Skip to main content

Advertisement

Log in

A hierarchical graphitic carbon nitride supported by metal–organic framework and copper nanocomposite as a novel bifunctional catalyst with long-term stability for enhanced carbon dioxide photoreduction under solar light irradiation

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Metal–organic frameworks are considered as prospering photocatalysts, which can potentially generate high CO2 removal capacity arising from their large pores and great superficial area. The present study’s aim is the utilization of g-C3N4@Cu/ZIF-8 nanocomposite to eliminate its structural defects by applying two strategies viz. doping Cu and core-shelling ZIF-8 on g-C3N4. The solvothermal method was used to prepare g-C3N4@Cu/ZIF-8 nanocomposite. Chemical and physical characterizations of the nanocomposite were identified by the different analyses. Photoreduction of CO2 was implemented in a 200-mL domestic Pyrex batch reactor under environment temperature as well as atmospheric pressure and sunlight was used as the light source. The results indicated that the CH3OH production performance in g-C3N4@Cu/ZIF8 (1%) nanocomposite was about three times higher than ZIF-8, which emerged via an increase in the surface area, decrease in electron–hole recombination rate, increase in conductivity, and decrease in bandgap invoking CO2 adsorption capacity increase. The amount of CO2 absorption in samples was 0.039 (ZIF-8), 0.043 (Cu/ZIF-8), 0.051 (g-C3N4), and 0.12 (g-C3N4@Cu/ZIF-8 (1%)) \({\mathrm{mmolg}}^{-1}\) respectively. In addition, reusability and stability testing showed that after 5 reuses of the prepared nanocomposite, the degradation efficiency of CO2 photoreduction decreased from 82.1 to 71.8%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ma Y, Wang Z, Xu X, Wang J (2017) Review on porous nanomaterials for adsorption and photocatalytic conversion of CO2. Chinese J Catal 38(12):1956–1969. https://doi.org/10.1016/S1872-2067(17)62955-3

    Article  CAS  Google Scholar 

  2. Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W (2018) Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem Rev 118(2):434–504. https://doi.org/10.1021/acs.chemrev.7b00435

    Article  CAS  Google Scholar 

  3. Shabani M, Sayadi MH, Rezaei MR (2016) Evaluation of carbon sequestration ability by Chlorella vulgaris in water with different salinity. J Environ Stud 41(4):879–886. https://doi.org/10.22059/JES.2016.57141

    Article  Google Scholar 

  4. Chung YG, Gómez-Gualdrón DA, Li P, Leperi KT, Deria P, Zhang H, Vermeulen NA, Stoddart JF, You F, Hupp J, Farha OK (2016) In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm. Sci Adv 2(10):e1600909. https://doi.org/10.1126/sciadv.1600909

    Article  CAS  Google Scholar 

  5. Roy N, Suzuki N, Terashima C, Fujishima A (2019) Recent improvements in the production of solar fuels: from CO2 reduction to water splitting and artificial photosynthesis. Bull Chem Soc Jpn 92(1):178–192. https://doi.org/10.1246/bcsj.20180250

    Article  CAS  Google Scholar 

  6. Crake A, Christoforidis KC, Kafizas A, Zafeiratos S, Petit C (2017) CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV–vis irradiation. Appl Catal B 210:131–140. https://doi.org/10.1016/j.apcatb.2017.03.039

    Article  CAS  Google Scholar 

  7. Wu HY, Nguyen NH, Bai H, Chang SM, Wu JC (2015) Photocatalytic reduction of CO2 using molybdenum-doped titanate nanotubes in a MEA solution. RSC Adv 5(78):63142–63151. https://doi.org/10.1039/C5RA10408D

    Article  CAS  Google Scholar 

  8. Ran J, Jaroniec M, Qiao SZ (2018) Cocatalysts in semiconductor based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv Mater 30(7):1704649. https://doi.org/10.1002/adma.201704649

    Article  CAS  Google Scholar 

  9. Zhao M, Yuan K, Wang Y, Li G, Guo J, Gu L, Hu W, Zhao H, Tang Z (2016) Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature 539(7627):76–80. https://doi.org/10.1038/nature19763

    Article  CAS  Google Scholar 

  10. Nong W, Liu X, Wang Q, Wu J, Guan Y (2020) Metal-organic framework-based materials: synthesis, stability and applications in food safety and preservation. ES Food Agrofor 1:11–40. https://doi.org/10.30919/esfaf0001

    Article  Google Scholar 

  11. Bag PP, Singh GP, Singha S, Roymahapatra G (2020) Synthesis of metal-organic frameworks (MOFs) and their biological, catalytic and energetic application: a mini review. Eng Sci 13:1–10. https://doi.org/10.30919/es8d1166

    Article  CAS  Google Scholar 

  12. Cheng XQ, Li S, Bao H, Yang X, Li Z, Zhang Y, Wang K, Ma J, Ullah A, Shao L (2021) Poly (sodium-p-styrenesulfonate)-grafted UiO-66 composite membranes boosting highly efficient molecular separation for environmental remediation. Adv Compos Hybrid Mater 4(3):562–573. https://doi.org/10.1007/s42114-021-00253-w

    Article  CAS  Google Scholar 

  13. Yu H, Xu C, Li Y, Jin F, Ye F, Li X (2020) Performance enhancement of CuO/ZnO by deposition on the metal-organic framework of Cu-BTC for methanol steam reforming reaction. ES Energy Enviorn 8:65–77. https://doi.org/10.30919/esee8c415

    Article  CAS  Google Scholar 

  14. Ahmadpour N, Sayadi MH, Homaeigohar S (2020) A hierarchical Ca/TiO 2/NH 2-MIL-125 nanocomposite photocatalyst for solar visible light induced photodegradation of organic dye pollutants in water. Rsc Adv. 10:29808–29820. https://doi.org/10.1039/D0RA05192F

  15. Khan NA, Hasan Z, Jhung SH (2018) Beyond pristine metal-organic frameworks: preparation and application of nanostructured, nanosized, and analogous MOFs. Coord Chem Rev 376:20–45. https://doi.org/10.1016/j.ccr.2018.07.016

    Article  CAS  Google Scholar 

  16. Sayadi MH, Homaeigohar S, Rezaei A, Shekari H (2021) Bi/SnO2/TiO2-graphene nanocomposite photocatalyst for solar visible light–induced photodegradation of pentachlorophenol. Environ Sci Pollut Res 28(12):15236–15247. https://doi.org/10.1007/s11356-020-11708-w

    Article  CAS  Google Scholar 

  17. Qiu T, Liang Z, Guo W, Gao S, Qu C, Tabassum H, Zhang H, Zhu B, Zou R, Shao-Horn Y (2019) Highly exposed ruthenium-based electrocatalysts from bimetallic metal-organic frameworks for overall water splitting. Nano Energy 58:1–10. https://doi.org/10.1016/j.nanoen.2018.12.085

    Article  CAS  Google Scholar 

  18. Ding D, Shen K, Chen X, Chen H, Chen J, Fan T, Wu W, Li Y (2018) Multi-level architecture optimization of MOF-templated Co-based nanoparticles embedded in hollow N-doped carbon polyhedra for efficient OER and ORR. ACS Catal 8(9):7879–7888. https://doi.org/10.1021/acscatal.8b02504

    Article  CAS  Google Scholar 

  19. Cheng W, Wang Y, Ge S, Ding X, Cui Z, Shao Q (2021) One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties. Adv Compos Hybrid Mater 4(1):150–161. https://doi.org/10.1007/s42114-020-00199-5

    Article  CAS  Google Scholar 

  20. Wang Y, Liu Y, Wang C, Liu H, Zhang J, Lin J, Guo Z (2020) Significantly enhanced ultrathin NiCo-based MOF nanosheet electrodes hybrided with Ti3C2Tx MXene for high performance asymmetric supercapacitor. Eng Sci 9:50–59. https://doi.org/10.30919/es8d903

    Article  CAS  Google Scholar 

  21. Wu N, Zhao B, Liu J, Li Y, Chen Y, Chen L, Guo Z (2021) MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv Compos Hybrid Mater 4(3):707–715. https://doi.org/10.1007/s42114-021-00307-z

    Article  CAS  Google Scholar 

  22. Stassen I, Burtch N, Talin A, Falcaro P, Allendorf M, Ameloot R (2017) An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem Soc Rev 46(11):3185–3241. https://doi.org/10.1039/C7CS00122C

    Article  CAS  Google Scholar 

  23. Karimi A, Khataee A, Vatanpour V, Safarpour M (2019) High-flux PVDF mixed matrix membranes embedded with size-controlled ZIF-8 nanoparticles. Sep Purif Technol 229:115838. https://doi.org/10.1016/j.seppur.2019.115838

    Article  CAS  Google Scholar 

  24. Jin Y, Wu J, Wang J, Fan Y, Zhang S, Ma N, Dai W (2020) Highly efficient capture of benzothiophene with a novel water-resistant-bimetallic Cu-ZIF-8 material. Inorganica Chim Acta 503:119412. https://doi.org/10.1016/j.ica.2020.119412

    Article  CAS  Google Scholar 

  25. Wang Y, Wang Y, Zhang L, Liu CS, Pang H (2019) Core–shell-type ZIF-8@ ZIF-67@ POM hybrids as efficient electrocatalysts for the oxygen evolution reaction. Inorg Chem Front 6(9):2514–2520. https://doi.org/10.1039/C9QI00798A

    Article  CAS  Google Scholar 

  26. Liang R, Chen R, Jing F, Qin N, Wu L (2015) Multifunctional polyoxometalates encapsulated in MIL-100 (Fe): highly efficient photocatalysts for selective transformation under visible light. Dalton Trans 44(41):18227–18236. https://doi.org/10.1039/C5DT02986D

    Article  CAS  Google Scholar 

  27. Zhang Y, Park SJ (2019) Stabilization of dispersed CuPd bimetallic alloy nanoparticles on ZIF-8 for photoreduction of Cr (VI) in aqueous solution. Chem Eng J 369:353–362. https://doi.org/10.1016/j.cej.2019.03.083

    Article  CAS  Google Scholar 

  28. Dai Y, Xing P, Cui X, Li Z, Zhang X (2019) Coexistence of Cu (II) and Cu (I) in Cu ion-doped zeolitic imidazolate frameworks (ZIF-8) for the dehydrogenative coupling of silanes with alcohols. Dalton Trans 48(44):16562–16568. https://doi.org/10.1039/C9DT03181B

    Article  CAS  Google Scholar 

  29. Han Y, Zhai J, Zhang L, Dong S (2016) Direct carbonization of cobalt-doped NH2-MIL-53 (Fe) for electrocatalysis of oxygen evolution reaction. Nanoscale 8(2):1033–1039. https://doi.org/10.1039/C5NR06626C

    Article  CAS  Google Scholar 

  30. Zhang X, Yang Y, Huang W, Yang Y, Wang Y, He C, Liu N, Wu M, Tang L (2018) g-C3N4/UiO-66 nanohybrids with enhanced photocatalytic activities for the oxidation of dye under visible light irradiation. Mater Res Bull 99:349–358. https://doi.org/10.1016/j.materresbull.2017.11.028

    Article  CAS  Google Scholar 

  31. Zhao W, Yan Z, Qian L (2020) Graphitic carbon nitride: preparation, properties and applications in energy storage. Eng Sci 10:24–34. https://doi.org/10.30919/es8d1008

    Article  CAS  Google Scholar 

  32. Yuan B, Guo M, Murugadoss V, Song G, Guo Z (2021) Immobilization of graphitic carbon nitride on wood surface via chemical crosslinking method for UV resistance and self-cleaning. Adv Compos Hybrid Mater 4(2):286–293. https://doi.org/10.1007/s42114-021-00235-y

    Article  CAS  Google Scholar 

  33. Peh SB, Zhao D (2020) Synthesis and development of metal–organic frameworks. In Nanoporous Materials for Molecule Separation and Conversion. Elsevier, pp 3–43. https://doi.org/10.1016/B978-0-12-818487-5.00001-7.

  34. Cao Y, Hu P, Jia D (2012) Solvothermal synthesis, growth mechanism, and photoluminescence property of sub-micrometer PbS anisotropic structures. Nanoscale Res Lett 7(1):1–8. https://doi.org/10.1186/1556-276X-7-668

    Article  CAS  Google Scholar 

  35. Zhang YQ, Zhang BP, Ge ZH, Zhu LF, Li Y (2014) Preparation by solvothermal synthesis, growth mechanism, and photocatalytic performance of CuS nanopowders. Eur J Inorg Chem 14:2368–2375. https://doi.org/10.1002/ejic.201400098

    Article  CAS  Google Scholar 

  36. Liu X, Zhang J, Dong Y, Li H, Xia Y, Wang H (2018) A facile approach for the synthesis of Z-scheme photocatalyst ZIF-8/gC3N4 with highly enhanced photocatalytic activity under simulated sunlight. New J Chem 42(14):12180–12187. https://doi.org/10.1039/C8NJ01782D

    Article  CAS  Google Scholar 

  37. Karthik P, Shaheer AM, Vinu A, Neppolian B (2020) Amine functionalized metal–organic framework coordinated with transition metal ions: d–d transition enhanced optical absorption and role of transition metal sites on solar light driven H2 production. Small 16(12):1902990. https://doi.org/10.1002/smll.201902990

    Article  CAS  Google Scholar 

  38. Wang CC, Yi XH, Wang P (2019) Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance. Appl Catal B 247:24–48. https://doi.org/10.1016/j.apcatb.2019.01.091

    Article  CAS  Google Scholar 

  39. Elton LRB, Jackson DF (1966) X-ray diffraction and the Bragg law. Am J Phys 34(11):1036–1038. https://doi.org/10.1119/1.1972439

    Article  CAS  Google Scholar 

  40. Chen S, Yu J, Zhang J (2018) Enhanced photocatalytic CO2 reduction activity of MOF-derived ZnO/NiO porous hollow spheres. J CO2 Util 24: 548–554. https://doi.org/10.1016/j.jcou.2018.02.013.

  41. Pokhrel J, Bhoria N, Anastasiou S, Tsoufis T, Gournis D, Romanos G, Karanikolos GN (2018) CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions. Microporous and Mesoporous Mater 267:53–67. https://doi.org/10.1016/j.micromeso.2018.03.012

    Article  CAS  Google Scholar 

  42. Nagajyothi PC, Pandurangan M, Vattikuti SVP, Tettey CO, Sreekanth TVM, Shim J (2017) Enhanced photocatalytic activity of Ag/g-C3N4 composite. Sep Purif Technol 188:228–237. https://doi.org/10.1016/j.seppur.2017.07.026

    Article  CAS  Google Scholar 

  43. Shen R, Xie J, Zhang H, Zhang A, Chen X, Li X (2018) Enhanced solar fuel H2 generation over g-C3N4 nanosheet photocatalysts by the synergetic effect of noble metal-free Co2P cocatalyst and the environmental phosphorylation strategy. ACS Sustain Chem Eng 6(1):816–826. https://doi.org/10.1021/acssuschemeng.7b03169

    Article  CAS  Google Scholar 

  44. Askari M, Chung TS (2013) Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes. J Membr Sci 444:173–183. https://doi.org/10.1016/j.memsci.2013.05.016

    Article  CAS  Google Scholar 

  45. Nabi G, Malik N, Raza W (2020) Degradation effect of temperature variation and dye loading g-C3N4 towards organic dyes. Inorg Chem Commun 119:108050. https://doi.org/10.1016/j.inoche.2020.108050

    Article  CAS  Google Scholar 

  46. Xie Z, Liang S, Cai X, Ding B, Huang S, Hou Z, Ma PA, Cheng Z, Lin J (2019) O2-Cu/ZIF-8@ Ce6/ZIF-8@ F127 composite as a tumor microenvironment-responsive nanoplatform with enhanced photo-/chemodynamic antitumor efficacy. ACS Appl Mater Interfaces 11(35):31671–31680. https://doi.org/10.1021/acsami.9b10685

    Article  CAS  Google Scholar 

  47. Gong Y, Zhao X, Zhang H, Yang B, Xiao K, Guo T, Zhang J, Shao H, Wang Y, Yu G (2018) MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation. Appl Catal B 233:35–45. https://doi.org/10.1016/j.apcatb.2018.03.077

    Article  CAS  Google Scholar 

  48. Kim MR, Kim T, Rye HS, Lee W, Kim HG, Kim MI, Seo B, Lim CS (2020) Zeolitic imidazolate framework promoters in one-pot epoxy–amine reaction. J Mater Sci 55(5):2068–2076. https://doi.org/10.1007/s10853-019-04111-5

    Article  CAS  Google Scholar 

  49. Zhang Z, Lin S, Li X, Li H, Cui W (2017) Metal free and efficient photoelectrocatalytic removal of organic contaminants over gC3N4 nanosheet films decorated with carbon quantum dots. RSC adv 7(89):56335–56343. https://doi.org/10.1039/C7RA11205J

    Article  CAS  Google Scholar 

  50. Li J, Ma W, Chen J, An N, Zhao Y, Wang D, Mao Z (2020) Carbon vacancies improved photocatalytic hydrogen generation of g-C3N4 photocatalyst via magnesium vapor etching. Int J Hydrog 45(27):13939–13946. https://doi.org/10.1016/j.ijhydene.2020.03.067

    Article  CAS  Google Scholar 

  51. Omar HD (2016) The analysis of copper-iron metallic mixture by means of XRD and XRF. ILCPA 64:130–134. https://doi.org/10.18052/www.scipress.com/ILCPA.64.130

    Article  Google Scholar 

  52. Theivasanthi T, Alagar M (2010) X-ray diffraction studies of copper nano powder. arXiv 1003:6068. https://arxiv.org/abs/1003.6068

  53. Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye-Scherrer equation.’ Nat Nanotechnol 6(9):534–534. https://doi.org/10.1038/nnano.2011.145

    Article  CAS  Google Scholar 

  54. Wang H, Wang Y, Jia A, Wang C, Wu L, Yang Y, Wang Y (2017) A novel bifunctional Pd–ZIF-8/rGO catalyst with spatially separated active sites for the tandem Knoevenagel condensation–reduction reaction. Catal Sci Technol 7(23):5572–5584. https://doi.org/10.1039/C7CY01725A

    Article  Google Scholar 

  55. Tanaka S, Fujita K, Miyake Y, Miyamoto M, Hasegawa Y, Makino T, Van der Perre S, Cousin Saint Remi J, Van Assche T, Baron GV, Denayer JF (2015) Adsorption and diffusion phenomena in crystal size engineered ZIF-8 MOF. J Phys Chem C 119(51):28430–28439. https://doi.org/10.1021/acs.jpcc.5b09520

    Article  CAS  Google Scholar 

  56. Kolmykov O, Commenge JM, Alem H, Girot E, Mozet K, Medjahdi G, Schneider R (2017) Microfluidic reactors for the size-controlled synthesis of ZIF-8 crystals in aqueous phase. Mater Des 122:31–41. https://doi.org/10.1016/j.matdes.2017.03.002

    Article  CAS  Google Scholar 

  57. Chen S, Brown L, Levendorf M, Cai W, Ju SY, Edgeworth J, Li X, Magnuson CW, Velamakanni A, Piner RD, Kang J (2011) Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 5(2):1321–1327. https://doi.org/10.1021/nn103028d

    Article  CAS  Google Scholar 

  58. Xu J, Zhang L, Shi R, Zhu Y (2013) Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J Mater Chem A 1(46):14766–14772. https://doi.org/10.1039/C3TA13188B

    Article  CAS  Google Scholar 

  59. Dong H, Guo X, Yang C, Ouyang Z (2018) Synthesis of g-C3N4 by different precursors under burning explosion effect and its photocatalytic degradation for tylosin. Appl Catal B 230:65–76. https://doi.org/10.1016/j.apcatb.2018.02.044

    Article  CAS  Google Scholar 

  60. Sarkar S, Sumukh SS, Roy K, Kamboj N, Purkait T, Das M, Dey RS (2020) Facile one step synthesis of Cu-g-C3N4 electrocatalyst realized oxygen reduction reaction with excellent methanol crossover impact and durability. J Colloid Interface Sci 558:182–189. https://doi.org/10.1016/j.jcis.2019.09.107

    Article  CAS  Google Scholar 

  61. Yang X, Wen Z, Wu Z, Luo X (2018) Synthesis of ZnO/ZIF-8 hybrid photocatalysts derived from ZIF-8 with enhanced photocatalytic activity. Inorg Chem Front 5(3):687–693. https://doi.org/10.1039/C7QI00752C

    Article  CAS  Google Scholar 

  62. Tauc JC (1974) Amorphous and liquid semiconductors. Springer, Boston pp 25–27. https://doi.org/10.1007/978-1-4615-8705-74

  63. Wang Y, Kang C, Shang D, Tian T (2019) Preparation of Cu nanoparticle-doped ZIF-8/RGO composites for effective photodegradation of organic pollutant. Appl Organomet Chem 33(8):e4978. https://doi.org/10.1002/aoc.4978

    Article  CAS  Google Scholar 

  64. Schejn A, Aboulaich A, Balan L, Falk V, Lalevée J, Medjahdi G, Aranda L, Mozet K, Schneider R (2015) Cu2+-doped zeolitic imidazolate frameworks (ZIF-8): efficient and stable catalysts for cycloadditions and condensation reactions. Catal Sci Technol 5(3):1829–1839. https://doi.org/10.1039/C4CY01505C

    Article  CAS  Google Scholar 

  65. Goyal S, Shaharun MS, Kait CF, Abdullah B (2018) Effect of monometallic copper on zeolitic imidazolate framework-8 synthesized by hydrothermal method. In J Phys Conf Ser 1123(6):012062. https://doi.org/10.1088/1742-6596/1123/1/012062

    Article  CAS  Google Scholar 

  66. Yuan X, Zhou C, Jing Q, Tang Q, Mu Y, Du AK (2016) Facile synthesis of g-C3N4 nanosheets/ZnO nanocomposites with enhanced photocatalytic activity in reduction of aqueous chromium (VI) under visible light. Nanomaterials 6(9):173–185. https://doi.org/10.3390/nano6090173

    Article  CAS  Google Scholar 

  67. Qian L, Hou Y, Yu Z, Li M, Li F, Sun L, Luo W, Pan G (2018) Metal-induced Z-scheme CdS/Ag/g-C3N4 photocatalyst for enhanced hydrogen evolution under visible light: The synergy of MIP effect and electron mediator of Ag. J Mol Catal 458:43–51. https://doi.org/10.1016/j.mcat.2018.07.027

    Article  CAS  Google Scholar 

  68. Si Y, Li X, Yang G, Mie X, Ge L (2020) Fabrication of a novel core–shell CQDs@ZIF-8 composite with enhanced photocatalytic activity. J Mater Sci 55:13049–13061. https://doi.org/10.1007/s10853-020-04909-8

    Article  CAS  Google Scholar 

  69. Zhou L, Li N, Owens G, Chen Z (2019) Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8. Chem Eng Sci 362:628–637. https://doi.org/10.1016/j.cej.2019.01.068

    Article  CAS  Google Scholar 

  70. Gholinejad M, Naghshbandi Z, Sansano JM (2020) Co/Cu bimetallic ZIF as New heterogeneous catalyst for reduction of nitroarenes and dyes. Appl Organomet Chem 34(4):e5522. https://doi.org/10.1002/aoc.5522

    Article  CAS  Google Scholar 

  71. Wu X, Cheng J, Li X, Li Y, Lv K (2019) Enhanced visible photocatalytic oxidation of NO by repeated calcination of g-C3N4. Appl Surf Sci 465:1037–1046. https://doi.org/10.1016/j.apsusc.2018.09.165

    Article  CAS  Google Scholar 

  72. Jia L, Cheng X, Wang X, Cai H, He P, Ma J, Li L, Ding Y, Fan X (2019) Large-scale preparation of g-C3N4 porous nanotubes with enhanced photocatalytic activity by using salicylic acid and melamine. Ind Eng Chem Res 59(3):1065–1072. https://doi.org/10.1021/acs.iecr.9b04761

    Article  CAS  Google Scholar 

  73. Saliba D, Ammar M, Rammal M, Al-Ghoul M, Hmadeh M (2018) Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. JACS 140(5):1812–1823. https://doi.org/10.1021/jacs.7b11589

    Article  CAS  Google Scholar 

  74. Jiang J, Cao S, Hu C, Chen C (2017) A comparison study of alkali metal-doped g-C3N4 for visible-light photocatalytic hydrogen evolution. Chinese J Catal 38(12):1981–1989. https://doi.org/10.1016/S1872-2067(17)62936-X

    Article  CAS  Google Scholar 

  75. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N, Fan R (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4(1):173–185. https://doi.org/10.1007/s42114-020-00202-z

    Article  CAS  Google Scholar 

  76. Yang S, Xia N, Li M, Liu P, Wang Y, Qu L (2019) Facile synthesis of a zeolitic imidazolate framework-8 with reduced graphene oxide hybrid material as an efficient electrocatalyst for nonenzymatic H2O2 sensing. RSC Adv 9(27):15217–15223. https://doi.org/10.1039/C9RA02096A

    Article  CAS  Google Scholar 

  77. Gholami M, Mohammadi T, Mosleh S, Hemmati M (2017) CO2/CH4 separation using mixed matrix membrane-based polyurethane incorporated with ZIF-8 nanoparticles. Chem Pap 71(10):1839–1853. https://doi.org/10.1007/s11696-017-0177-9

    Article  CAS  Google Scholar 

  78. He J, Sun H, Indrawirawan S, Duan X, Tade MO, Wang S (2015) Novel polyoxometalate@g-C3N4 hybrid photocatalysts for degradation of dyes and phenolics. J Colloid Interface Sci 456:15–21. https://doi.org/10.1016/j.jcis.2015.06.003

    Article  CAS  Google Scholar 

  79. Liu Q, Zhou B, Xu M, Mao G (2017) Integration of nanosized ZIF-8 particles onto mesoporous TiO2 nanobeads for enhanced photocatalytic activity. RSC Adv 7(13):8004–8010. https://doi.org/10.1039/C6RA28277F

    Article  CAS  Google Scholar 

  80. Liu NL, Dutta S, Salunkhe RR, Ahamad T, Alshehri SM, Yamauchi Y, Hou CH, Wu KCW (2016) ZIF-8 derived, nitrogen-doped porous electrodes of carbon polyhedron particles for high-performance electrosorption of salt ions. Sci Rep 6(1):1–7. https://doi.org/10.1038/srep28847

    Article  CAS  Google Scholar 

  81. Chen Y, Huang W, Chen K, Zhang T, Wang Y, Wang J (2019) Facile fabrication of electrochemical sensor based on novel core-shell PPy@ZIF-8 structures: enhanced charge collection for quercetin in human plasma samples. Sens Actuators B Chem 290:434–442. https://doi.org/10.1016/j.snb.2019.04.006

    Article  CAS  Google Scholar 

  82. Wu H, Zhong Y, Tang Y, Huang Y, Liu G, Sun W, Guo Z (2021) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Compos Hybrid Mater 42(4):1–12. https://doi.org/10.1007/s42114-021-00378-y

    Article  CAS  Google Scholar 

  83. Qi G, Liu Y, Chen L, Xie P, Pan D, Shi Z, Guo Z (2021) Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv Compos Hybrid Mater 4(4):1226–1238. https://doi.org/10.1007/s42114-021-00368-0

    Article  CAS  Google Scholar 

  84. Wu H, Sun H, Han F, Xie P, Zhong Y, Quan B, Guo Z (2022) Negative permittivity behavior in flexible carbon nanofibers-polydimethylsiloxane films. Eng Sci 17:113–120. https://doi.org/10.30919/es8d576

  85. Liu M, Mu YF, Yao S, Guo S, Guo XW, Zhang ZM, Lu TB (2019) Photosensitizing single-site metal−organic framework enabling visible-light-driven CO2 reduction for syngas production. Appl Catal B 245:496–501. https://doi.org/10.1016/j.apcatb.2019.01.014

    Article  CAS  Google Scholar 

  86. Li K, Peng B, Peng T (2016) Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal 6(11):7485–7527. https://doi.org/10.1021/acscatal.6b02089

    Article  CAS  Google Scholar 

  87. Di T, Zhu B, Cheng B, Yu J, Xu J (2017) A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance. J Catal 352:532–541. https://doi.org/10.1016/j.jcat.2017.06.006

    Article  CAS  Google Scholar 

  88. Yuan H, Peng H, Guan J, Liu Y, Dai J, Su R, Seok I (2020) Photodegradation of gaseous toluene by vacuum ultraviolet light: performance and mechanism. Eng Sci 9:68–76. https://doi.org/10.30919/es8d910

    Article  CAS  Google Scholar 

  89. Kumar R, Umar A, Kumar R, Chauhan MS, Kumar G, Chauhan S (2021) Spindle-like Co3O4-ZnO nanocomposites scaffold for hydrazine sensing and photocatalytic degradation of rhodamine B dye. Eng Sci 16:288–300. https://doi.org/10.30919/es8d548

    Article  CAS  Google Scholar 

  90. Tekalgne MA, Do HH, Hasani A, Van Le Q, Jang HW, Ahn SH, Kim SY (2019) Two-dimensional materials and metal-organic frameworks for the CO2 reduction reaction. Mater Today Adv 5:100038. https://doi.org/10.1016/j.mtadv.2019.100038

    Article  Google Scholar 

  91. Kočí K, Obalová L, Matějová L, Plachá D, Lacný Z, Jirkovský J, Šolcová O (2009) Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl Catal B 89(3–4):494–502. https://doi.org/10.1016/j.apcatb.2009.01.010

    Article  CAS  Google Scholar 

  92. Tafreshi SS, Moshfegh AZ, de Leeuw NH (2019) Mechanism of photocatalytic reduction of CO2 by Ag3PO4(111)/g-C3N4 nanocomposite: a first-principles study. J Phys Chem C 123(36):22191–22201. https://doi.org/10.1021/acs.jpcc.9b04493

    Article  CAS  Google Scholar 

  93. Sayadi MH, Sobhani S, Shekari H (2019) Photocatalytic degradation of azithromycin using GO@Fe3O4/ZnO/SnO2 nanocomposites. J Clean Prod 232:127–136. https://doi.org/10.1016/j.jclepro.2019.05.338

    Article  CAS  Google Scholar 

  94. Xie W, Shi Y, Wang Y, Zheng Y, Liu H, Hu Q, Wei S, Gu H, Guo Z (2021) Electrospun iron/cobalt alloy nanoparticles on carbon nanofibers towards exhaustive electrocatalytic degradation of tetracycline in wastewater. Chem Eng Sci 405:126585. https://doi.org/10.1016/j.cej.2020.126585

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper was adapted from a PhD student thesis (ID Number: 24969/1398) in the Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand. The authors of this research highly appreciate the support of the Faculty of Natural Resources and Environment, University of Birjand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Sayadi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamanehpour, E., Sayadi, M.H. & Hajiani, M. A hierarchical graphitic carbon nitride supported by metal–organic framework and copper nanocomposite as a novel bifunctional catalyst with long-term stability for enhanced carbon dioxide photoreduction under solar light irradiation. Adv Compos Hybrid Mater 5, 2461–2477 (2022). https://doi.org/10.1007/s42114-022-00459-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00459-6

Keywords

Navigation