Skip to main content
Log in

Genetic Modification of Mesenchymal Stem Cells for Neurological Disease Therapy: What Effects Does it Have on Phenotype/Cell Behavior, Determining Their Effectiveness?

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells are a promising tool in regenerative medicine, and their functions can be enhanced through genetic modification. Recent advances in genetic engineering provide several methods that enable gene delivery to mesenchymal stem cells. However, it remains to be decided whether genetic modification of mesenchymal stem cells by vectors carrying reporter or therapeutic genes leads to adverse effects on morphology, phenotypic profiles, and viability of transplanted cells. In this regard, we focus on the description of genetic modification methods of mesenchymal stem cells, their effectiveness, and the impact on phenotype/cell behavior/proliferation and the differentiation ability of these cells in vitro and in vivo. Furthermore, we compare the main effects of genetically modified mesenchymal stem cells with native mesenchymal stem cells when applied in the therapy of neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. https://doi.org/10.1016/j.cell.2006.07.024.

    Article  CAS  Google Scholar 

  2. Buzhor E, Leshansky L, Blumenthal J, Barash H, Warshawsky D, Mazor Y, et al. Cell-based therapy approaches: the hope for incurable diseases. Regen Med. 2014;9(5):649–72. https://doi.org/10.2217/rme.14.35.

    Article  CAS  PubMed  Google Scholar 

  3. Kemp KC, Hows J, Donaldson C. Bone marrow-derived mesenchymal stem cells. Leuk Lymphoma. 2005;46(11):1531–44. https://doi.org/10.1080/10428190500215076.

    Article  PubMed  Google Scholar 

  4. Janowski M, Date I. Systemic neurotransplantation: a problem-oriented systematic review. Rev Neurosci. 2009;20(1):39–60.

    CAS  PubMed  Google Scholar 

  5. Lukashev AN, Zamyatnin AA Jr. Viral vectors for gene therapy: current state and clinical perspectives. Biochemistry (Mosc). 2016;81(7):700–8. https://doi.org/10.1134/S0006297916070063.

    Article  CAS  Google Scholar 

  6. Nowakowski A, Andrzejewska A, Janowski M, Walczak P, Lukomska B. Genetic engineering of stem cells for enhanced therapy. Acta Neurobiol Exp (Wars). 2013;73(1):1–18.

    Google Scholar 

  7. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346–58. https://doi.org/10.1038/nrg1066.

    Article  CAS  PubMed  Google Scholar 

  8. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–55. https://doi.org/10.1038/nrg3763.

    Article  CAS  PubMed  Google Scholar 

  9. Wang W, Xu X, Li Z, Lendlein A, Ma N. Genetic engineering of mesenchymal stem cells by non-viral gene delivery. Clin Hemorheol Microcirc. 2014;58(1):19–48. https://doi.org/10.3233/CH-141883.

    Article  PubMed  Google Scholar 

  10. Hamann A, Nguyen A, Pannier AK. Nucleic acid delivery to mesenchymal stem cells: a review of nonviral methods and applications. J Biol Eng. 2019;13:7. https://doi.org/10.1186/s13036-019-0140-0.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Han SW, Nakamura C, Kotobuki N, Obataya I, Ohgushi H, Nagamune T, et al. High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy. Nanomedicine. 2008;4(3):215–25. https://doi.org/10.1016/j.nano.2008.03.005.

    Article  CAS  PubMed  Google Scholar 

  12. Potter H, Weir L, Leder P. Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci USA. 1984;81(22):7161–5. https://doi.org/10.1073/pnas.81.22.7161.

    Article  CAS  PubMed  Google Scholar 

  13. Andre F, Mir LM. DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Ther. 2004;11(Suppl. 1):S33–42. https://doi.org/10.1038/sj.gt.3302367.

    Article  CAS  PubMed  Google Scholar 

  14. Shi J, Ma Y, Zhu J, Chen Y, Sun Y, Yao Y, et al. A review on electroporation-based intracellular delivery. Molecules. 2018;23(11):3044. https://doi.org/10.3390/molecules23113044.

    Article  CAS  PubMed Central  Google Scholar 

  15. Du X, Wang J, Zhou Q, Zhang L, Wang S, Zhang Z, et al. Advanced physical techniques for gene delivery based on membrane perforation. Drug Deliv. 2018;25(1):1516–25. https://doi.org/10.1080/10717544.2018.1480674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Canatella PJ, Prausnitz MR. Prediction and optimization of gene transfection and drug delivery by electroporation. Gene Ther. 2001;8(19):1464–9. https://doi.org/10.1038/sj.gt.3301547.

    Article  CAS  PubMed  Google Scholar 

  17. Park SA, Ryu CH, Kim SM, Lim JY, Park SI, Jeong CH, et al. CXCR4-transfected human umbilical cord blood-derived mesenchymal stem cells exhibit enhanced migratory capacity toward gliomas. Int J Oncol. 2011;38(1):97–103.

    CAS  PubMed  Google Scholar 

  18. Ferreira E, Potier E, Vaudin P, Oudina K, Bensidhoum M, Logeart-Avramoglou D, et al. Sustained and promoter dependent bone morphogenetic protein expression by rat mesenchymal stem cells after BMP-2 transgene electrotransfer. Eur Cell Mater. 2012;24:18–28. https://doi.org/10.22203/ecm.v024a02.

    Article  CAS  PubMed  Google Scholar 

  19. Aslan H, Zilberman Y, Arbeli V, Sheyn D, Matan Y, Liebergall M, et al. Nucleofection-based ex vivo nonviral gene delivery to human stem cells as a platform for tissue regeneration. Tissue Eng. 2006;12(4):877–89. https://doi.org/10.1089/ten.2006.12.877.

    Article  CAS  PubMed  Google Scholar 

  20. Kim JH, Shin KH, Li TZ, Suh H. Potential of nucleofected human MSCs for insulin secretion. J Tissue Eng Regen Med. 2011;5(10):761–9. https://doi.org/10.1002/term.371.

    Article  CAS  PubMed  Google Scholar 

  21. Van Pham P, Thi-My Nguyen P, Thai-Quynh Nguyen A, Minh Pham V, Nguyen-Tu Bui A, Thi-Tung Dang L, et al. Improved differentiation of umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells by PDX-1 mRNA transfection. Differentiation. 2014;87(5):200–8. https://doi.org/10.1016/j.diff.2014.08.001.

    Article  CAS  PubMed  Google Scholar 

  22. Lim JY, Park SH, Jeong CH, Oh JH, Kim SM, Ryu CH, et al. Microporation is a valuable transfection method for efficient gene delivery into human umbilical cord blood-derived mesenchymal stem cells. BMC Biotechnol. 2010;10:38. https://doi.org/10.1186/1472-6750-10-38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Madeira C, Ribeiro SC, Pinheiro IS, Martins SA, Andrade PZ, da Silva CL, et al. Gene delivery to human bone marrow mesenchymal stem cells by microporation. J Biotechnol. 2011;151(1):130–6. https://doi.org/10.1016/j.jbiotec.2010.11.002.

    Article  CAS  PubMed  Google Scholar 

  24. Xiang S, Tong H, Shi Q, Fernandes JC, Jin T, Dai K, et al. Uptake mechanisms of non-viral gene delivery. J Control Release. 2012;158(3):371–8. https://doi.org/10.1016/j.jconrel.2011.09.093.

    Article  CAS  PubMed  Google Scholar 

  25. Gonzalez-Fernandez T, Sathy BN, Hobbs C, Cunniffe GM, McCarthy HO, Dunne NJ, et al. Mesenchymal stem cell fate following non-viral gene transfection strongly depends on the choice of delivery vector. Acta Biomater. 2017;55:226–38. https://doi.org/10.1016/j.actbio.2017.03.044.

    Article  CAS  PubMed  Google Scholar 

  26. Hoare M, Greiser U, Schu S, Mashayekhi K, Aydogan E, Murphy M, et al. Enhanced lipoplex-mediated gene expression in mesenchymal stem cells using reiterated nuclear localization sequence peptides. J Gene Med. 2010;12(2):207–18. https://doi.org/10.1002/jgm.1426.

    Article  CAS  PubMed  Google Scholar 

  27. Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S, et al. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis. 2017;4(2):43–63. https://doi.org/10.1016/j.gendis.2017.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sharma M, Mishra B, Saikia UN, Bahl A, Ratho RK, Talwar KK. Role of coxsackievirus and adenovirus receptor (CAR) expression and viral load of adenovirus and enterovirus in patients with dilated cardiomyopathy. Arch Virol. 2016;161(1):87–94. https://doi.org/10.1007/s00705-015-2632-7.

    Article  CAS  PubMed  Google Scholar 

  29. Harui A, Suzuki S, Kochanek S, Mitani K. Frequency and stability of chromosomal integration of adenovirus vectors. J Virol. 1999;73(7):6141–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Suzuki T, Kawamura K, Li Q, Okamoto S, Tada Y, Tatsumi K, et al. Mesenchymal stem cells are efficiently transduced with adenoviruses bearing type 35-derived fibers and the transduced cells with the IL-28A gene produces cytotoxicity to lung carcinoma cells co-cultured. BMC Cancer. 2014;14:713. https://doi.org/10.1186/1471-2407-14-713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marasini S, Chang DY, Jung JH, Lee SJ, Cha HL, Suh-Kim H, et al. Effects of adenoviral gene transduction on the stemness of human bone marrow mesenchymal stem cells. Mol Cells. 2017;40(8):598–605. https://doi.org/10.14348/molcells.2017.0095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kanerva A, Mikheeva GV, Krasnykh V, Coolidge CJ, Lam JT, Mahasreshti PJ, et al. Targeting adenovirus to the serotype 3 receptor increases gene transfer efficiency to ovarian cancer cells. Clin Cancer Res. 2002;8(1):275–80.

    CAS  PubMed  Google Scholar 

  33. Kuroki LM, Jin X, Dmitriev IP, Kashentseva EA, Powell MA, Mutch DG, et al. Adenovirus platform enhances transduction efficiency of human mesenchymal stem cells: an opportunity for cellular carriers of targeted TRAIL-based TR3 biologics in ovarian cancer. PLoS One. 2017;12(12):e0190125. https://doi.org/10.1371/journal.pone.0190125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hung SC, Lu CY, Shyue SK, Liu HC, Ho LL. Lineage differentiation-associated loss of adenoviral susceptibility and Coxsackie-adenovirus receptor expression in human mesenchymal stem cells. Stem Cells. 2004;22(7):1321–9. https://doi.org/10.1634/stemcells.2003-0176.

    Article  PubMed  Google Scholar 

  35. Treacy O, Ryan AE, Heinzl T, O’Flynn L, Cregg M, Wilk M, et al. Adenoviral transduction of mesenchymal stem cells: in vitro responses and in vivo immune responses after cell transplantation. PLoS One. 2012;7(8):e42662. https://doi.org/10.1371/journal.pone.0042662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Keeler AM, ElMallah MK, Flotte TR. Gene therapy 2017: progress and future directions. Clin Transl Sci. 2017;10(4):242–8. https://doi.org/10.1111/cts.12466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen SH, Haam J, Walker M, Scappini E, Naughton J, Martin NP. Recombinant viral vectors as neuroscience tools. Curr Protoc Neurosci. 2019;87(1):e67. https://doi.org/10.1002/cpns.67.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Elsner C, Bohne J. The retroviral vector family: something for everyone. Virus Genes. 2017;53(5):714–22. https://doi.org/10.1007/s11262-017-1489-0.

    Article  CAS  PubMed  Google Scholar 

  39. Hacein-Bey-Abina S, Hauer J, Lim A, Picard C, Wang GP, Berry CC, et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2010;363(4):355–64. https://doi.org/10.1056/NEJMoa1000164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Everson EM, Trobridge GD. Retroviral vector interactions with hematopoietic cells. Curr Opin Virol. 2016;21:41–6. https://doi.org/10.1016/j.coviro.2016.07.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Milone MC, O’Doherty U. Clinical use of lentiviral vectors. Leukemia. 2018;32(7):1529–41. https://doi.org/10.1038/s41375-018-0106-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McGinley L, McMahon J, Strappe P, Barry F, Murphy M, O’Toole D, et al. Lentiviral vector mediated modification of mesenchymal stem cells & enhanced survival in an in vitro model of ischaemia. Stem Cell Res Ther. 2011;2(2):12. https://doi.org/10.1186/scrt53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mao Y, Yan R, Li A, Zhang Y, Li J, Du H, et al. Lentiviral vectors mediate long-term and high efficiency transgene expression in HEK 293T cells. Int J Med Sci. 2015;12(5):407–15. https://doi.org/10.7150/ijms.11270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hu S, Li M, Akkina R. Generation of high-titer pseudotyped lentiviral vectors. Methods Mol Biol. 2019;1937:125–34. https://doi.org/10.1007/978-1-4939-9065-8_7.

    Article  CAS  PubMed  Google Scholar 

  45. Grinev VV, Severin IN, Posrednik DV, Kosmacheva SM, Potapnev MP. Highly efficient transfer and stable expression of two genes upon lentivirus transduction of mesenchymal stem cells from human bone marrow. Genetika. 2012;48(3):389–400.

    CAS  PubMed  Google Scholar 

  46. Bryant LM, Christopher DM, Giles AR, Hinderer C, Rodriguez JL, Smith JB, et al. Lessons learned from the clinical development and market authorization of Glybera. Hum Gene Ther Clin Dev. 2013;24(2):55–64. https://doi.org/10.1089/humc.2013.087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen YH, Keiser MS, Davidson BL. Viral vectors for gene transfer. Curr Protoc Mouse Biol. 2018;8(4):e58. https://doi.org/10.1002/cpmo.58.

    Article  PubMed  Google Scholar 

  48. Nonnenmacher M, Weber T. Intracellular transport of recombinant adeno-associated virus vectors. Gene Ther. 2012;19(6):649–58. https://doi.org/10.1038/gt.2012.6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Samulski RJ, Muzyczka N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol. 2014;1(1):427–51. https://doi.org/10.1146/annurev-virology-031413-085355.

    Article  CAS  PubMed  Google Scholar 

  50. Cho M, Jung K, Kim SH, Kim IS, Kim M, Shin M, et al. Safety and efficacy evaluations of an adeno-associated virus variant for preparing IL10-secreting human neural stem cell-based therapeutics. Gene Ther. 2019. https://doi.org/10.1038/s41434-019-0057-8.

    Article  PubMed  Google Scholar 

  51. McCarty DM, Young SM Jr, Samulski RJ. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet. 2004;38:819–45. https://doi.org/10.1146/annurev.genet.37.110801.143717.

    Article  CAS  PubMed  Google Scholar 

  52. Patel A, Zhao J, Duan D, Lai Y. Design of AAV vectors for delivery of large or multiple transgenes. Methods Mol Biol. 2019;1950:19–33. https://doi.org/10.1007/978-1-4939-9139-6_2.

    Article  CAS  PubMed  Google Scholar 

  53. Locke M, Ussher JE, Mistry R, Taylor JA, Dunbar PR. Transduction of human adipose-derived mesenchymal stem cells by recombinant adeno-associated virus vectors. Tissue Eng Part C Methods. 2011;17(9):949–59. https://doi.org/10.1089/ten.TEC.2011.0153.

    Article  CAS  PubMed  Google Scholar 

  54. Chng K, Larsen SR, Zhou S, Wright JF, Martiniello-Wilks R, Rasko JE. Specific adeno-associated virus serotypes facilitate efficient gene transfer into human and non-human primate mesenchymal stromal cells. J Gene Med. 2007;9(1):22–32. https://doi.org/10.1002/jgm.990.

    Article  CAS  PubMed  Google Scholar 

  55. Stender S, Murphy M, O’Brien T, Stengaard C, Ulrich-Vinther M, Soballe K, et al. Adeno-associated viral vector transduction of human mesenchymal stem cells. Eur Cell Mater. 2007;13:93–9. https://doi.org/10.22203/ecm.v013a10(discussion 9).

    Article  CAS  PubMed  Google Scholar 

  56. McMahon JM, Conroy S, Lyons M, Greiser U, O’Shea C, Strappe P, et al. Gene transfer into rat mesenchymal stem cells: a comparative study of viral and nonviral vectors. Stem Cells Dev. 2006;15(1):87–96. https://doi.org/10.1089/scd.2006.15.87.

    Article  CAS  PubMed  Google Scholar 

  57. Yang J, Wang N, Chen D, Yu J, Pan Q, Wang D, et al. The impact of GFP reporter gene transduction and expression on metabolomics of placental mesenchymal stem cells determined by UHPLC-Q/TOF-MS. Stem Cells Int. 2017;2017:3167985. https://doi.org/10.1155/2017/3167985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Koelsch KA, Wang Y, Maier-Moore JS, Sawalha AH, Wren JD. GFP affects human T cell activation and cytokine production following in vitro stimulation. PLoS One. 2013;8(4):e50068. https://doi.org/10.1371/journal.pone.0050068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yu J, Su X, Zhu C, Pan Q, Yang J, Ma J, et al. GFP labeling and hepatic differentiation potential of human placenta-derived mesenchymal stem cells. Cell Physiol Biochem. 2015;35(6):2299–308. https://doi.org/10.1159/000374033.

    Article  CAS  PubMed  Google Scholar 

  60. van Vollenstee FA, Jackson C, Hoffmann D, Potgieter M, Durandt C, Pepper MS. Human adipose derived mesenchymal stromal cells transduced with GFP lentiviral vectors: assessment of immunophenotype and differentiation capacity in vitro. Cytotechnology. 2016;68(5):2049–60. https://doi.org/10.1007/s10616-016-9945-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mukhamedshina Y, Zakirova EY, Galieva L, Kostennikov A, Akhmetzyanova E, Rizvanov A. Distribution and survival of transplanted adipose-derived mesenchymal stem cells in the spinal cord injury. BioNanoScience. 2017;7(4):608–12.

    Google Scholar 

  62. Mukhamedshina Y, Shulman I, Ogurcov S, Kostennikov A, Zakirova E, Akhmetzyanova E, et al. Mesenchymal stem cell therapy for spinal cord contusion: a comparative study on small and large animal models. Biomolecules. 2019;9(12):811. https://doi.org/10.3390/biom9120811.

    Article  CAS  PubMed Central  Google Scholar 

  63. Wang Q, Steigelman MB, Walker JA, Chen S, Hornsby PJ, Bohnenblust ME, et al. In vitro osteogenic differentiation of adipose stem cells after lentiviral transduction with green fluorescent protein. J Craniofac Surg. 2009;20(6):2193–9. https://doi.org/10.1097/SCS.0b013e3181bf04af.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Madeira C, Mendes RD, Ribeiro SC, Boura JS, Aires-Barros MR, da Silva CL, et al. Nonviral gene delivery to mesenchymal stem cells using cationic liposomes for gene and cell therapy. J Biomed Biotechnol. 2010;2010:735349. https://doi.org/10.1155/2010/735349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rosenzweig M, Connole M, Glickman R, Yue SP, Noren B, DeMaria M, et al. Induction of cytotoxic T lymphocyte and antibody responses to enhanced green fluorescent protein following transplantation of transduced CD34(+) hematopoietic cells. Blood. 2001;97(7):1951–9.

    CAS  PubMed  Google Scholar 

  66. Beagles KE, Peterson L, Zhang X, Morris J, Kiem HP. Cyclosporine inhibits the development of green fluorescent protein (GFP)-specific immune responses after transplantation of GFP-expressing hematopoietic repopulating cells in dogs. Hum Gene Ther. 2005;16(6):725–33. https://doi.org/10.1089/hum.2005.16.725.

    Article  CAS  PubMed  Google Scholar 

  67. Agbulut O, Huet A, Niederlander N, Puceat M, Menasche P, Coirault C. Green fluorescent protein impairs actin-myosin interactions by binding to the actin-binding site of myosin. J Biol Chem. 2007;282(14):10465–71. https://doi.org/10.1074/jbc.M610418200.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang F, Hackett NR, Lam G, Cheng J, Pergolizzi R, Luo L, et al. Green fluorescent protein selectively induces HSP70-mediated up-regulation of COX-2 expression in endothelial cells. Blood. 2003;102(6):2115–21. https://doi.org/10.1182/blood-2003-01-0049.

    Article  CAS  PubMed  Google Scholar 

  69. Mukai T, Tojo A, Nagamura-Inoue T. Mesenchymal stromal cells as a potential therapeutic for neurological disorders. Regen Ther. 2018;9:32–7. https://doi.org/10.1016/j.reth.2018.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, et al. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther. 2004;9(2):189–97. https://doi.org/10.1016/j.ymthe.2003.10.012.

    Article  CAS  PubMed  Google Scholar 

  71. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther. 2005;11(1):96–104. https://doi.org/10.1016/j.ymthe.2004.09.020.

    Article  CAS  PubMed  Google Scholar 

  72. van Velthoven CT, Sheldon RA, Kavelaars A, Derugin N, Vexler ZS, Willemen HL, et al. Mesenchymal stem cell transplantation attenuates brain injury after neonatal stroke. Stroke. 2013;44(5):1426–32. https://doi.org/10.1161/STROKEAHA.111.000326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Deng L, Gao X, Fan G, Yang C. Effects of GDNF-transfected marrow stromal cells on rats with intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2019;28(9):2555–62. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.06.002.

    Article  PubMed  Google Scholar 

  74. Wang Y, Geng T, Ni A, Yin H, Han B. Effects of transplanted GDNF gene modified marrow stromal cells on focal cerebral ischemia in rats. Front Integr Neurosci. 2011;5:89. https://doi.org/10.3389/fnint.2011.00089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lai T, Li M, Zheng L, Song Y, Xu X, Guo Y, et al. Over-expression of VEGF in marrow stromal cells promotes angiogenesis in rats with cerebral infarction via the synergistic effects of VEGF and Ang-2. J Huazhong Univ Sci Technol Med Sci. 2012;32(5):724–31. https://doi.org/10.1007/s11596-012-1025-3.

    Article  CAS  Google Scholar 

  76. Liu H, Honmou O, Harada K, Nakamura K, Houkin K, Hamada H, et al. Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain. 2006;129(Pt 10):2734–45. https://doi.org/10.1093/brain/awl207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bang OY, Jin KS, Hwang MN, Kang HY, Kim BJ, Lee SJ, et al. The effect of CXCR4 overexpression on mesenchymal stem cell transplantation in ischemic stroke. Cell Med. 2012;4(2):65–76. https://doi.org/10.3727/215517912X647172.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ikeda N, Nonoguchi N, Zhao MZ, Watanabe T, Kajimoto Y, Furutama D, et al. Bone marrow stromal cells that enhanced fibroblast growth factor-2 secretion by herpes simplex virus vector improve neurological outcome after transient focal cerebral ischemia in rats. Stroke. 2005;36(12):2725–30. https://doi.org/10.1161/01.STR.0000190006.88896.d3.

    Article  CAS  PubMed  Google Scholar 

  79. Zhao MZ, Nonoguchi N, Ikeda N, Watanabe T, Furutama D, Miyazawa D, et al. Novel therapeutic strategy for stroke in rats by bone marrow stromal cells and ex vivo HGF gene transfer with HSV-1 vector. J Cereb Blood Flow Metab. 2006;26(9):1176–88. https://doi.org/10.1038/sj.jcbfm.9600273.

    Article  CAS  PubMed  Google Scholar 

  80. Nakajima M, Nito C, Sowa K, Suda S, Nishiyama Y, Nakamura-Takahashi A, et al. Mesenchymal stem cells overexpressing interleukin-10 promote neuroprotection in experimental acute ischemic stroke. Mol Ther Methods Clin Dev. 2017;6:102–11. https://doi.org/10.1016/j.omtm.2017.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gao X, Wu D, Dou L, Zhang H, Huang L, Zeng J, et al. Protective effects of mesenchymal stem cells overexpressing extracellular regulating kinase 1/2 against stroke in rats. Brain Res Bull. 2019;149:42–52. https://doi.org/10.1016/j.brainresbull.2019.04.006.

    Article  CAS  PubMed  Google Scholar 

  82. Sun S, Gao N, Hu X, Luo H, Peng J, Xia Y. SOD3 overexpression alleviates cerebral ischemia-reperfusion injury in rats. Mol Genet Genom Med. 2019;7(10):e00831. https://doi.org/10.1002/mgg3.831.

    Article  Google Scholar 

  83. Yuan Y, Pan S, Sun Z, Dan Q, Liu J. Brain-derived neurotrophic factor-modified umbilical cord mesenchymal stem cell transplantation improves neurological deficits in rats with traumatic brain injury. Int J Neurosci. 2014;124(7):524–31. https://doi.org/10.3109/00207454.2013.859144.

    Article  CAS  PubMed  Google Scholar 

  84. Shahror RA, Ali AAA, Wu CC, Chiang YH, Chen KY. Enhanced homing of mesenchymal stem cells overexpressing fibroblast growth factor 21 to injury site in a mouse model of traumatic brain injury. Int J Mol Sci. 2019;20(11):2624. https://doi.org/10.3390/ijms20112624.

    Article  CAS  PubMed Central  Google Scholar 

  85. Shahror RA, Linares GR, Wang Y, Hsueh SC, Wu CC, Chuang DM, et al. Transplantation of mesenchymal stem cells overexpressing fibroblast growth factor 21 facilitates cognitive recovery and enhances neurogenesis in a mouse model of traumatic brain injury. J Neurotrauma. 2020;37(1):14–26. https://doi.org/10.1089/neu.2019.6422.

    Article  PubMed  Google Scholar 

  86. Peruzzaro ST, Andrews MMM, Al-Gharaibeh A, Pupiec O, Resk M, Story D, et al. Transplantation of mesenchymal stem cells genetically engineered to overexpress interleukin-10 promotes alternative inflammatory response in rat model of traumatic brain injury. J Neuroinflamm. 2019;16(1):2. https://doi.org/10.1186/s12974-018-1383-2.

    Article  CAS  Google Scholar 

  87. Maiti P, Peruzzaro S, Kolli N, Andrews M, Al-Gharaibeh A, Rossignol J, et al. Transplantation of mesenchymal stem cells overexpressing interleukin-10 induces autophagy response and promotes neuroprotection in a rat model of TBI. J Cell Mol Med. 2019;23(8):5211–24. https://doi.org/10.1111/jcmm.14396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rooney GE, McMahon SS, Ritter T, Garcia Y, Moran C, Madigan NN, et al. Neurotrophic factor-expressing mesenchymal stem cells survive transplantation into the contused spinal cord without differentiating into neural cells. Tissue Eng Part A. 2009;15(10):3049–59. https://doi.org/10.1089/ten.TEA.2009.0045.

    Article  CAS  PubMed  Google Scholar 

  89. Lu Y, Gao H, Zhang M, Chen B, Yang H. Glial cell line-derived neurotrophic factor-transfected placenta-derived versus bone marrow-derived mesenchymal cells for treating spinal cord injury. Med Sci Monit. 2017;23:1800–11. https://doi.org/10.12659/msm.902754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shang AJ, Hong SQ, Xu Q, Wang HY, Yang Y, Wang ZF, et al. NT-3-secreting human umbilical cord mesenchymal stromal cell transplantation for the treatment of acute spinal cord injury in rats. Brain Res. 2011;1391:102–13. https://doi.org/10.1016/j.brainres.2011.03.019.

    Article  CAS  PubMed  Google Scholar 

  91. Jeong SR, Kwon MJ, Lee HG, Joe EH, Lee JH, Kim SS, et al. Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury. Exp Neurol. 2012;233(1):312–22. https://doi.org/10.1016/j.expneurol.2011.10.021.

    Article  CAS  PubMed  Google Scholar 

  92. Kumagai G, Tsoulfas P, Toh S, McNiece I, Bramlett HM, Dietrich WD. Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury. Exp Neurol. 2013;248:369–80. https://doi.org/10.1016/j.expneurol.2013.06.028.

    Article  CAS  PubMed  Google Scholar 

  93. Abbaszadeh HA, Tiraihi T, Noori-Zadeh A, Delshad AR, Sadeghizade M, Taheri T. Human ciliary neurotrophic factor-overexpressing stable bone marrow stromal cells in the treatment of a rat model of traumatic spinal cord injury. Cytotherapy. 2015;17(7):912–21. https://doi.org/10.1016/j.jcyt.2015.03.689.

    Article  CAS  PubMed  Google Scholar 

  94. Gransee HM, Zhan WZ, Sieck GC, Mantilla CB. Localized delivery of brain-derived neurotrophic factor-expressing mesenchymal stem cells enhances functional recovery following cervical spinal cord injury. J Neurotrauma. 2015;32(3):185–93. https://doi.org/10.1089/neu.2014.3464.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Khan IU, Yoon Y, Kim A, Jo KR, Choi KU, Jung T, et al. Improved healing after the co-transplantation of HO-1 and BDNF overexpressed mesenchymal stem cells in the subacute spinal cord injury of dogs. Cell Transplant. 2018;27(7):1140–53. https://doi.org/10.1177/0963689718779766.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Park YM, Han SH, Seo SK, Park KA, Lee WT, Lee JE. Restorative benefits of transplanting human mesenchymal stromal cells overexpressing arginine decarboxylase genes after spinal cord injury. Cytotherapy. 2015;17(1):25–37. https://doi.org/10.1016/j.jcyt.2014.08.006.

    Article  CAS  PubMed  Google Scholar 

  97. Stewart AN, Matyas JJ, Welchko RM, Goldsmith AD, Zeiler SE, Hochgeschwender U, et al. SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury. Restor Neurol Neurosci. 2017;35(4):395–411. https://doi.org/10.3233/RNN-160678.

    Article  CAS  PubMed  Google Scholar 

  98. Seo DK, Kim JH, Min J, Yoon HH, Shin ES, Kim SW, et al. Enhanced axonal regeneration by transplanted Wnt3a-secreting human mesenchymal stem cells in a rat model of spinal cord injury. Acta Neurochir (Wien). 2017;159(5):947–57. https://doi.org/10.1007/s00701-017-3097-0.

    Article  PubMed  Google Scholar 

  99. Lin GL, Wang H, Dai J, Li X, Guan M, Ding Q, et al. Upregulation of UBAP2L in bone marrow mesenchymal stem cells promotes functional recovery in rats with spinal cord injury. Curr Med Sci. 2018;38(6):1081–9. https://doi.org/10.1007/s11596-018-1987-x.

    Article  CAS  PubMed  Google Scholar 

  100. Suzuki M, McHugh J, Tork C, Shelley B, Hayes A, Bellantuono I, et al. Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Mol Ther. 2008;16(12):2002–10. https://doi.org/10.1038/mt.2008.197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Krakora D, Mulcrone P, Meyer M, Lewis C, Bernau K, Gowing G, et al. Synergistic effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model. Mol Ther. 2013;21(8):1602–10. https://doi.org/10.1038/mt.2013.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Moloney TC, Rooney GE, Barry FP, Howard L, Dowd E. Potential of rat bone marrow-derived mesenchymal stem cells as vehicles for delivery of neurotrophins to the Parkinsonian rat brain. Brain Res. 2010;1359:33–43. https://doi.org/10.1016/j.brainres.2010.08.040.

    Article  CAS  PubMed  Google Scholar 

  103. Hoban DB, Howard L, Dowd E. GDNF-secreting mesenchymal stem cells provide localized neuroprotection in an inflammation-driven rat model of Parkinson’s disease. Neuroscience. 2015;303:402–11. https://doi.org/10.1016/j.neuroscience.2015.07.014.

    Article  CAS  PubMed  Google Scholar 

  104. Shi D, Chen G, Lv L, Li L, Wei D, Gu P, et al. The effect of lentivirus-mediated TH and GDNF genetic engineering mesenchymal stem cells on Parkinson’s disease rat model. Neurol Sci. 2011;32(1):41–51. https://doi.org/10.1007/s10072-010-0385-3.

    Article  CAS  PubMed  Google Scholar 

  105. Sun S, Zhang Q, Li M, Gao P, Huang K, Beejadhursing R, et al. GDNF promotes survival and therapeutic efficacy of human adipose-derived mesenchymal stem cells in a mouse model of Parkinson’s disease. Cell Transplant. 2020;29:963689720908512. https://doi.org/10.1177/0963689720908512.

    Article  PubMed  Google Scholar 

  106. Xiong N, Zhang Z, Huang J, Chen C, Zhang Z, Jia M, et al. VEGF-expressing human umbilical cord mesenchymal stem cells, an improved therapy strategy for Parkinson’s disease. Gene Ther. 2011;18(4):394–402. https://doi.org/10.1038/gt.2010.152.

    Article  CAS  PubMed  Google Scholar 

  107. Dey ND, Bombard MC, Roland BP, Davidson S, Lu M, Rossignol J, et al. Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behav Brain Res. 2010;214(2):193–200. https://doi.org/10.1016/j.bbr.2010.05.023.

    Article  CAS  PubMed  Google Scholar 

  108. Pollock K, Dahlenburg H, Nelson H, Fink KD, Cary W, Hendrix K, et al. Human mesenchymal stem cells genetically engineered to overexpress brain-derived neurotrophic factor improve outcomes in Huntington’s disease mouse models. Mol Ther. 2016;24(5):965–77. https://doi.org/10.1038/mt.2016.12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang P, Zhao G, Kang X, Su L. Effects of lateral ventricular transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene on cognition in a rat model of Alzheimer’s disease. Neural Regen Res. 2012;7(4):245–50. https://doi.org/10.3969/j.issn.1673-5374.2012.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu Z, Wang C, Wang X, Xu S. Therapeutic effects of transplantation of As-MiR-937-expressing mesenchymal stem cells in murine model of Alzheimer’s disease. Cell Physiol Biochem. 2015;37(1):321–30. https://doi.org/10.1159/000430356.

    Article  CAS  PubMed  Google Scholar 

  111. Wu K, Zhang R, Lu Y, Wen L, Li Y, Duan R, et al. Lin28B regulates the fate of grafted mesenchymal stem cells and enhances their protective effects against Alzheimer’s disease by upregulating IGF-2. J Cell Physiol. 2019;234(12):21860–76. https://doi.org/10.1002/jcp.28750.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yana Mukhamedshina.

Ethics declarations

Funding

The study was supported by grant 16-34-60101 (Yana Mukhamedshina) from the Russian Foundation for Basic Research. This work was performed in accordance with the Program of Competitive Growth of the Kazan Federal University. Albert A. Rizvanov was supported by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities.

Conflict of Interest

Nour Ebrahim, Victoria James, Albert A. Rizvanov, and Yana Mukhamedshina have no conflicts of interest that are directly relevant to the content of this article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Not applicable.

Author Contributions

NE and YM: collection of data on the genetic modification of MSCs and their effects in neurological disease therapies, drawing Fig. 1. VJ: compilation of article content, professional English editing. AR: compilation of article content, writing some chapters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahim, N., James, V., Rizvanov, A.A. et al. Genetic Modification of Mesenchymal Stem Cells for Neurological Disease Therapy: What Effects Does it Have on Phenotype/Cell Behavior, Determining Their Effectiveness?. Mol Diagn Ther 24, 683–702 (2020). https://doi.org/10.1007/s40291-020-00491-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-020-00491-6

Navigation