Skip to main content
Log in

Preparation and characterization of magnetic covalent organic framework and its application for efficient adsorption of Benzo[a]pyrene

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Benzo[a]pyrene (BaP), one of the polycyclic aromatic hydrocarbons with potential carcinogenic, mutagenic and teratogenic toxicity, have been widely concerned. Herein, we report a simple and rapid co-precipitation method for the synthesis of magnetic covalent organic framework (Fe3O4/COF-DQTp) adsorbent for BaP removal. The magnetized COF-DQTp was characterized by fourier transform infrared, X-ray diffractometer, Brunauer–Emmett–Teller, vibrating sample magnetometer, transmission electron microscopy, high angle annular dark field scanning transmission electron microscopy image and energy-dispersive X-ray spectroscopy elemental mapping. Under the optimized adsorption conditions, the adsorption efficiency was as high as 99% and the maximum adsorption capacity is 19 mg/g in 10 min. The adsorption kinetics shows that adsorption of BaP onto Fe3O4/COF-DQTp follow pseudo-second order kinetic model. Moreover, the prepared Fe3O4/COF-DQTp has good reusability and is a potential material for the adsorption of BaP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X.T. Wang, Y. Miao, Y. Zhang, Y.C. Li, M.H. Wu, G. Yu, Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: occurrence, source apportionment and potential human health risk. Sci. Total Environ. 447, 80–89 (2013)

    Article  CAS  PubMed  Google Scholar 

  2. T. Wenzl, R. Simon, E. Anklam, J. Kleiner, Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European Union. TrAC Trends Anal. Chem. 25, 716–725 (2006)

    Article  CAS  Google Scholar 

  3. A. Sarafraz-Yazdi, F. Ghaemi, A. Amiri, Comparative study of the sol–gel based solid phase microextraction fibers in extraction of naphthalene, fluorene, anthracene and phenanthrene from saffron samples extractants. Microchim. Acta 176, 317–325 (2012)

    Article  CAS  Google Scholar 

  4. Z.L. Zhang, H.S. Hong, J.L. Zhou, G. Yu, Phase association of polycyclic aromatic hydrocarbons in the Minjiang River Estuary China. Sci. Total Environ. 323, 71–86 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. L. Zhu, B. Chen, J. Wang, H. Shen, Pollution survey of polycyclic aromatic hydrocarbons in surface water of Hangzhou China. Chemosphere 56, 1085–1095 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. A. Mojiri, J.L. Zhou, A. Ohashi, N. Ozaki, T. Kindaichi, Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Sci. Total Environ. 696, 133971 (2019)

    Article  CAS  PubMed  Google Scholar 

  7. N. Soltani, B. Keshavarzi, F. Moore et al., Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis Iran. Sci. Total Environ. 505, 712–723 (2015)

    Article  CAS  PubMed  Google Scholar 

  8. S. Lamichhane, K.C. Bal Krishna, R. Sarukkalige, Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review. Chemosphere 148, 336–353 (2016)

    Article  CAS  PubMed  Google Scholar 

  9. M. Samanta, S. Roychowdhury, D. Mitra, Separation of benzo[a]pyrene and n-tetradecane mixtures using pervaporation technique and optimization. Chem. Pap. 72, 3141–3157 (2018)

    Article  CAS  Google Scholar 

  10. A. Takáčová, M. Smolinská, J. Ryba et al., Biodegradation of Benzo[a]Pyrene through the use of algae. Open Chem. 12, 1133–1143 (2014)

    Article  Google Scholar 

  11. D. Yang, S.K. Tammina, X. Li, Y. Yang, Enhanced removal and detection of benzo[a]pyrene in environmental water samples using carbon dots-modified magnetic nanocomposites. Ecotoxicol. Environ. Saf. 170, 383–390 (2019)

    Article  CAS  PubMed  Google Scholar 

  12. K. Amstaetter, E. Eek, G. Cornelissen, Sorption of PAHs and PCBs to activated carbon: coal versus biomass-based quality. Chemosphere 87, 573–578 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. L. Beesley, E. Moreno-Jimenez, J.L. Gomez-Eyles, Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Pollut. 158, 2282–2287 (2010)

    Article  CAS  PubMed  Google Scholar 

  14. J. Cuevas, D.E. Gonzalez-Santamaria, C. Garcia-Delgado et al., Impact of a tire fire accident on soil pollution and the use of clay minerals as natural geo-indicators. Environ. Geochem. Health. 42, 2147–2161 (2020)

    Article  CAS  PubMed  Google Scholar 

  15. Y. Li, W. Cui, L. Liu et al., Removal of Cr(VI) by 3D TiO2 -graphene hydrogel via adsorption enriched with photocatalytic reduction. Appl. Catal. B 199, 412–423 (2016)

    Article  CAS  Google Scholar 

  16. X. Zhong, Z. Lu, W. Liang, B. Hu, The magnetic covalent organic framework as a platform for high-performance extraction of Cr(VI) and bisphenol a from aqueous solution. J. Hazard. Mater. 393, 122353 (2020)

    Article  CAS  PubMed  Google Scholar 

  17. L. Zhu, Y.-B. Zhang, Crystallization of covalent organic frameworks for gas storage applications. Molecules 22, 1149 (2017)

    Article  PubMed Central  Google Scholar 

  18. Q. Fang, S. Gu, J. Zheng, Z. Zhuang, S. Qiu, Y. Yan, 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew. Chem. Int. Ed. Engl. 53, 2878–2882 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. P. Wang, M. Kang, S. Sun, Q. Liu, Z. Zhang, S. Fang, Imine-linked covalent organic framework on surface for biosensor. Chin. J. Chem. 32, 838–843 (2014)

    Article  CAS  Google Scholar 

  20. S.Y. Ding, M. Dong, Y.W. Wang et al., Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II). J. Am. Chem. Soc. 138, 3031–3037 (2016)

    Article  CAS  PubMed  Google Scholar 

  21. N. Huang, L. Zhai, H. Xu, D. Jiang, Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions. J. Am. Chem. Soc. 139, 2428–2434 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. Y. Yang, M. Faheem, L. Wang et al., Surface pore engineering of covalent organic frameworks for ammonia capture through synergistic multivariate and open metal site approaches. ACS Cent Sci. 4, 748–754 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. G.Y. Lee, J. Lee, H.T. Vo, S. Kim, H. Lee, T. Park, Amine-functionalized covalent organic framework for efficient SO2 capture with high reversibility. Sci Rep. 7, 557 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  24. L. Stegbauer, M.W. Hahn, A. Jentys et al., Tunable water and CO2 sorption properties in isostructural azine-based covalent organic frameworks through polarity engineering. Chem. Mater. 27, 7874–7881 (2015)

    Article  CAS  Google Scholar 

  25. G.H. Ning, Z. Chen, Q. Gao et al., Salicylideneanilines-based covalent organic frameworks as chemoselective molecular sieves. J. Am. Chem. Soc. 139, 8897–8904 (2017)

    Article  CAS  PubMed  Google Scholar 

  26. C. Jiang, X. Wang, D. Qin et al., Construction of magnetic lignin-based adsorbent and its adsorption properties for dyes. J. Hazard. Mater. 369, 50–61 (2019)

    Article  CAS  PubMed  Google Scholar 

  27. R. Wang, X. Shi, A. Xiao, W. Zhou, Y. Wang, Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations. J. Membr. Sci. 566, 197–204 (2018)

    Article  CAS  Google Scholar 

  28. Z. Liu, H. Wang, J. Ou, L. Chen, M. Ye, Construction of hierarchically porous monoliths from covalent organic frameworks (COFs) and their application for bisphenol A removal. J. Hazard. Mater. 355, 145–153 (2018)

    Article  CAS  PubMed  Google Scholar 

  29. S. Zhuang, Y. Liu, J. Wang, Covalent organic frameworks as efficient adsorbent for sulfamerazine removal from aqueous solution. J. Hazard. Mater. 383, 121126 (2020)

    Article  CAS  PubMed  Google Scholar 

  30. Z.D. Li, H.Q. Zhang, X.H. Xiong, F. Luo, U(VI) adsorption onto covalent organic frameworks-TpPa-1. J. Solid State Chem. 277, 484–492 (2019)

    Article  CAS  Google Scholar 

  31. J. Tan, S. Namuangruk, W. Kong, N. Kungwan, J. Guo, C. Wang, Manipulation of amorphous-to-crystalline transformation: towards the construction of covalent organic framework hybrid microspheres with NIR photothermal conversion ability. Angew. Chem. Int. Ed. Engl. 55, 13979–13984 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. Y. Li, C.X. Yang, X.P. Yan, Controllable preparation of core-shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution. Chem Commun. 53, 2511–2514 (2017)

    Article  CAS  Google Scholar 

  33. J. Zhang, Z. Chen, S. Tang et al., Fabrication of porphyrin-based magnetic covalent organic framework for effective extraction and enrichment of sulfonamides. Anal. Chim. Acta. 1089, 66–77 (2019)

    Article  CAS  PubMed  Google Scholar 

  34. Y.H. Pang, Q. Yue, Y.Y. Huang, C. Yang, X.F. Shen, Facile magnetization of covalent organic framework for solid-phase extraction of 15 phthalate esters in beverage samples. Talanta 206, 120194 (2020)

    Article  CAS  PubMed  Google Scholar 

  35. C.R. DeBlase, K.E. Silberstein, T.T. Truong, H.D. Abruna, W.R. Dichtel, Beta-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 135, 16821–16824 (2013)

    Article  CAS  PubMed  Google Scholar 

  36. C. Liang, H. Lin, Q. Wang et al., A redox-active covalent organic framework for the efficient detection and removal of hydrazine. J. Hazard. Mater. 381, 120983 (2020)

    Article  CAS  PubMed  Google Scholar 

  37. Y. Song, R. Ma, L. Hao et al., Application of covalent organic framework as the adsorbent for solid-phase extraction of trace levels of pesticide residues prior to high-performance liquid chromatography-ultraviolet detection. J. Chromatogr. A. 1572, 20–26 (2018)

    Article  CAS  PubMed  Google Scholar 

  38. C.R. DeBlase et al., β-ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 135(45), 16821–16824 (2013)

    Article  CAS  PubMed  Google Scholar 

  39. J. Zhang et al., Fabrication of porphyrin-based magnetic covalent organic framework for effective extraction and enrichment of sulfonamides. Anal. Chim. Acta. 1089, 66–77 (2019)

    Article  CAS  PubMed  Google Scholar 

  40. Mo, J. Z., et al. Benzo[a]pyrene osteotoxicity and the regulatory roles of genetic and epigenetic factors: A review. Crit Rev Env Sci Tec. (2021).

  41. K. Qiao, W. Tian, J. Bai et al., Preparation of biochar from Enteromorpha prolifera and its use for the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous solution. Ecotoxicol. Environ. Saf. 149, 80–87 (2018)

    Article  CAS  PubMed  Google Scholar 

  42. H. Parham, B. Zargar, M. Rezazadeh, Removal, preconcentration and spectrophotometric determination of picric acid in water samples using modified magnetic iron oxide nanoparticles as an efficient adsorbent. Mater. Sci. Eng. C 32, 2109–2114 (2012)

    Article  CAS  Google Scholar 

  43. W. Liao, Y. Ma, A. Chen, Y. Yang, Preparation of fatty acids coated Fe3O4 nanoparticles for adsorption and determination of benzo(a)pyrene in environmental water samples. Chem. Eng. J. 271, 232–239 (2015)

    Article  CAS  Google Scholar 

  44. Z.Y. Lv et al., Dispersive solid-phase extraction using the metal-organic framework MIL-101(Cr) for determination of benzo(a)pyrene in edible oil. Anal. Methods. 11(27), 3467–3473 (2019)

    Article  CAS  Google Scholar 

  45. G.-H. Wang, Y.-Q. Lei, H.-C. Song, Exploration of a coordination polymer as a novel sorbent for the solid-phase extraction of benzo[a]pyrene in edible oils. Anal. Methods. 4, 647 (2012)

    Article  CAS  Google Scholar 

  46. Q. Zhou, Y. Wang, J. Xiao, H. Fan, C. Chen, Preparation and characterization of magnetic nanomaterial and its application for removal of polycyclic aromatic hydrocarbons. J. Hazard. Mater. 371, 323–331 (2019)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21976070, 22076067), and the Fundamental Research Funds for the Central Universities (JUSRP22003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Hong Pang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 546 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, YH., Yang, NC., Qiao, JY. et al. Preparation and characterization of magnetic covalent organic framework and its application for efficient adsorption of Benzo[a]pyrene. J Porous Mater 29, 169–179 (2022). https://doi.org/10.1007/s10934-021-01151-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01151-8

Keywords

Navigation