Skip to main content
Log in

Fine-tuned mesoporous covalent organic frameworks for highly efficient low molecular-weight proteins separation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Covalent organic frameworks (COFs) are prominent porous materials for molecules separation due to their desirable structures. However, very few COFs are reported for the separation of macromolecules such as low molecular-weight (MW) proteins. Here, two stable mesoporous COFs (Azo-COF and Tp-COF) with highly crystallized frameworks are synthesized, and their pore sizes are slightly-regulated via elaborate selection of pyrene knots and amino linkages. Benefiting from the pore size difference less than 4 Å, the tandem utilization of these two COFs exhibits efficiently size-selective separation ability towards low MW proteins cytochrome c and myoglobin with small MW difference of 2 kDa, in which protein adsorption possibilities are verified by computational calculations together with confocal laser scanning microscopy (CLSM). Furthermore, a simple COF-based separation device is designed and prepared to achieve effective and low-consumption proteins separation. This work has offered an optimized synthetic strategy for fine-tuned mesoporous COFs and expanded their applications on macromolecules separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Egas, D. A.; Wirth, M. J. Fundamentals of protein separations: 50 years of nanotechnology, and growing. Annu. Rev. Anal. Chem. 2008, 1, 833–855.

    Article  CAS  Google Scholar 

  2. Li, J.; Liao, X. P.; Zhang, Q. X.; Shi, B. Adsorption and separation of proteins by collagen fiber adsorbent. J. Chromatogr. B 2013, 928, 131–138.

    Article  CAS  Google Scholar 

  3. Tirumalai, R. S.; Chan, K. C.; Prieto, D. A.; Issaq, H. J.; Conrads, T. P.; Veenstra, T. D. Characterization of the low molecular weight human serum proteome. Mol. Cell. Proteomics 2003, 2, 1096–1103.

    Article  CAS  Google Scholar 

  4. Sun, Q.; Pan, Y. X.; Wang, X. L.; Li, H.; Farmakes, J.; Aguila, B.; Yang, Z. Y.; Ma, S. Q. Mapping out the degree of freedom of hosted enzymes in confined spatial environments. Chem 2019, 5, 3184–3195.

    Article  CAS  Google Scholar 

  5. Sun, Q.; Fu, C. W.; Aguila, B.; Perman, J.; Wang, S.; Huang, H. Y.; Xiao, F. S.; Ma, S. Q. Pore environment control and enhanced performance of enzymes infiltrated in covalent organic frameworks. J. Am. Chem. Soc. 2018, 140, 984–992.

    Article  CAS  Google Scholar 

  6. Li, M. M.; Qiao, S.; Zheng, Y. L.; Andaloussi, Y. H.; Li, X.; Zhang, Z. J.; Li, A.; Cheng, P.; Ma, S. Q.; Chen, Y. Fabricating covalent organic framework capsules with commodious microenvironment for enzymes. J. Am. Chem. Soc. 2020, 142, 6675–6681.

    Article  CAS  Google Scholar 

  7. Qiao, S.; Duan, W. J.; Yu, J. Y.; Zheng, Y. L.; Yan, D.; Jin, F. Z.; Zhang, S. N.; Zhang, Z. J.; Chen, H. X.; Huang, H. et al. Fabrication of biomolecule-covalent-organic-framework composites as responsive platforms for smart regulation of fermentation application. ACS Appl. Mater. Interfaces 2021, 13, 32058–32066.

    Article  CAS  Google Scholar 

  8. Zhang, S. N.; Zheng, Y. L.; An, H. D.; Aguila, B.; Yang, C. X.; Dong, Y. Y.; Xie, W.; Cheng, P.; Zhang, Z. J.; Chen, Y. et al. Covalent organic frameworks with chirality enriched by biomolecules for efficient chiral separation. Angew. Chem., Int. Ed. 2018, 57, 16754–16759.

    Article  CAS  Google Scholar 

  9. Sun, Q.; Aguila, B.; Lan, P. C.; Ma, S. Q. Tuning pore heterogeneity in covalent organic frameworks for enhanced enzyme accessibility and resistance against denaturants. Adv. Mater. 2019, 31, 1900008.

    Article  Google Scholar 

  10. Structural Genomics Consortium; Architecture et Fonction des Macromolécules Biologiques; Berkeley Structural Genomics Center; China Structural Genomics Consortium; Integrated Center for Structure and Function Innovation; Israel Structural Proteomics Center; Joint Center for Structural Genomics; Midwest Center for Structural Genomics; New York Structural GenomiX Research Center for Structural Genomics; Northeast Structural Genomics Consortium et al. Addendum: Protein production and purification. Nat. Methods 2008, 5, 369.

    Article  Google Scholar 

  11. Zheng, K.; Chen, Y.; Wang, X. H.; Zhao, X. T.; Qian, W. W.; Xu, Y. S. Selective protein separation based on charge anisotropy by spherical polyelectrolyte brushes. Langmuir 2020, 36, 10528–10536.

    Article  CAS  Google Scholar 

  12. Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

    Article  Google Scholar 

  13. Huang, N.; Wang, P.; Jiang, D. L. Covalent organic frameworks: A materials platform for structural and functional designs. Nat. Rev. Mater. 2016, 1, 16068.

    Article  CAS  Google Scholar 

  14. Li, X.; Yadav, P.; Loh, K. P. Function-oriented synthesis of two-dimensional (2D) covalent organic frameworks—From 3D solids to 2D sheets. Chem. Soc. Rev. 2020, 49, 4835–4866.

    Article  CAS  Google Scholar 

  15. Liang, R. R.; Jiang, S. Y.; A, R. H.; Zhao, X. Two-dimensional covalent organic frameworks with hierarchical porosity. Chem. Soc. Rev. 2020, 49, 3920–3951.

    Article  CAS  Google Scholar 

  16. Li, Y. S.; Chen, W. B.; Xing, G. L.; Jiang, D. L.; Chen, L. New synthetic strategies toward covalent organic frameworks. Chem. Soc. Rev. 2020, 49, 2852–2868.

    Article  CAS  Google Scholar 

  17. Yuan, F. Y.; Tan, J.; Guo, J. Assemblies of covalent organic framework microcrystals: Multiple-dimensional manipulation for enhanced applications. Sci. China Chem. 2018, 61, 143–152.

    Article  Google Scholar 

  18. Song, Y. P.; Sun, Q.; Aguila, B.; Ma, S. Q. Opportunities of covalent organic frameworks for advanced applications. Adv. Sci. 2019, 6, 1801410.

    Article  Google Scholar 

  19. Yusran, Y.; Guan, X. Y.; Li, H.; Fang, Q. R.; Qiu, S. L. Postsynthetic functionalization of covalent organic frameworks. Natl. Sci. Rev. 2020, 7, 170–190.

    Article  CAS  Google Scholar 

  20. Chen, Q. D.; Tang, J. J.; Fang, Q. R. Highly stable fluorine containing hierarchical porous covalent organic framework. Chem. J. Chin. Univ. 2018, 39, 2357–2362.

    CAS  Google Scholar 

  21. Zeng, Y. F.; Zou, R. Q.; Zhao, Y. L. Covalent organic frameworks for CO2 capture. Adv. Mater. 2016, 28, 2855–2873.

    Article  CAS  Google Scholar 

  22. Rieth, A. J.; Dincă, M. Programming framework materials for ammonia capture. ACS Cent. Sci. 2018, 4, 666–667.

    Article  CAS  Google Scholar 

  23. Yang, Y. J.; Faheem, M.; Wang, L. L.; Meng, Q. H.; Sha, H. Y.; Yang, N.; Yuan, Y.; Zhu, G. S. Surface pore engineering of covalent organic frameworks for ammonia capture through synergistic multivariate and open metal site approaches. ACS Cent. Sci. 2018, 4, 748–754.

    Article  CAS  Google Scholar 

  24. Jiang, L. C.; Tian, Y. Y.; Sun, T.; Zhu, Y. L.; Ren, H.; Zou, X. Q.; Ma, Y. H.; Meihaus, K. R.; Long, J. R.; Zhu, G. A crystalline polyimide porous organic framework for selective adsorption of acetylene over ethylene. J. Am. Chem. Soc. 2018, 140, 15724–15730.

    Article  CAS  Google Scholar 

  25. Peng, Y. W.; Xu, G. D.; Hu, Z. G.; Cheng, Y. D.; Chi, C. L.; Yuan, D. Q.; Cheng, H. S.; Zhao, D. Mechanoassisted synthesis of sulfonated covalent organic frameworks with high intrinsic proton conductivity. ACS Appl. Mater. Interfaces 2016, 8, 18505–18512.

    Article  CAS  Google Scholar 

  26. Xu, H.; Tao, S. S.; Jiang, D. L. Proton conduction in crystalline and porous covalent organic frameworks. Nat. Mater. 2016, 15, 722–726.

    Article  CAS  Google Scholar 

  27. Yang, Y.; He, X. Y.; Zhang, P. H.; Andaloussi, Y. H.; Zhang, H. L.; Jiang, Z. Y.; Chen, Y.; Ma, S. Q.; Cheng, P.; Zhang, Z. J. Combined intrinsic and extrinsic proton conduction in robust covalent organic frameworks for hydrogen fuel cell applications. Angew. Chem., Int. Ed. 2020, 59, 3678–3684.

    Article  CAS  Google Scholar 

  28. Wang, X. Y.; Chen, L. J.; Chong, S. Y.; Little, M. A.; Wu, Y. Z.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 2018, 10, 1180–1189.

    Article  CAS  Google Scholar 

  29. Chen, R. F.; Shi, J. L.; Ma, Y.; Lin, G. Q.; Lang, X. J.; Wang, C. Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew. Chem., Int. Ed. 2019, 58, 6430–6434.

    Article  CAS  Google Scholar 

  30. Wang, L. K.; Zhou, J. J.; Lan, Y. B.; Ding, S. Y.; Yu, W.; Wang, W. Divergent synthesis of chiral covalent organic frameworks. Angew. Chem., Int. Ed. 2019, 58, 9443–9447.

    Article  CAS  Google Scholar 

  31. Feng, X. F.; Gao, Z.; Xiao, L. H.; Lai, Z. Q.; Luo, F. A Ni/Fe complex incorporated into a covalent organic framework as a singlesite heterogeneous catalyst for efficient oxygen evolution reaction. Inorg. Chem. Front. 2020, 7, 3925–3931.

    Article  CAS  Google Scholar 

  32. Kaczmarek, A. M.; Jena, H. S.; Krishnaraj, C.; Rijckaert, H.; Veerapandian, S. K. P.; Meijerink, A. van der Voort, P. Luminescent ratiometric thermometers based on a 4F-3D grafted covalent organic framework to locally measure temperature gradients during catalytic reactions. Angew. Chem., Int. Ed. 2021, 60, 3727–3736.

    Article  CAS  Google Scholar 

  33. Lv, J. Q.; Tan, Y. X.; Xie, J. F.; Yang, R.; Yu, M. X.; Sun, S. S.; Li, M. D.; Yuan, D. Q.; Wang, Y. B. Direct solar-to-electrochemical energy storage in a functionalized covalent organic framework. Angew. Chem., Int. Ed. 2018, 57, 12716–12720.

    Article  CAS  Google Scholar 

  34. Guo, Z. B.; Zhang, Y. Y.; Dong, Y.; Li, J.; Li, S. W.; Shao, P. P.; Feng, X.; Wang, B. Fast ion transport pathway provided by polyethylene glycol confined in covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 1923–1927.

    Article  CAS  Google Scholar 

  35. Bisbey, R. P.; Dichtel, W. R. Covalent organic frameworks as a platform for multidimensional polymerization. ACS Cent. Sci. 2017, 3, 533–543.

    Article  CAS  Google Scholar 

  36. Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.

    Article  CAS  Google Scholar 

  37. Zou, X. Q.; Ren, H.; Zhu, G. S. Topology-directed design of porous organic frameworks and their advanced applications. Chem. Commun. 2013, 49, 3925–3936.

    Article  CAS  Google Scholar 

  38. Fang, Q. R.; Zhuang, Z. B.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J. H.; Qiu, S. L.; Yan, Y. S. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat. Commun. 2014, 5, 4503.

    Article  Google Scholar 

  39. Rabbani, M. G.; Sekizkardes, A. K.; Kahveci, Z.; Reich, T. E.; Ding, R. S.; El-Kaderi, H. M. A 2D mesoporous imine-linked covalent organic framework for high pressure gas storage applications. Chem.—Eur. J. 2013, 19, 3324–3328.

    Article  CAS  Google Scholar 

  40. Jin, E. Q.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q. H. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 2017, 357, 673–676.

    Article  CAS  Google Scholar 

  41. Sun, Z. T.; Liu, Q.; Qu, G.; Feng, Y.; Reetz, M. T. Utility of b-factors in protein science: Interpreting rigidity, flexibility, and internal motion and engineering thermostability. Chem. Rev. 2019, 119, 1626–1665.

    Article  CAS  Google Scholar 

  42. Zhao, D. Y.; Tian, Y. Y.; Jing, X. F.; Lu, Y.; Zhu, G. S. PAF1@cellulose nanofibril composite aerogel for highly-efficient removal of bisphenol A. J. Mater. Chem. 2019, 7, 157–164.

    Article  CAS  Google Scholar 

  43. Yan, Y. H.; Wu, S. M.; Yan, Y. L.; Tang, X. H.; Cai, S. L.; Zheng, S. R.; Zhang, W. G.; Gu, F. L. Sulfonic acid-functionalized spherical covalent organic framework with ultrahigh capacity for the removal of cationic dyes. Chem. J. Chin. Univ. 2021, 42, 956–964.

    CAS  Google Scholar 

  44. He, H. M.; Han, H. B.; Shi, H.; Tian, Y. Y.; Sun, F. X.; Song, Y.; Li, Q. S.; Zhu, G. S. Construction of thermophilic lipase-embedded metal-organic frameworks via biomimetic mineralization: A biocatalyst for ester hydrolysis and kinetic resolution. ACS Appl. Mater. Interfaces 2016, 8, 24517–24524.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Fundamental Research Funds for the Central Universities (No. 2412019FZ008), the National Natural Science Foundation of China (Nos. 21503038 and 22074014), and the “111” project (No. B18012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengchao Cui, Li Yang or Xiaofei Jing.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Azhar, I., Yang, Y. et al. Fine-tuned mesoporous covalent organic frameworks for highly efficient low molecular-weight proteins separation. Nano Res. 15, 4569–4574 (2022). https://doi.org/10.1007/s12274-022-4078-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4078-z

Keywords

Navigation