  26. Wu H, Zhong Y, Tang Y, Huang Y, Liu G, Sun W, Xie P, Pan D, Liu C, Guo Z (2022) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Compos Hybrid Mater 5(1):419–430. https://doi.org/10.1007/s42114-021-00378-y

    Article  Google Scholar 

  27. Xie P, Shi Z, Feng M, Sun K, Liu Y, Yan K, Liu C, Moussa TAA, Huang M, Meng S, Liang G, Hou H, Fan R, Guo Z (2022) Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Hybrid Mater 5(2):679–695. https://doi.org/10.1007/s42114-022-00479-2

    Article  Google Scholar 

  28. Liu M, Wu H, Wu Y, Xie P, Pashameah RA, Abo-Dief HM, El-Bahy SM, Wei Y, Li G, Li W, Liang G, Liu C, Sun K, Fan R (2022) The weakly negative permittivity with low-frequency-dispersion behavior in percolative carbon nanotubes/epoxy nanocomposites at radio-frequency range. Adv Compos Hybrid Mater 5(3):2021–2030. https://doi.org/10.1007/s42114-022-00541-z

    Article  Google Scholar 

  29. Zhang GM, Chen GK, Dong M, Nie J, Ma GP (2023) Multifunctional bacterial cellulose/covalent organic framework composite membranes with antifouling and antibacterial properties for dye separation. ACS Appl Mater Interfaces 15(27):32903–32915. https://doi.org/10.1021/acsami.3c05074

    Article  Google Scholar 

  30. Ma TT, Yang C, Qian HL, Ma PM, Liu TX, Yan XP (2023) Trifluoromethyl-functionalized 2D covalent organic framework for high-resolution separation of isomers. ACS Appl Mater Interfaces 15(27):32926–32934. https://doi.org/10.1021/acsami.3c05369

    Article  Google Scholar 

  31. Wang J, Xu XQ, Zhou YJ, Ma W, Wang FS, Zhou YJ, Men X (2023) A robust COF@MXene membrane for ultra-high flux of water-in-oil emulsion separation. Chem Commun 59(57):8858–8861. https://doi.org/10.1039/d3cc01951a

    Article  Google Scholar 

  32. Bala S, Abdullah CAC, Tahir MIM, Rahman MBA (2022) Adsorptive removal of naproxen from water using polyhedral oligomeric silesquioxane (POSS) covalent organic frameworks (COFs). Nanomaterials 12(14):2491. https://doi.org/10.3390/nano12142491

    Article  Google Scholar 

  33. Yang CQ, Jiang KY, Zheng Q, Li XL, Mao HY, Zhong WK, Chen C, Sun B, Zheng HM, Zhuang XD, Reimer JA, Liu Y, Zhang J (2021) Chemically stable polyarylether-based metallophthalocyanine frameworks with high carrier mobilities for capacitive energy storage. J Am Chem Soc 143(42):17701–17707. https://doi.org/10.1021/jacs.1c08265

    Article  Google Scholar 

  34. Yue QH, Li GQ, Fu P, Meng B, Ma FP, Zhou Y, Wang J (2023) In-situ polarization of covalent organic frameworks in seawater enables enhanced photocatalytic hydrogen evolution under visible- light irradiation. Nano Res. https://doi.org/10.1007/s12274-022-5332-0

    Article  Google Scholar 

  35. Li WT, Wu CX, Zhang YJ, Guo HH, Zhao ZJ, Li Chen M (2023) Microwave-assisted solvothermal synthesis of cube-shaped MOF-COF composites for copper detection and capture. Microchem J 191:108925. https://doi.org/10.1016/j.microc.2023.108925

    Article  Google Scholar 

  36. Kim J, Moisanu CM, Gannett CN, Halder A, Fuentes-Rivera JJ, Majer SH, Lancaster KM, Forse AC, Abruna HD, Milner PJ (2021) Conjugated microporous polymers via solvent-free ionothermal cyclotrimerization of methyl ketones. Chem Mater 33(21):8334–8342. https://doi.org/10.1021/acs.chemmater.1c02622

    Article  Google Scholar 

  37. Zhao ZF, Chen XP, Li BY, Zhao S, Niu LW, Zhang ZJ, Chen Y (2022) Spatial regulation of acceptor units in olefin-linked COFs toward highly efficient photocatalytic H-2 evolution. Adv Sci 9(29):2203832. https://doi.org/10.1002/advs.202203832

    Article  Google Scholar 

  38. Zhang PH, Wang ZF, Yang Y, Wang S, Wang T, Liu JJ, Cheng P, Chen Y, Zhang ZJ (2022) Melt polymerization synthesis of a class of robust self-shaped olefin-linked COF foams as high-efficiency separators. Sci China Chem 65(6):1173–1184. https://doi.org/10.1007/s11426-022-1224-3

    Article  Google Scholar 

  39. Wang ZF, Yang Y, Zhao ZF, Zhang PH, Zhang YS, Liu JJ, Ma SQ, Cheng P, Chen Y, Zhang ZJ (2021) Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications. Nat Commun 12(1):1982. https://doi.org/10.1038/s41467-021-22288-9

    Article  Google Scholar 

  40. Guan XY, Ma YC, Li H, Yusran Y, Xue M, Fang QR, Yan YS, Valtchev V, Qiu SL (2018) Fast, ambient temperature and pressure lonothermal synthesis of three-dimensional covalent organic frameworks. J Am Chem Soc 140(13):4494–4498. https://doi.org/10.1021/jacs.8b01320

    Article  Google Scholar 

  41. Zhao W, Yan P, Yang H, Bahri M, James AM, Chen H, Liu L, Li B, Pang Z, Clowes R, Browning ND, Ward JW, Wu Y, Cooper AI (2022) Using sound to synthesize covalent organic frameworks in water. Nature Synthesis 1(1):87–95. https://doi.org/10.1038/s44160-021-00005-0

    Article  Google Scholar 

  42. Durka K, Kazimierczuk K, Lulinski S (2022) Dipole-dipole interactions of sulfone groups as a tool for self-assembly of a 2D Covalent Organic Framework derived from a non-linear diboronic acid. Microporous Mesoporous Mater 337:111914. https://doi.org/10.1016/j.micromeso.2022.111914

    Article  Google Scholar 

  43. Liu SF, Su Q, Qi W, Luo KX, Sun XM, Ren H, Wu QL (2022) Highly hydrophilic covalent organic frameworks as efficient and reusable photocatalysts for oxidative coupling of amines in aqueous solution. Catal Sci Technol 12(9):2837–2845. https://doi.org/10.1039/d2cy00167e

    Article  Google Scholar 

  44. Zhuang XQ, Hao J, Zheng XS, Fu DJ, Mo PY, Jin YH, Chen P, Liu HJ, Liu GG, Lv WY (2021) High-performance adsorption of chromate by hydrazone-linked guanidinium-based ionic covalent organic frameworks: Selective ion exchange. Sep Purif Technol 274:118993. https://doi.org/10.1016/j.seppur.2021.118993

    Article  Google Scholar 

  45. Wang Z, Si ZH, Cai D, Li GZ, Li SF, Qin PY (2020) Synthesis of stable COF-300 nanofiltration membrane via in-situ growth with ultrahigh flux for selective dye separation. J Membr Sci 615:118466. https://doi.org/10.1016/j.memsci.2020.118466

    Article  Google Scholar 

  46. Zheng Q, Li XL, Zhang QB, Lee D, Mao HY, Yang CQ, Bustillo KC, Reimer JA, Liu Y, Jiang JY, Zheng HM (2022) A covalent organic framework onion structure. Mater Today 60:98–105. https://doi.org/10.1016/j.mattod.2022.09.002

    Article  Google Scholar 

  47. Khalil S, Meyer MD, Alazmi A, Samani MHK, Huang PC, Barnes M, Marciel AB, Verduzco R (2022) Enabling solution processable COFs through suppression of precipitation during solvothermal synthesis. ACS Nano 16(12):20964–20974. https://doi.org/10.1021/acsnano.2c08580

    Article  Google Scholar 

  48. Fan HW, Gu JH, Meng H, Knebel A, Caro J (2018) High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration. Angew Chem-Int Edit 57(15):4083–4087. https://doi.org/10.1002/anie.201712816

    Article  Google Scholar 

  49. Han XH, Chu JQ, Wang WZ, Qi QY, Zhao X (2022) A two-step solvothermal procedure to improve crystallinity of covalent organic frameworks and achieve scale-up preparation. Chin Chem Lett 33(5):2464–2468. https://doi.org/10.1016/j.cclet.2021.11.066

    Article  Google Scholar 

  50. Verma R, Khan AB, Amar AK, Khan MIK, Sah S (2022) Opto-structural characteristics and biomedical applications of microwave irradiated green synthesised AM-AgNP from Atalantia monophylla (L.) leaf extract. ES Energy Environ 17:44–55. https://doi.org/10.30919/esee8c745

  51. Wang R, Li S, Hu P, Chen S, Wang J (2021) Densification behavior and microstructure evolution of Mo manocrystals by microwave sintering. ES Mater Manuf 13:97–105. https://doi.org/10.30919/esmm5f433

  52. Cheng W, Wang YM, Ge SS, Ding XQ, Cui ZW, Shao Q (2021) One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal-organic frameworks for enhanced photochemical properties. Adv Compos Hybrid Mater 4(1):150–161. https://doi.org/10.1007/s42114-020-00199-5

    Article  Google Scholar 

  53. Sarwar S, Lin MC, Ahasan MR, Wang YF, Wang RG, Zhang XY (2022) Direct growth of cobalt-doped molybdenum disulfide on graphene nanohybrids through microwave irradiation with enhanced electrocatalytic properties for hydrogen evolution reaction. Adv Compos Hybrid Mater 5(3):2339–2352. https://doi.org/10.1007/s42114-022-00424-3

    Article  Google Scholar 

  54. Zhang FH, Cheng W, Yu ZH, Ge SS, Shao Q, Pan D, Liu B, Wang XJ, Guo ZH (2021) Microwave hydrothermally synthesized WO<sub>3</sub>/UiO-66 nanocomposites toward enhanced photocatalytic degradation of rhodamine B. Adv Compos Hybrid Mater 4(4):1330–1342. https://doi.org/10.1007/s42114-021-00346-6

    Article  Google Scholar 

  55. Liu XW, Zhang AR, Ma R, Wu B, Wen T, Ai YJ, Sun MT, Jin J, Wang SH, Wang XK (2022) Experimental and theoretical insights into copper phthalocyanine-based covalent organic frameworks for highly efficient radioactive iodine capture. Chin Chem Lett 33(7):3549–3555. https://doi.org/10.1016/j.cclet.2022.03.001

    Article  Google Scholar 

  56. Ji WH, Guo YS, Xie HM, Wang X, Jiang X, Guo DS (2020) Rapid microwave synthesis of dioxin-linked covalent organic framework for efficient micro-extraction of perfluorinated alkyl substances from water. J Hazard Mater 397:122793. https://doi.org/10.1016/j.jhazmat.2020.122793

    Article  Google Scholar 

  57. Martin-Illan JA, Rodriguez-San-Miguel D, Franco C, Imaz I, Maspoch D, Puigmarti-Luis J, Zamora F (2020) Green synthesis of imine-based covalent organic frameworks in water. Chem Commun 56(49):6704–6707. https://doi.org/10.1039/d0cc02033h

    Article  Google Scholar 

  58. Skorjanc T, Shetty D, Gandara F, Pascal S, Naleem N, Abubakar S, Ali L, Mohammed AK, Raya J, Kirmizialtin S, Siri O, Trabolsi A (2022) Covalent organic framework based on azacalix 4 arene for the efficient capture of dialysis waste products. ACS Appl Mater Interfaces 14(34):39293–39298. https://doi.org/10.1021/acsami.2c06841

    Article  Google Scholar 

  59. Zhang YH, Ma L, Lv YQ, Tan TW (2022) Facile manufacture of COF-based mixed matrix membranes for efficient CO2 separation. Chem Eng J 430:133001. https://doi.org/10.1016/j.cej.2021.133001

    Article  Google Scholar 

  60. Maschita J, Banerjee T, Savasci G, Haase F, Ochsenfeld C, Lotsch BV (2020) Ionothermal synthesis of imide-linked covalent organic frameworks. Angew Chem-Int Edit 59(36):15750–15758. https://doi.org/10.1002/anie.202007372

    Article  Google Scholar 

  61. Biswal BP, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjeet R (2013) Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J Am Chem Soc 135(14):5328–5331. https://doi.org/10.1021/ja4017842

    Article  Google Scholar 

  62. Zhu DY, Zhang ZQ, Alemany LB, Li YL, Nnorom N, Barnes M, Khalil S, Rahman MM, Ajayan PM, Verduzco R (2021) Rapid, ambient temperature synthesis of imine covalent organic frameworks catalyzed by transition-metal nitrates. Chem Mater 33(9):3394–3400. https://doi.org/10.1021/acs.chemmater.1c00737

    Article  Google Scholar 

  63. Gan SX, Jia C, Qi QY, Zhao X (2022) A facile and scalable synthetic method for covalent organic nanosheets: ultrasonic polycondensation and photocatalytic degradation of organic pollutants. Chem Sci 13(4):1009–1015. https://doi.org/10.1039/d1sc05504f

    Article  Google Scholar 

  64. Wu CJ, Li XY, Li TR, Shao MZ, Niu LJ, Lu XF, Kan JL, Geng Y, Dong YB (2022) Natural sunlight photocatalytic synthesis of benzoxazole-bridged covalent organic framework for photocatalysis. J Am Chem Soc 144(41):18750–18755. https://doi.org/10.1021/jacs.2c07893

    Article  Google Scholar 

  65. Kuhn P, Antonietti M, Thomas A (2008) Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem-Int Edit 47(18):3450–3453. https://doi.org/10.1002/anie.200705710

    Article  Google Scholar 

  66. Emmerling ST, Germann LS, Julien PA, Moudrakovski I, Etter M, Friscic T, Dinnebier RE, Lotsch BV (2021) In situ monitoring of mechanochemical covalent organic framework formation reveals templating effect of liquid additive. Chem 7(6):1639–1652. https://doi.org/10.1016/j.chempr.2021.04.012

    Article  Google Scholar 

  67. Preet K, Gupta G, Kota M, Kansal SK, Salunke DB, Sharma HK, Sahoo SC, Van der Voort P, Roy S (2019) Mechanochemical synthesis of a new triptycene-based imine-linked covalent organic polymer for degradation of organic dye. Cryst Growth Des 19(5):2525–2530. https://doi.org/10.1021/acs.cgd.9b00166

    Article  Google Scholar 

  68. Liu GC, Chen H, Zhang WM, Ding QQ, Wang J, Zhang L (2021) Facile mechanochemistry synthesis of magnetic covalent organic framework composites for efficient extraction of microcystins in lake water samples. Anal Chim Acta 1166:338539. https://doi.org/10.1016/j.aca.2021.338539

    Article  Google Scholar 

  69. Wang XL, Ma RY, Hao L, Wu QH, Wang C, Wang Z (2018) Mechanochemical synthesis of covalent organic framework for the efficient extraction of benzoylurea insecticides. J Chromatogr A 1551:1–9. https://doi.org/10.1016/j.chroma.2018.03.053

    Article  Google Scholar 

  70. Liu SY, Hao CC, Meng C, Liu S, Zhai WR, Zhu QY, Li WC, Wei SX, Wang ZJ, Lu XQ (2023) Nanoporous fluorinated covalent organic framework for efficient C2H2/CO2 separation with high C2H2 uptake. ACS Appl Nano Mater 6(13):12124–12131. https://doi.org/10.1021/acsanm.3c01863

    Article  Google Scholar 

  71. Lv HZ, Zhao XL, Niu HY, He SJ, Tang Z, Wu FC, Giesy JP (2019) Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants. J Hazard Mater 369:494–502. https://doi.org/10.1016/j.jhazmat.2019.02.046

    Article  Google Scholar 

  72. Bi S, Meng FC, Wu DQ, Zhang F (2022) Synthesis of vinylene-linked covalent organic frameworks by monomer self-catalyzed activation of Knoevenagel condensation. J Am Chem Soc 144(8):3653–3659. https://doi.org/10.1021/jacs.1c12902

    Article  Google Scholar 

  73. Li SX, Ma R, Xu SQ, Zheng TY, Fu GE, Wu YL, Liao ZQ, Kuang YB, Hou Y, Wang DS, Petkov PS, Simeonova K, Feng XL, Wu LZ, Li XB, Zhang T (2022) Direct construction of isomeric benzobisoxazole-vinylene-linked covalent organic frameworks with distinct photocatalytic properties. J Am Chem Soc 144(30):13953–13960. https://doi.org/10.1021/jacs.2c06042

    Article  Google Scholar 

  74. Zhang YS, Mao TH, Hao LQ, Sun TK, Wang TH, Cheng P, Chen Y, Wang ZF, Zhang ZJ (2023) Solvent-free synthesis of C=N linked two-dimensional covalent organic frameworks. Macromol Rapid Commun 44(11). https://doi.org/10.1002/marc.202200722

  75. Qiu JK, Guan PX, Zhao YL, Li ZY, Wang HY, Wang JJ (2020) Syntheses of two- and three-dimensional covalent organic frameworks in deep eutectic solvents. Green Chem 22(21):7537–7542. https://doi.org/10.1039/d0gc02670k

    Article  Google Scholar 

  76. Li BJ, Nan PH, Gao ZZ, Tang B, Qiu SL, Fang QR (2023) Room-temperature preparation of covalent organic framework membrane for nanofiltration. Macromol Rapid Commun 44(11). https://doi.org/10.1002/marc.202200774

  77. Yang ST, Kim J, Cho HY, Kim S, Ahn WS (2012) Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method. RSC Adv 2(27):10179–10181. https://doi.org/10.1039/c2ra21531d

    Article  Google Scholar 

  78. Yoo J, Lee S, Hirata S, Kim C, Lee CK, Shiraki T, Nakashima N, Shim JK (2015) In situ synthesis of covalent organic frameworks (COFs) on carbon nanotubes and graphenes by sonochemical reaction for CO2 adsorbents. Chem Lett 44(4):560–562. https://doi.org/10.1246/cl.141194

    Article  Google Scholar 

  79. Duan K, Wang J, Zhang YT, Liu JD (2019) Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N-2 separation. J Membr Sci 572:588–595. https://doi.org/10.1016/j.memsci.2018.11.054

    Article  Google Scholar 

  80. Liang RY, Hu YL, Li GK (2020) Photochemical synthesis of magnetic covalent organic framework/carbon nanotube composite and its enrichment of heterocyclic aromatic amines in food samples. J Chromatogr A 1618:460867. https://doi.org/10.1016/j.chroma.2020.460867

    Article  Google Scholar 

  81. Kim S, Choi HC (2019) Light-promoted synthesis of highly-conjugated crystalline covalent organic framework. Commun Chem 2:60. https://doi.org/10.1038/s42004-019-0162-z

    Article  Google Scholar 

  82. Kim S, Park C, Lee M, Song I, Kim J, Lee M, Jung J, Kim Y, Lim H, Choi HC (2017) Rapid photochemical synthesis of sea-urchin-shaped hierarchical porous COF-5 and its lithography-free patterned growth. Adv Funct Mater 27(32):1700925. https://doi.org/10.1002/adfm.201700925

    Article  Google Scholar 

  83. Bu F, Huang W, Xian M, Zhang XL, Liang FB, Liu XC, Sun XY, Feng DX (2022) Magnetic carboxyl-functionalized covalent organic frameworks for adsorption of quinolones with high capacities, fast kinetics and easy regeneration. J Clean Prod 336:130485. https://doi.org/10.1016/j.jclepro.2022.130485

    Article  Google Scholar 

  84. He YT, Zhang SS, Zhong C, Yang YX, Li GR, Ji Y, Lin Z (2021) Facile synthesis of Ti4+-immobilized magnetic covalent organic frameworks for enhanced phosphopeptide enrichment. Talanta 235:122789. https://doi.org/10.1016/j.talanta.2021.122789

    Article  Google Scholar 

  85. Ruidas S, Das A, Kumar S, Dalapati S, Manna U, Bhaumik A (2022) Non-fluorinated and robust superhydrophobic modification on covalent organic framework for crude-oil-in-water emulsion separation. Angew Chem-Int Edit 61(41):e202210507. https://doi.org/10.1002/anie.202210507

    Article  Google Scholar 

  86. Jin FZ, Lin E, Wang TH, Geng SB, Wang T, Liu WS, Xiong FH, Wang ZF, Chen Y, Cheng P, Zhang ZJ (2022) Bottom-up synthesis of 8-connected three-dimensional covalent organic frameworks for highly efficient ethylene/ethane separation. J Am Chem Soc 144(12):5643–5652. https://doi.org/10.1021/jacs.2c01058

    Article  Google Scholar 

  87. Das G, Skorjanc T, Prakasam T, Garai B, Abubakar S, Zalch CS, Gandara F, Pasricha R, Sharma SK, Varghese S, Jagannathan R, Olson MA, Trabolsi A (2022) Hydrophobicity tuning in isostructural urchin-shaped covalent organic framework nanoparticles by pore surface engineering for oil-water separation. ACS Appl Nano Mater 5(10):13745–13751. https://doi.org/10.1021/acsanm.2c00746

    Article  Google Scholar 

  88. Zheng Q, Liu J, Wu YJ, Ji Y, Lin Z (2022) Fluoro-functionalized spherical covalent organic frameworks as a liquid chromatographic stationary phase for the high-resolution separation of organic halides. Anal Chem 94(51):18067–18073. https://doi.org/10.1021/acs.analchem.2c04592

    Article  Google Scholar 

  89. Ji Y, Li HM, Dong JH, Lin JS, Lin Z (2023) Super-hydrophilic sulfonate-modified covalent organic framework nanosheets for efficient separation and enrichment of glycopeptides. J Chromatogr A 1699:464020. https://doi.org/10.1016/j.chroma.2023.464020

    Article  Google Scholar 

  90. Hu K, Cheng JM, Zhang WF, Pang TT, Wu XX, Zhang ZQ, Huang YJ, Zhao WJ, Zhang SS (2020) Simultaneous extraction of diverse organic pollutants from environmental water using a magnetic covalent organic framework composite. Anal Chim Acta 1140:132–144. https://doi.org/10.1016/j.aca.2020.10.019

    Article  Google Scholar 

  91. Zhang MX, Yuan MJ, Zhao XF, Chen JC, He LW, Gao QH, Hu JT, Wu GZ, Chai ZF, Wang SA (2023) Radiation-induced one-pot synthesis of grafted covalent organic frameworks. Sci China Chem 66(6):1781–1787. https://doi.org/10.1007/s11426-022-1532-8

    Article  Google Scholar 

  92. Zhang YY, Li H, Chang JH, Guan XY, Tang LX, Fang QR, Valtchev V, Yan YS, Qiu SL (2021) 3D thioether-based covalent organic frameworks for selective and efficient mercury removal. Small 17(22):2006112. https://doi.org/10.1002/smll.202006112

    Article  Google Scholar 

  93. Liu QH, Yang SH, Repich H, Zhai YX, Xu XS, Liang YR, Li HJ, Wang HQ, Xu F (2020) Porous functionalized covalent-triazine frameworks for enhanced adsorption toward polysulfides in Li-S batteries and organic dyes. Front Chem 8:584204. https://doi.org/10.3389/fchem.2020.584204

    Article  Google Scholar 

  94. Manna A, Maharana AK, Rambabu G, Nayak S, Basu S, Das S (2021) Dithia-crown-ether integrated self-exfoliated polymeric covalent organic nanosheets for selective sensing and removal of mercury. ACS Appl Polym Mater 3(11):5527–5535. https://doi.org/10.1021/acsapm.1c00846

    Article  Google Scholar 

  95. Jin FZ, Wang TH, Zheng H, Lin E, Zheng YL, Hao LQ, Wang T, Chen Y, Cheng P, Yu K, Zhang ZJ (2023) Bottom-up synthesis of covalent organic frameworks with quasi-three-dimensional integrated architecture via interlayer cross-linking. J Am Chem Soc 145(11):6507–6515. https://doi.org/10.1021/jacs.3c00550

    Article  Google Scholar 

  96. Wang S, Yuan N, Dai T, Chang Z, Liang Y, Liu X, Chen Q, Hu B, Wang N (2022) Surface post-functionalization of COFs by economical strategy via multiple-component one-pot tandem reactions and their application in adsorption of pesticides. Adv Compos Hybrid Mater 5(2):1439–1449. https://doi.org/10.1007/s42114-021-00241-0

    Article  Google Scholar 

  97. Yang YL, Yu L, Chu TC, Niu HY, Wang J, Cai YQ (2022) Constructing chemical stable 4-carboxyl-quinoline linked covalent organic frameworks via Doebner reaction for nanofiltration. Nat Commun 13(1):2615. https://doi.org/10.1038/s41467-022-30319-2

    Article  Google Scholar 

  98. Kuehl VA, Duong PHH, Sadrieva D, Amin SA, She YQ, Li-Oakey KD, Yarger JL, Parkinson BA, Hoberg JO (2021) Synthesis, postsynthetic modifications, and applications of the first quinoxaline-based covalent organic framework. ACS Appl Mater Interfaces 13(31):37484–37489. https://doi.org/10.1021/acsami.1c08854

    Article  Google Scholar 

  99. Lu QY, Ma YC, Li H, Guan XY, Yusran Y, Xue M, Fang QR, Yan YS, Qiu SL, Valtchev V (2018) Postsynthetic functionalization of three-dimensional covalent organic frameworks for selective extraction of lanthanide ions. Angew Chem-Int Edit 57(21):6042–6048. https://doi.org/10.1002/anie.201712246

    Article  Google Scholar 

  100. Huang N, Chen X, Krishna R, Jiang DL (2015) Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization. Angew Chem-Int Edit 54(10):2986–2990. https://doi.org/10.1002/anie.201411262

    Article  Google Scholar 

  101. Sun Q, Aguila B, Perman J, Earl LD, Abney CW, Cheng YC, Wei H, Nguyen N, Wojtas L, Ma SQ (2017) Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. J Am Chem Soc 139(7):2786–2793. https://doi.org/10.1021/jacs.6b12885

    Article  Google Scholar 

  102. Khojastehnezhad A, Moeinpour F, Jafari M, Shehab MK, ElDouhaibi AS, El-Kaderi HM, Siaj M (2023) Postsynthetic modification of core-shell magnetic covalent organic frameworks for the selective removal of mercury. ACS Appl Mater Interfaces 15(23):28476–28490. https://doi.org/10.1021/acsami.3c02914

    Article  Google Scholar 

  103. Li XL, Zhang CL, Cai SL, Lei XH, Altoe V, Hong F, Urban JJ, Ciston J, Chan EM, Liu Y (2018) Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nat Commun 9:2998. https://doi.org/10.1038/s41467-018-05462-4

    Article  Google Scholar 

  104. Wang YC, Xie JS, Ren ZH, Guan ZH (2022) Postsynthetically modified hydrophobic covalent organic frameworks for enhanced oil/water and CH4/C2H2 separation. Chem Eng J 448:137687. https://doi.org/10.1016/j.cej.2022.137687

    Article  Google Scholar 

  105. Li GL, Ye JR, Fang QL, Liu F (2019) Amide-based covalent organic frameworks materials for efficient and recyclable removal of heavy metal lead (II). Chem Eng J 370:822–830. https://doi.org/10.1016/j.cej.2019.03.260

    Article  Google Scholar 

  106. Babujohn NA, Eluri A, Nabeela VP (2023) One pot synthesis of crystalline covalent organic polymers with tunable pores for the removal of gold and toxic organic pollutants. Chem Eng J 464:142459. https://doi.org/10.1016/j.cej.2023.142459

    Article  Google Scholar 

  107. Wang YY, Pang YH, Yang Y, Shen XF (2022) Facile synthesis of recyclable magnetic covalent organic frameworks for adsorption of bisphenol A from aqueous solution. J Porous Mater 29(5):1411–1421. https://doi.org/10.1007/s10934-022-01266-6

    Article  Google Scholar 

  108. Shinde DB, Cao L, Wonanke ADD, Li X, Kumar S, Liu XW, Hedhili MN, Emwas AH, Addicoat M, Huang KW, Lai ZP (2020) Pore engineering of ultrathin covalent organic framework membranes for organic solvent nanofiltration and molecular sieving. Chem Sci 11(21):5434–5440. https://doi.org/10.1039/d0sc01679a

    Article  Google Scholar 

  109. Wang TA, Azhar IF, Yang YT, Lu Y, Tian YY, Gao N, Cui FC, Yang L, Jing XF, Zhu GS (2022) Fine-tuned mesoporous covalent organic frameworks for highly efficient low molecular-weight proteins separation. Nano Res 15(5):4569–4574. https://doi.org/10.1007/s12274-022-4078-z

    Article  Google Scholar 

  110. Xing XL, Liao QB, Ahmed SA, Wang DN, Ren SB, Qin X, Ding XL, Xi K, Ji LN, Wang K, Xia XH (2022) Single molecule DNA analysis based on atomic-controllable nanopores in covalent organic frameworks. Nano Lett 22(3):1358–1365. https://doi.org/10.1021/acs.nanolett.1c04633

    Article  Google Scholar 

  111. Zhang SY, Zhou J, Li HB (2022) Chiral covalent organic framework packed nanochannel membrane for enantioseparation. Angew Chem-Int Edit 61(27):e202204012. https://doi.org/10.1002/anie.202204012

    Article  Google Scholar 

  112. Cao CL, Wang HJ, Wang MD, Liu Y, Zhang ZM, Liang SW, Wang YH, Pan FS, Jiang ZY (2021) Conferring efficient alcohol dehydration to covalent organic framework membranes via post-synthetic linker exchange. J Membr Sci 630:119319. https://doi.org/10.1016/j.memsci.2021.119319

    Article  Google Scholar 

  113. He J, Luo B, Zhang HN, Li ZY, Zhu NH, Lan F, Wu Y (2022) Surfactant-free synthesis of covalent organic framework nanospheres in water at room temperature. J Colloid Interface Sci 606:1333–1339. https://doi.org/10.1016/j.jcis.2021.07.026

    Article  Google Scholar 

  114. Wang Y, Ren LY, Wang JY, Zhao JL, Chen QB (2022) In-situ growth of anionic covalent organic frameworks efficaciously enhanced the monovalent selectivity of anion exchange membranes. J Membr Sci 659:120818. https://doi.org/10.1016/j.memsci.2022.120818

    Article  Google Scholar 

  115. Zhang WH, Yang XB, Zhai LP, Chen ZF, Sun QK, Luo XL, Wan JQ, Nie RM, Li ZP (2021) Microporous and stable covalent organic framework for effective gas uptake. Mater Lett 304:130657. https://doi.org/10.1016/j.matlet.2021.130657

    Article  Google Scholar 

  116. Wang S, Yang YH, Zhang HR, Zhang ZY, Zhang C, Huang XD, Kozawa DC, Liu PW, Li BG, Wang WJ (2021) Toward covalent organic framework metastructures. J Am Chem Soc 143(13):5003–5010. https://doi.org/10.1021/jacs.0c13090

    Article  Google Scholar 

  117. Li W, Shen M, Yu YJ, Chen YX, Chen L, Ren SB, Han DM (2022) Superhydrophobic covalent organic frameworks prepared via nucleophilic substitution reaction for effective oil/water separation. Colloids Surf A Physicochem Eng 655:130239. https://doi.org/10.1016/j.colsurfa.2022.130239

    Article  Google Scholar 

  118. Wu XW, Hong YL, Xu BQ, Nishiyama Y, Jiang W, Zhu JW, Zhang G, Kitagawa S, Horike S (2020) Perfluoroalkyl-functionalized covalent organic frameworks with superhydrophobicity for anhydrous proton conduction. J Am Chem Soc 142(33):14357–14364. https://doi.org/10.1021/jacs.0c06474

    Article  Google Scholar 

  119. Li YY, Zhou ZP, Hong YX, Dong X, Yang YH, Liang ZH, Sun JL, Chen XD, Liu W, Zheng ZK (2023) Synthesis of a highly crystalline amide-linked covalent organic framework. Chin J Chem 41(4):405–410. https://doi.org/10.1002/cjoc.202200563

    Article  Google Scholar 

  120. Yang YX, Tang XH, Wu JL, Dong ZY, Yan YL, Zheng SR, Fan J, Li XL, Cai SL, Zhang WG (2022) Transformation of a hydrazone-linked covalent organic framework into a highly stable hydrazide-linked one. ACS Appl Polym Mater. https://doi.org/10.1021/acsapm.2c00543

    Article  Google Scholar 

  121. Liu J, Yang T, Wang ZP, Wang PL, Feng J, Ding SY, Wang W (2020) Pyrimidazole-based covalent organic frameworks: integrating functionality and ultrastability via isocyanide chemistry. J Am Chem Soc 142(50):20956–20961. https://doi.org/10.1021/jacs.0c10919

    Article  Google Scholar 

  122. Zhai LP, Han DD, Dong JH, Jiang WQ, Nie RM, Yang XB, Luo XL, Li ZP (2021) Constructing stable and porous covalent organic frameworks for efficient iodine vapor capture. Macromol Rapid Commun 42(13):2100032. https://doi.org/10.1002/marc.202100032

    Article  Google Scholar 

  123. Wang CJ, Liu XL, Yang TH, Sridhar D, Algadi H, Bin XuB, El-Bahy ZM, Li HD, Ma Y, Li TX, Guo ZH (2023) An overview of metal-organic frameworks and their magnetic composites for the removal of pollutants. Sep Purif Technol 320:124144. https://doi.org/10.1016/j.seppur.2023.124144

    Article  Google Scholar 

  124. Zeng J, Xie W, Guo Y, Zhao T, Zhou H, Wang Q, Li H, Guo Z, Xu BB, Gu H (2024) Magnetic field facilitated electrocatalytic degradation of tetracycline in wastewater by magnetic porous carbonized phthalonitrile resin. Appl Catal B 340:123225. https://doi.org/10.1016/j.apcatb.2023.123225

    Article  Google Scholar 

  125. Kang F, Jiang X, Wang Y, Ren J, Xu BB, Gao G, Huang Z, Guo Z (2023) Electron-rich biochar enhanced Z-scheme heterojunctioned bismuth tungstate/bismuth oxyiodide removing tetracycline. Inorg Chem Front. https://doi.org/10.1039/D3QI01283B

    Article  Google Scholar 

  126. Huang N, Zhai L, Xu H, Jiang D (2017) Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions. J Am Chem Soc 139(6):2428–2434. https://doi.org/10.1021/jacs.6b12328

    Article  Google Scholar 

  127. Afshari M, Dinari M, Zargoosh K, Moradi H (2020) Novel triazine-based covalent organic framework as a superadsorbent for the removal of mercury(II) from aqueous solutions. Ind Eng Chem Res 59(19):9116–9126. https://doi.org/10.1021/acs.iecr.0c00953

    Article  Google Scholar 

  128. Zhu D, Zhou S, Zhou Z, Li R, Ye J, Ziyu X, Lan S, Zhang Y, Miao S, Wang W (2020) Highly efficient and selective removal of Cr(VI) by covalent organic frameworks: structure, performance and mechanism. Colloids Surf A 600:124910. https://doi.org/10.1016/j.colsurfa.2020.124910

    Article  Google Scholar 

  129. Wang S, Wang H, Wang S, Fu L, Zhang L (2023) Novel magnetic covalent organic framework for the selective and effective removal of hazardous metal Pb(II) from solution: synthesis and adsorption characteristics. Sep Purif Technol 307:122783. https://doi.org/10.1016/j.seppur.2022.122783

    Article  Google Scholar 

  130. Li Y, Wang C, Ma S, Zhang H, Ou J, Wei Y, Ye M (2019) Fabrication of hydrazone-linked covalent organic frameworks using alkyl amine as building block for high adsorption capacity of metal ions. ACS Appl Mater Interfaces 11(12):11706–11714. https://doi.org/10.1021/acsami.8b18502

    Article  Google Scholar 

  131. Sun Q, Aguila B, Earl LD, Abney CW, Wojtas L, Thallapally PK, Ma S (2018) Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv Mater 30(20):1705479. https://doi.org/10.1002/adma.201705479

    Article  Google Scholar 

  132. He L, Liu S, Chen L, Dai X, Li J, Zhang M, Ma F, Zhang C, Yang Z, Zhou R, Chai Z, Wang S (2019) Mechanism unravelling for ultrafast and selective 99TcO4− uptake by a radiation-resistant cationic covalent organic framework: a combined radiological experiment and molecular dynamics simulation study. Chem Sci 10(15):4293–4305. https://doi.org/10.1039/C9SC00172G

    Article  Google Scholar 

  133. Dey K, Pal M, Rout KC, Kunjattu HS, Das A, Mukherjee R, Kharul UK, Banerjee R (2017) Selective molecular separation by interfacially crystallized covalent organic framework thin films. J Am Chem Soc 139(37):13083–13091. https://doi.org/10.1021/jacs.7b06640

    Article  Google Scholar 

  134. Zhu X, An S, Liu Y, Hu J, Liu H, Tian C, Dai S, Yang X, Wang H, Abney CW, Dai S (2017) Efficient removal of organic dye pollutants using covalent organic frameworks. AlChE J 63(8):3470–3478. https://doi.org/10.1002/aic.15699

    Article  Google Scholar 

  135. Karak S, Dey K, Torris A, Halder A, Bera S, Kanheerampockil F, Banerjee R (2019) Inducing disorder in order: hierarchically porous covalent organic framework nanostructures for rapid removal of persistent organic pollutants. J Am Chem Soc 141(18):7572–7581. https://doi.org/10.1021/jacs.9b02706

    Article  Google Scholar 

  136. Firoozi M, Rafiee Z, Dashtian K (2020) New MOF/COF hybrid as a robust adsorbent for simultaneous removal of auramine O and rhodamine B dyes. ACS Omega 5(16):9420–9428. https://doi.org/10.1021/acsomega.0c00539

    Article  Google Scholar 

  137. Li C, Guggenberger P, Han SW, Ding W-L, Kleitz F (2022) Ultrathin covalent organic framework anchored on graphene for enhanced organic pollutant removal. Angew Chem-Int Edit 61(35):e202206564. https://doi.org/10.1002/anie.202206564

    Article  Google Scholar 

  138. Ji W, Xiao L, Ling Y, Ching C, Matsumoto M, Bisbey RP, Helbling DE, Dichtel WR (2018) Removal of GenX and perfluorinated alkyl substances from water by amine-functionalized covalent organic frameworks. J Am Chem Soc 140(40):12677–12681. https://doi.org/10.1021/jacs.8b06958

    Article  Google Scholar 

  139. Cheng M, Yao C, Su Y, Liu J, Xu L, Bu J, Wang H, Hou S (2022) Cyclodextrin modified graphene membrane for highly selective adsorption of organic dyes and copper (II) ions. Eng Sci 18:299–307. https://doi.org/10.30919/es8d603

  140. Zhang H, Ding X, Wang S, Huang Y, Zeng X-F, Maganti S, Jiang Q, Huang M, Guo Z, Cao D (2022) Heavy metal removal from wastewater by a polypyrrole-derived N-doped carbon nanotube decorated with fish scale-like molybdenum disulfide nanosheets. Eng Sci 18:320–328. https://doi.org/10.30919/es8d649

  141. Zhang H, Wang Z, Zhao Y, Cui W, Zhang X, Wang S, Walter ED, Sassi MJ, Pearce CI, Clark SB, Rosso KM (2023) Metal ion (Cr3+, Eu3+, UO22+) adsorption on gibbsite nanoplates. Eng Sci 24:896. https://doi.org/10.30919/es896

  142. Hussain M, Maile N, Tahir K, Ghani AA, Kim B, Jang J, Lee DS (2022) Flexible thiourea-based covalent organic frameworks for ultrahigh mercury removal from aqueous solutions. Chem Eng J 446:137410. https://doi.org/10.1016/j.cej.2022.137410

    Article  Google Scholar 

  143. Ding S-Y, Dong M, Wang Y-W, Chen Y-T, Wang H-Z, Su C-Y, Wang W (2016) Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II). J Am Chem Soc 138(9):3031–3037. https://doi.org/10.1021/jacs.5b10754

    Article  Google Scholar 

  144. Merí-Bofí L, Royuela S, Zamora F, Ruiz-González ML, Segura JL, Muñoz-Olivas R, Mancheño MJ (2017) Thiol grafted imine-based covalent organic frameworks for water remediation through selective removal of Hg(ii). J Mater Chem A 5(34):17973–17981. https://doi.org/10.1039/C7TA05588A

    Article  Google Scholar 

  145. Ge J, Xiao J, Liu L, Qiu L, Jiang X (2016) Facile microwave-assisted production of Fe3O4 decorated porous melamine-based covalent organic framework for highly selective removal of Hg2+. J Porous Mater 23(3):791–800. https://doi.org/10.1007/s10934-016-0134-y

    Article  Google Scholar 

  146. Bi R, Li F, Chao J, Dong H, Zhang X, Wang Z, Li B, Zhao N (2021) Magnetic solid-phase extraction for speciation of mercury based on thiol and thioether-functionalized magnetic covalent organic frameworks nanocomposite synthesized at room temperature. J Chromatogr A 1635:461712. https://doi.org/10.1016/j.chroma.2020.461712

    Article  Google Scholar 

  147. Huang L, Shen R, Liu R, Shuai Q (2020) Thiol-functionalized magnetic covalent organic frameworks by a cutting strategy for efficient removal of Hg2+ from water. J Hazard Mater 392:122320. https://doi.org/10.1016/j.jhazmat.2020.122320

    Article  Google Scholar 

  148. Cui F-Z, Liang R-R, Qi Q-Y, Jiang G-F, Zhao X (2019) Efficient removal of Cr(VI) from aqueous solutions by a dual-pore covalent organic framework. Adv Sustain Syst 3(4):1800150. https://doi.org/10.1002/adsu.201800150

    Article  Google Scholar 

  149. Zhong X, Lu Z, Liang W, Hu B (2020) The magnetic covalent organic framework as a platform for high-performance extraction of Cr(VI) and bisphenol a from aqueous solution. J Hazard Mater 393:122353. https://doi.org/10.1016/j.jhazmat.2020.122353

    Article  Google Scholar 

  150. Bai Y, Chen L, He L, Li B, Chen L, Wu F, Chen L, Zhang M, Liu Z, Chai Z, Wang S (2022) Precise recognition of palladium through interlaminar chelation in a covalent organic framework. Chem 8(5):1442–1459. https://doi.org/10.1016/j.chempr.2022.02.016

    Article  Google Scholar 

  151. Cao Y, Hu X, Zhu C, Zhou S, Li R, Shi H, Miao S, Vakili M, Wang W, Qi D (2020) Sulfhydryl functionalized covalent organic framework as an efficient adsorbent for selective Pb (II) removal. Colloids Surf A 600:125004. https://doi.org/10.1016/j.colsurfa.2020.125004

    Article  Google Scholar 

  152. Ghazi ZA, Khattak AM, Iqbal R, Ahmad R, Khan AA, Usman M, Nawaz F, Ali W, Felegari Z, Jan SU, Iqbal A, Ahmad A (2018) Adsorptive removal of Cd2+ from aqueous solutions by a highly stable covalent triazine-based framework. New J Chem 42(12):10234–10242. https://doi.org/10.1039/C8NJ01778F

    Article  Google Scholar 

  153. Jiang Y, Liu C, Huang A (2019) EDTA-functionalized covalent organic framework for the removal of heavy-metal ions. ACS Appl Mater Interfaces 11(35):32186–32191. https://doi.org/10.1021/acsami.9b11850

    Article  Google Scholar 

  154. Dinari M, Hatami M (2019) Novel N-riched crystalline covalent organic framework as a highly porous adsorbent for effective cadmium removal. J Environ Chem Eng 7(1):102907. https://doi.org/10.1016/j.jece.2019.102907

    Article  Google Scholar 

  155. Xiong XH, Yu ZW, Gong LL, Tao Y, Gao Z, Wang L, Yin WH, Yang LX, Luo F (2019) Ammoniating covalent organic framework (COF) for high-performance and selective extraction of toxic and radioactive uranium ions. Adv Sci 6(16):1900547. https://doi.org/10.1016/j.aca.2019.09.078

    Article  Google Scholar 

  156. Li F-F, Cui W-R, Jiang W, Zhang C-R, Liang R-P, Qiu J-D (2020) Stable sp2 carbon-conjugated covalent organic framework for detection and efficient adsorption of uranium from radioactive wastewater. J Hazard Mater 392:122333. https://doi.org/10.1016/j.jhazmat.2020.122333

    Article  Google Scholar 

  157. Zhong X, Lu Z, Liang W, Hu B (2021) Incorporating bimetal oxide MnFe2O4 onto covalent organic frameworks for the removal of UO22+ ion from aqueous solution. Appl Surf Sci 556:149581. https://doi.org/10.1016/j.apsusc.2021.149581

    Article  Google Scholar 

  158. Da H-J, Yang C-X, Yan X-P (2019) Cationic covalent organic nanosheets for rapid and selective capture of perrhenate: an analogue of radioactive pertechnetate from aqueous solution. Environ Sci Technol 53(9):5212–5220. https://doi.org/10.1021/acs.est.8b06244

    Article  Google Scholar 

  159. Hao M, Chen Z, Yang H, Waterhouse GIN, Ma S, Wang X (2022) Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous 99TcO4−. Sci Bull 67(9):924–932. https://doi.org/10.1016/j.scib.2022.02.012

    Article  Google Scholar 

  160. Zhu L, Xiao C, Dai X, Li J, Gui D, Sheng D, Chen L, Zhou R, Chai Z, Albrecht-Schmitt TE, Wang S (2017) Exceptional perrhenate/pertechnetate uptake and subsequent immobilization by a low-dimensional cationic coordination polymer: overcoming the Hofmeister bias selectivity. Environ Sci Technol Lett 4(7):316–322. https://doi.org/10.1021/acs.estlett.7b00165

    Article  Google Scholar 

  161. Wang S, Yu P, Purse BA, Orta MJ, Diwu J, Casey WH, Phillips BL, Alekseev EV, Depmeier W, Hobbs DT, Albrecht-Schmitt TE (2012) Selectivity, kinetics, and efficiency of reversible anion exchange with TcO4− in a supertetrahedral cationic framework. Adv Funct Mater 22(11):2241–2250. https://doi.org/10.1002/adfm.201103081

    Article  Google Scholar 

  162. Zhang W, Liang F, Li C, Qiu L-G, Yuan Y-P, Peng F-M, Jiang X, Xie A-J, Shen Y-H, Zhu J-F (2011) Microwave-enhanced synthesis of magnetic porous covalent triazine-based framework composites for fast separation of organic dye from aqueous solution. J Hazard Mater 186(2):984–990. https://doi.org/10.1016/j.jhazmat.2010.11.093

    Article  Google Scholar 

  163. Ning G-H, Chen Z, Gao Q, Tang W, Chen Z, Liu C, Tian B, Li X, Loh KP (2017) Salicylideneanilines-based covalent organic frameworks as chemoselective molecular sieves. J Am Chem Soc 139(26):8897–8904. https://doi.org/10.1021/jacs.7b02696

    Article  Google Scholar 

  164. Zhang W, Zhang L, Zhao H, Li B, Ma H (2018) A two-dimensional cationic covalent organic framework membrane for selective molecular sieving. J Mater Chem A 6(27):13331–13339. https://doi.org/10.1039/C8TA04178D

    Article  Google Scholar 

  165. Yu S-B, Lyu H, Tian J, Wang H, Zhang D-W, Liu Y, Li Z-T (2016) A polycationic covalent organic framework: a robust adsorbent for anionic dye pollutants. Polym Chem 7(20):3392–3397. https://doi.org/10.1039/C6PY00281A

    Article  Google Scholar 

  166. El-Mahdy AFM, Zakaria MB, Wang H-X, Chen T, Yamauchi Y, Kuo S-W (2020) Heteroporous bifluorenylidene-based covalent organic frameworks displaying exceptional dye adsorption behavior and high energy storage. J Mater Chem A 8(47):25148–25155. https://doi.org/10.1039/D0TA07281H

    Article  Google Scholar 

  167. Afshari M, Dinari M (2020) Synthesis of new imine-linked covalent organic framework as high efficient absorbent and monitoring the removal of direct fast scarlet 4BS textile dye based on mobile phone colorimetric platform. J Hazard Mater 385:121514. https://doi.org/10.1016/j.jhazmat.2019.121514

    Article  Google Scholar 

  168. Wang R, Shi X, Xiao A, Zhou W, Wang Y (2018) Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations. J Membr Sci 566:197–204. https://doi.org/10.1016/j.memsci.2018.08.044

    Article  Google Scholar 

  169. Pan F, Guo W, Su Y, Khan NA, Yang H, Jiang Z (2019) Direct growth of covalent organic framework nanofiltration membranes on modified porous substrates for dyes separation. Sep Purif Technol 215:582–589. https://doi.org/10.1016/j.seppur.2019.01.064

    Article  Google Scholar 

  170. Zhang Y, Ye H, Chen D, Li N, Xu Q, Li H, He J, Lu J (2021) In situ assembly of a covalent organic framework composite membrane for dye separation. J Membr Sci 628:119216. https://doi.org/10.1016/j.memsci.2021.119216

    Article  Google Scholar 

  171. Zhang X, Li H, Wang J, Peng D, Liu J, Zhang Y (2019) In-situ grown covalent organic framework nanosheets on graphene for membrane-based dye/salt separation. J Membr Sci 581:321–330. https://doi.org/10.1016/j.memsci.2019.03.070

    Article  Google Scholar 

  172. Kong G, Pang J, Tang Y, Fan L, Sun H, Wang R, Feng S, Feng Y, Fan W, Kang W, Guo H, Kang Z, Sun D (2019) Efficient dye nanofiltration of a graphene oxide membrane via combination with a covalent organic framework by hot pressing. J Mater Chem A 7(42):24301–24310. https://doi.org/10.1039/C9TA07684K

    Article  Google Scholar 

  173. Li M, Ma J, Pan B, Wang J (2022) Cage-based covalent organic framework for the effective and efficient removal of malachite green from wastewater. ACS Appl Mater Interfaces 14(51):57180–57188. https://doi.org/10.1021/acsami.2c17878

    Article  Google Scholar 

  174. You L, Xu K, Ding G, Shi X, Li J, Wang S, Wang J (2020) Facile synthesis of Fe3O4@COF covalent organic frameworks for the adsorption of bisphenols from aqueous solution. J Mol Liq 320:114456. https://doi.org/10.1016/j.molliq.2020.114456

    Article  Google Scholar 

  175. Li Y, Yang C-X, Yan X-P (2017) Controllable preparation of core-shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution. Chem Commun 53(16):2511–2514. https://doi.org/10.1039/C6CC10188G

    Article  Google Scholar 

  176. Liu Z, Wang H, Ou J, Chen L, Ye M (2018) Construction of hierarchically porous monoliths from covalent organic frameworks (COFs) and their application for bisphenol A removal. J Hazard Mater 355:145–153. https://doi.org/10.1016/j.jhazmat.2018.05.022

    Article  Google Scholar 

  177. Wei D, Li J, Chen Z, Liang L, Ma J, Wei M, Ai Y, Wang X (2020) Understanding bisphenol-A adsorption in magnetic modified covalent organic frameworks: experiments coupled with DFT calculations. J Mol Liq 301:112431. https://doi.org/10.1016/j.molliq.2019.112431

    Article  Google Scholar 

  178. Lu F, Lin J, Lin C, Qi G, Lin X, Xie Z (2021) Heteroporous 3D covalent organic framework-based magnetic nanospheres for sensitive detection of bisphenol A. Talanta 231:122343. https://doi.org/10.1016/j.talanta.2021.122343

    Article  Google Scholar 

  179. Kandambeth S, Biswal BP, Chaudhari HD, Rout KC, Kunjattu HS, Mitra S, Karak S, Das A, Mukherjee R, Kharul UK, Banerjee R (2017) Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv Mater 29(2):1603945. https://doi.org/10.1002/adma.201603945

    Article  Google Scholar 

  180. Li Z, Liu Y, Zou S, Lu C, Bai H, Mu H, Duan J (2020) Removal and adsorption mechanism of tetracycline and cefotaxime contaminants in water by NiFe2O4-COF-chitosan-terephthalaldehyde nanocomposites film. Chem Eng J 382:123008. https://doi.org/10.1016/j.cej.2019.123008

    Article  Google Scholar 

  181. Zheng R, Feng D, Xia Y (2020) Fe(III)-functionalized magnetic covalent organic frameworks for fast adsorption and removal of phenylbutazone in aqueous solution. ChemistrySelect 5(25):7497–7504. https://doi.org/10.1002/slct.202001671

    Article  Google Scholar 

  182. Romero V, Fernandes SPS, Kovář P, Pšenička M, Kolen’ko YV, Salonen LM, Espiña B (2020) Efficient adsorption of endocrine-disrupting pesticides from water with a reusable magnetic covalent organic framework. Microporous Mesoporous Mater 307:110523. https://doi.org/10.1016/j.micromeso.2020.110523

    Article  Google Scholar 

  183. Liu Z, Wang J, Duan T, Guo Y, Liu W, Yang X, Wu Q, Wang Z (2022) A core-shell structured magnetic sulfonated covalent organic framework for the extraction of benzoylureas insecticides from water, pear juice and honey samples. J Chromatogr A 1679:463387. https://doi.org/10.1016/j.chroma.2022.463387

    Article  Google Scholar 

  184. Ren J-Y, Wang X-L, Li X-L, Wang M-L, Zhao R-S, Lin J-M (2018) Magnetic covalent triazine-based frameworks as magnetic solid-phase extraction adsorbents for sensitive determination of perfluorinated compounds in environmental water samples. Anal Bioanal Chem 410(6):1657–1665. https://doi.org/10.1007/s00216-017-0845-1

    Article  Google Scholar 

  185. Wang W, Zhou Z, Shao H, Zhou S, Yu G, Deng S (2021) Cationic covalent organic framework for efficient removal of PFOA substitutes from aqueous solution. Chem Eng J 412:127509. https://doi.org/10.1016/j.cej.2020.127509

    Article  Google Scholar 

  186. Wang W, Shao H, Sun C, Jiang X, Zhou S, Yu G, Deng S (2022) Preparation of magnetic covalent triazine frameworks by ball milling for efficient removal of PFOS and PFOA substitutes from water. Environ Sci Nano 9(4):1466–1475. https://doi.org/10.1039/D1EN01158H

    Article  Google Scholar 

  187. Lu Y-Y, Wang X-L, Wang L-L, Zhang W, Wei J, Lin J-M, Zhao R-S (2021) Room-temperature synthesis of amino-functionalized magnetic covalent organic frameworks for efficient extraction of perfluoroalkyl acids in environmental water samples. J Hazard Mater 407:124782. https://doi.org/10.1016/j.cej.2019.123008

    Article  Google Scholar 

  188. Wei X, Huang D, Pei D, Liu B, Di D (2023) Synthesis of imine-linked covalent organic frameworks and their adsorption properties for flavonoids. Microporous Mesoporous Mater 348:112333. https://doi.org/10.1016/j.micromeso.2022.112333

    Article  Google Scholar 

  189. Pang Y-H, Yang N-C, Qiao J-Y, Shen X-F, Huang Y-Y (2022) Preparation and characterization of magnetic covalent organic framework and its application for efficient adsorption of Benzo[a]pyrene. J Porous Mater 29(1):169–179. https://doi.org/10.1007/s10934-021-01151-8

    Article  Google Scholar 

  190. Gao M, Fu Q, Wang M, Zhang K, Zeng J, Wang L, Xia Z, Gao D (2019) Facile synthesis of porous covalent organic frameworks for the effective extraction of nitroaromatic compounds from water samples. Anal Chim Acta 1084:21–32. https://doi.org/10.1016/j.aca.2019.07.071

    Article  Google Scholar 

  191. Wang Y, Wu S, Wu D, Shen J, Wei Y, Wang C (2020) Amino bearing core-shell structured magnetic covalent organic framework nanospheres: preparation, postsynthetic modification with phenylboronic acid and enrichment of monoamine neurotransmitters in human urine. Anal Chim Acta 1093:61–74. https://doi.org/10.1016/j.aca.2019.09.078

    Article  Google Scholar 

  192. Li Y, Zhang H, Chen Y, Huang L, Lin Z, Cai Z (2019) core-shell structured magnetic covalent organic framework nanocomposites for triclosan and triclocarban adsorption. ACS Appl Mater Interfaces 11(25):22492–22500. https://doi.org/10.1021/acsami.9b06953

    Article  Google Scholar 

  193. Duong PHH, Kuehl VA, Mastorovich B, Hoberg JO, Parkinson BA, Li-Oakey KD (2019) Carboxyl-functionalized covalent organic framework as a two-dimensional nanofiller for mixed-matrix ultrafiltration membranes. J Membr Sci 574:338–348. https://doi.org/10.1016/j.memsci.2018.12.042

    Article  Google Scholar 

  194. Mohajer F, Mohammadi Ziarani G, Badiei A, Iravani S, Varma RS (2023) Recent advances in covalent organic frameworks (COFs) for wound healing and antimicrobial applications. RSC Adv 13(12):8136–8152. https://doi.org/10.1039/D2RA07194K

    Article  Google Scholar 

  195. Hassan A, Saritha C, Rajana VK, Mandal D, Das N (2023) Rationally designed ionic covalent organic networks (iCONs) with efficient antimicrobial activities. ACS Macro Lett 12(3):376–381. https://doi.org/10.1021/acsmacrolett.2c00686

    Article  Google Scholar 

  196. Mal A, Vijayakumar S, Mishra RK, Jacob J, Pillai RS, Dileep Kumar BS, Ajayaghosh A (2020) Supramolecular surface charge regulation in ionic covalent organic nanosheets: reversible exfoliation and controlled bacterial growth. Angew Chem-Int Edit 59(22):8713–8719. https://doi.org/10.1002/anie.201912363

    Article  Google Scholar 

  197. Luo H, Ji W, Guo W, Chen P, Zhang Z, Xu X, Yue B, Tan W, Zhou B (2022) A photoactive dual-cationic covalent organic framework encapsulated sodium nitroprusside as controllable NO-releasing material for joint cation/photothermal/NO antibacterial therapy. Microporous Mesoporous Mater 346:112281. https://doi.org/10.1016/j.micromeso.2022.112281

    Article  Google Scholar 

  198. Zhang H, Ma J, Liu C, Li L, Xu C, Li Y, Li Y, Tian H (2022) Antibacterial activity of guanidinium-based ionic covalent organic framework anchoring Ag nanoparticles. J Hazard Mater 435:128965. https://doi.org/10.1016/j.jhazmat.2022.128965

    Article  Google Scholar 

  199. Sun B, Wu F, Wang X, Song Q, Ye Z, Mohammadniaei M, Zhang M, Chu X, Xi S, Zhou N, Wang W, Yao C, Shen J (2022) An optimally designed engineering exosome–reductive COF integrated nanoagent for synergistically enhanced diabetic fester wound healing. Small 18(26):2200895. https://doi.org/10.1002/smll.202200895

    Article  Google Scholar 

  200. Lin J, Bi S, Fan Z, Fu Z, Meng Z, Hou Z, Zhang F (2021) A metal-free approach to bipyridinium salt-based conjugated porous polymers with olefin linkages. Polym Chem 12(11):1661–1667. https://doi.org/10.1039/D0PY01743D

    Article  Google Scholar 

  201. Ma Q, Liu X, Wang H, Zhuang Q, Qian J (2022) Construction of novel benzoxazine-linked covalent organic framework with antimicrobial activity via postsynthetic cyclization. Mater Today Chem 23:100707. https://doi.org/10.1016/j.mtchem.2021.100707

    Article  Google Scholar 

  202. Li C, Chen C, Zhao J, Tan M, Zhai S, Wei Y, Wang L, Dai T (2021) Electrospun fibrous membrane containing a cyclodextrin covalent organic framework with antibacterial properties for accelerating wound healing. ACS Biomater Sci Eng 7(8):3898–3907. https://doi.org/10.1021/acsbiomaterials.1c00648

    Article  Google Scholar 

  203. Bhat ZUH, Hanif S, Rafi Z, Alam MJ, Ahmad M, Shakir M (2023) New mixed-ligand Zn(ii)-based MOF as a nanocarrier platform for improved antibacterial activity of clinically approved drug levofloxacin. New J Chem 47(15):7416–7424. https://doi.org/10.1039/D3NJ00114H

    Article  Google Scholar 

  204. Zhang L, Liu Z, Deng Q, Sang Y, Dong K, Ren J, Qu X (2021) Nature-inspired construction of MOF@COF nanozyme with active sites in tailored microenvironment and pseudopodia-like surface for enhanced bacterial inhibition. Angew Chem-Int Edit 60(7):3469–3474. https://doi.org/10.1002/anie.202012487

    Article  Google Scholar 

  205. Lohse MS, Bein T (2018) Covalent organic frameworks: structures, synthesis, and applications. Adv Funct Mater 28(33):1705553. https://doi.org/10.1002/adfm.201705553

    Article  Google Scholar 

  206. Byun Y, Je SH, Talapaneni SN, Coskun A (2019) Advances in porous organic polymers for efficient water capture. Chem Eur J 25(44):10262–10283. https://doi.org/10.1002/chem.201900940

    Article  Google Scholar 

  207. Biswal BP, Kandambeth S, Chandra S, Shinde DB, Bera S, Karak S, Garai B, Kharul UK, Banerjee R (2015) Pore surface engineering in porous, chemically stable covalent organic frameworks for water adsorption. J Mater Chem A 3(47):23664–23669. https://doi.org/10.1039/C5TA07998E

    Article  Google Scholar 

  208. Hug S, Stegbauer L, Oh H, Hirscher M, Lotsch BV (2015) Nitrogen-rich covalent triazine frameworks as high-performance platforms for selective carbon capture and storage. Chem Mater 27(23):8001–8010. https://doi.org/10.1021/acs.chemmater.5b03330

    Article  Google Scholar 

  209. Stegbauer L, Hahn MW, Jentys A, Savasci G, Ochsenfeld C, Lercher JA, Lotsch BV (2015) Tunable water and CO2 sorption properties in isostructural azine-based covalent organic frameworks through polarity engineering. Chem Mater 27(23):7874–7881. https://doi.org/10.1021/acs.chemmater.5b02151

    Article  Google Scholar 

  210. Ge Y, Zhou H, Ji Y, Ding L, Cheng Y, Wang R, Yang S, Liu Y, Wu X, Li Y (2018) Understanding water adsorption and the impact on CO2 capture in chemically stable covalent organic frameworks. J Phys Chem C 122(48):27495–27506. https://doi.org/10.1021/acs.jpcc.8b09033

    Article  Google Scholar 

  211. Nguyen HL, Hanikel N, Lyle SJ, Zhu C, Proserpio DM, Yaghi OM (2020) A porous covalent organic framework with voided square grid topology for atmospheric water harvesting. J Am Chem Soc 142(5):2218–2221. https://doi.org/10.1021/jacs.9b13094

    Article  Google Scholar 

  212. Huang Z, Luo Y-H, Geng W-Y, Wan Y, Li S, Lee C-S (2021) Marriage of 2D covalent–organic framework and 3D network as stable solar-thermal still for efficient solar steam generation. Small Methods 5(5):2100036. https://doi.org/10.1002/smtd.202100036

    Article  Google Scholar 

  213. Nguyen HL, Gropp C, Hanikel N, Möckel A, Lund A, Yaghi OM (2022) Hydrazine-hydrazide-linked covalent organic frameworks for water harvesting. ACS Cent Sci 8(7):926–932. https://doi.org/10.1021/acscentsci.2c00398

    Article  Google Scholar 

  214. Sun C, Zhu Y, Shao P, Chen L, Huang X, Zhao S, Ma D, Jing X, Wang B, Feng X (2023) 2D covalent organic framework for water harvesting with fast kinetics and low regeneration temperature. Angew Chem-Int Edit 62(11):e202217103. https://doi.org/10.1002/anie.202217103

    Article  Google Scholar 

  215. Zhang L, Fang W-X, Wang C, Dong H, Ma S-H, Luo Y-H (2021) Porous frameworks for effective water adsorption: from 3D bulk to 2D nanosheets. Inorg Chem Front 8(4):898–913. https://doi.org/10.1039/D0QI01362E

    Article  Google Scholar 

  216. Sun C, Sheng D, Wang B, Feng X (2023) Covalent organic frameworks for extracting water from air. Angew Chem-Int Edit 62(25):e202303378. https://doi.org/10.1002/anie.202303378

    Article  Google Scholar 

  217. Wang C, Wang Y, Ge R, Song X, Xing X, Jiang Q, Lu H, Hao C, Guo X, Gao Y, Jiang D (2018) A 3D Covalent organic framework with exceptionally high iodine capture capability. Chem Eur J 24(3):585–589. https://doi.org/10.1002/chem.201705405

    Article  Google Scholar 

  218. Chen R, Hu T, Zhang W, He C, Li Y (2021) Synthesis of nitrogen-containing covalent organic framework with reversible iodine capture capability. Microporous Mesoporous Mater 312:110739. https://doi.org/10.1016/j.micromeso.2020.110739

    Article  Google Scholar 

  219. Song S, Shi Y, Liu N, Liu F (2021) CN linked covalent organic framework for the efficient adsorption of iodine in vapor and solution. RSC Adv 11(18):10512–10523. https://doi.org/10.1039/D0RA10587B

    Article  Google Scholar 

  220. Song S, Shi Y, Liu N, Liu F (2021) Theoretical screening and experimental synthesis of ultrahigh-iodine capture covalent organic frameworks. ACS Appl Mater Interfaces 13(8):10513–10523. https://doi.org/10.1021/acsami.0c17748

    Article  Google Scholar 

  221. Xie Y, Pan T, Lei Q, Chen C, Dong X, Yuan Y, Shen J, Cai Y, Zhou C, Pinnau I, Han Y (2021) Ionic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High iodine-capture capacity. Angew Chem-Int Edit 60(41):22432–22440. https://doi.org/10.1002/anie.202108522

    Article  Google Scholar 

  222. Chen J, Li P, Zhang NX, Tang SK (2022) A covalent organic framework membrane with enhanced directional ion nanochannels for efficient hydroxide conduction. J Mater Chem A 10(13):7146–7154. https://doi.org/10.1039/d1ta10506j

    Article  Google Scholar 

  223. Xie Y, Pan T, Lei Q, Chen C, Dong X, Yuan Y, Maksoud WA, Zhao L, Cavallo L, Pinnau I, Han Y (2022) Efficient and simultaneous capture of iodine and methyl iodide achieved by a covalent organic framework. Nat Commun 13(1):2878. https://doi.org/10.1038/s41467-022-30663-3

    Article  Google Scholar 

  224. Wang F, Zhang Z, Shakir I, Yu CB, Xu YX (2022) 2D polymer nanosheets for membrane separation. Adv Sci 9(8):2103814. https://doi.org/10.1002/advs.202103814

    Article  Google Scholar 

  225. Xu Y, Wu C, Chu N, Xing Y, Yang J, Yin L, Chen X (2023) Design and synthesis of stable sp2-carbon-linked two-dimensional conjugated covalent organic framework for efficient capture of iodine. Sep Purif Technol 307:122776. https://doi.org/10.1016/j.seppur.2022.122776

    Article  Google Scholar 

  226. Shui F, Lei Q, Dong X, Pan T, Zhang Z, Li J, Yi M, Zhang L, Liu X, You Z, Yang S, Yang R, Zhang H, Li J, Shi Z, Yin J, Li B, Bu X-H (2023) Iodine nanotrap for highly efficient iodine capture under high temperature. Chem Eng J 468:143525. https://doi.org/10.1016/j.cej.2023.143525

    Article  Google Scholar 

  227. Zhang Z, Shi X, Wang X, Zhang Z, Wang Y (2023) Encapsulating covalent organic frameworks (COFs) in cellulose aerogels for efficient iodine uptake. Sep Purif Technol 309:123108. https://doi.org/10.1016/j.seppur.2023.123108

    Article  Google Scholar 

  228. Hamukwaya SL, Zhao Z, Hao H, Abo-Dief HM, Abualnaja KM, Alanazi AK, Mashingaidze MM, El-Bahy SM, Huang M, Guo Z (2022) Enhanced photocatalytic performance for hydrogen production and carbon dioxide reduction by a mesoporous single-crystal-like TiO2 composite catalyst. Adv Compos Hybrid Mater 5(3):2620–2630. https://doi.org/10.1007/s42114-022-00545-9

    Article  Google Scholar 

  229. Zheng S, Zhang M, Na M, Yang Y, Luo Z, Lu Q (2022) Calculations of narrow-band transmissivity and the Planck mean absorption coefficients of CO2 based on high-resolution transmission molecular absorption, high-temperature molecular spectroscopic and CO2 databank databases. ES Energy Environ 17:33–43. https://doi.org/10.30919/esee8c635

  230. Altundal OF, Altintas C, Keskin S (2020) Can COFs replace MOFs in flue gas separation? High-throughput computational screening of COFs for CO2/N2 separation. J Mater Chem A 8(29):14609–14623. https://doi.org/10.1039/D0TA04574H

    Article  Google Scholar 

  231. Wang J, Fu R, Wen S, Ning P, Helal MH, Salem MA, Xu BB, El-Bahy ZM, Huang M, Guo Z, Huang L, Wang Q (2022) Progress and current challenges for CO2 capture materials from ambient air. Adv Compos Hybrid Mater 5(4):2721–2759. https://doi.org/10.1007/s42114-022-00567-3

    Article  Google Scholar 

  232. Chamanehpour E, Sayadi MH, Hajiani M (2022) A hierarchical graphitic carbon nitride supported by metal-organic framework and copper nanocomposite as a novel bifunctional catalyst with long-term stability for enhanced carbon dioxide photoreduction under solar light irradiation. Adv Compos Hybrid Mater 5(3):2461–2477. https://doi.org/10.1007/s42114-022-00459-6

    Article  Google Scholar 

  233. Cheng XQ, Li S, Bao H, Yang X, Li Z, Zhang Y, Wang K, Ma J, Ullah A, Shao L (2021) Poly(sodium-p-styrenesulfonate)-grafted UiO-66 composite membranes boosting highly efficient molecular separation for environmental remediation. Adv Compos Hybrid Mater 4(3):562–573. https://doi.org/10.1007/s42114-021-00253-w

    Article  Google Scholar 

  234. Nie L, Mu Y, Jin J, Chen J, Mi J (2018) Recent developments and consideration issues in solid adsorbents for CO2 capture from flue gas. Chin J Chem Eng 26(11):2303–2317. https://doi.org/10.1016/j.scib.2022.02.012

    Article  Google Scholar 

  235. Gulbalkan HC, Haslak ZP, Altintas C, Uzun A, Keskin S (2022) Multi-scale computational screening to accelerate discovery of IL/COF composites for CO2/N2 separation. Sep Purif Technol 287:120578. https://doi.org/10.1016/j.seppur.2022.120578

    Article  Google Scholar 

  236. Yang S, Zhu W, Zhu L, Ma X, Yan T, Gu N, Lan Y, Huang Y, Yuan M, Tong M (2022) Multi-scale computer-aided design of covalent organic frameworks for CO2 capture in wet flue gas. ACS Appl Mater Interfaces 14(50):56353–56362. https://doi.org/10.1021/acsami.2c17109

    Article  Google Scholar 

  237. Dautzenberg E, Claassen FW, de Smet LCPM (2023) Functionalized modulators in imine-linked covalent organic frameworks (COFs). Microporous Mesoporous Mater 350:112318. https://doi.org/10.1016/j.micromeso.2022.112318

    Article  Google Scholar 

  238. Li Y, Chen Z, Zhan G, Yuan B, Wang L, Li J (2022) Inducing efficient proton transfer through Fe/Ni@COF to promote amine-based solvent regeneration for achieving low-cost capture of CO2 from industrial flue gas. Sep Purif Technol 298:121676. https://doi.org/10.1016/j.seppur.2022.121676

    Article  Google Scholar 

  239. Jia C, Liang R-R, Gan S-X, Jiang S-Y, Qi Q-Y, Zhao X (2023) Boosting hydrostability and carbon dioxide capture of boroxine-linked covalent organic frameworks by one-pot oligoamine modification. Chem Eur J 29(29):e202300186. https://doi.org/10.1002/chem.202300186

    Article  Google Scholar 

  240. Wang S, Yang Y, Liang X, Ren Y, Ma H, Zhu Z, Wang J, Zeng S, Song S, Wang X, Han Y, He G, Jiang Z (2023) Ultrathin ionic COF membrane via polyelectrolyte-mediated assembly for efficient CO2 separation. Adv Funct Mater 33(24):2300386. https://doi.org/10.1002/adfm.202300386

    Article  Google Scholar 

  241. Dautzenberg E, Li G, de Smet LCPM (2023) Aromatic amine-functionalized covalent organic frameworks (COFs) for CO2/N2 separation. ACS Appl Mater Interfaces 15(4):5118–5127. https://doi.org/10.1021/acsami.2c17672

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Key R&D and Promotion Special Project of Henan Province (232102230108) and Young Talents Program of Henan Agricultural University (30501360).

Author information

Authors and Affiliations

Authors

Contributions

Kun Hou wrote the main manuscript text. Yafeng Yang and Haiping Gu prepared all the figures. Su Shiung Lam, Christian Sonne, and Hui Ouyang wrote, edited, and reviewed the main manuscript text. Hanyin Li and Xiangmeng Chen revised and supported funding. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Hanyin Li, Christian Sonne or Xiangmeng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, K., Gu, H., Yang, Y. et al. Recent progress in advanced covalent organic framework composites for environmental remediation. Adv Compos Hybrid Mater 6, 199 (2023). https://doi.org/10.1007/s42114-023-00776-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00776-4

Keywords

Navigation