Skip to main content

Design of AAV Vectors for Delivery of Large or Multiple Transgenes

  • Protocol
  • First Online:
Adeno-Associated Virus Vectors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1950))

Abstract

Adeno-associated virus (AAV)-mediated gene therapy has evolved from bench to bedside, and now is the therapy of choice for certain inherited diseases. However, the small packaging capacity of AAV vectors prevents this technique from treating genetic diseases with mutations of large genes. Multiple strategies, including split AAV gene delivery and oversized AAV gene delivery, have been explored to deliver large gene expression cassettes. These strategies have gained some success in animal experiments. In this chapter, we review the progress of AAV-mediated delivery of large expression cassettes. We also review using AAV to deliver multiple transgenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berns KI (1974) Molecular biology of the adeno-associated viruses. Curr Top Microbiol Immunol 65:1–20

    CAS  PubMed  Google Scholar 

  2. Berns KI, Muzyczka N (2017) AAV: an overview of unanswered questions. Hum Gene Ther 28(4):308–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M (2018) Gene therapy comes of age. Science 359(6372). https://doi.org/10.1126/science.aan4672

    Article  PubMed  CAS  Google Scholar 

  4. Hirsch ML, Wolf SJ, Samulski RJ (2016) Delivering transgenic DNA exceeding the carrying capacity of AAV vectors. Methods Mol Biol 1382:21–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lai Y, Yue Y, Bostick B, Duan D (2010) Delivering Large Therapeutic Genes for Muscle Gene Therapy. In: Duan D. (eds) Muscle Gene Therapy. Springer, New York, NY, pp. 205–218

    Google Scholar 

  6. Duan D, Yue Y, Yan Z, Engelhardt JF (2000) A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation. Nat Med 6(5):595–598

    Article  CAS  PubMed  Google Scholar 

  7. Yan Z, Zhang Y, Duan D, Engelhardt JF (2000) Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc Natl Acad Sci U S A 97(12):6716–6721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun L, Li J, Xiao X (2000) Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med 6(5):599–602

    Article  CAS  PubMed  Google Scholar 

  9. Nakai H, Storm TA, Kay MA (2000) Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors. Nat Biotechnol 18(5):527–532

    Article  CAS  PubMed  Google Scholar 

  10. Reich SJ, Auricchio A, Hildinger M, Glover E, Maguire AM, Wilson JM, Bennett J (2003) Efficient trans-splicing in the retina expands the utility of adeno-associated virus as a vector for gene therapy. Hum Gene Ther 14(1):37–44

    Article  CAS  PubMed  Google Scholar 

  11. Duan D, Yue Y, Engelhardt JF (2001) Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol Ther 4(4):383–391

    Article  CAS  PubMed  Google Scholar 

  12. Yan Z, Lei-Butters DC, Zhang Y, Zak R, Engelhardt JF (2007) Hybrid adeno-associated virus bearing nonhomologous inverted terminal repeats enhances dual-vector reconstruction of minigenes in vivo. Hum Gene Ther 18(1):81–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hirsch ML, Storici F, Li C, Choi VW, Samulski RJ (2009) AAV recombineering with single strand oligonucleotides. PLoS One 4(11):e7705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Xu Z, Yue Y, Lai Y, Ye C, Qiu J, Pintel DJ, Duan D (2004) Trans-splicing adeno-associated viral vector-mediated gene therapy is limited by the accumulation of spliced mRNA but not by dual vector coinfection efficiency. Hum Gene Ther 15(9):896–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lai Y, Yue Y, Liu M, Ghosh A, Engelhardt JF, Chamberlain JS, Duan D (2005) Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotechnol 23(11):1435–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang L, Rosenberg JB, De BP, Ferris B, Wang R, Rivella S, Kaminsky SM, Crystal RG (2012) In vivo gene transfer strategies to achieve partial correction of von Willebrand disease. Hum Gene Ther 23(6):576–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Trapani I (2018) Dual AAV vectors for Stargardt disease. Methods Mol Biol 1715:153–175

    Article  CAS  PubMed  Google Scholar 

  18. Trapani I, Colella P, Sommella A, Iodice C, Cesi G, De Simone S, Marrocco E, Rossi S, Giunti M, Palfi A, Jane Farrar G, Polishchuk R, Auricchio A (2014) Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol Med 6:194–211

    Article  CAS  PubMed  Google Scholar 

  19. Dyka FM, Boye SL, Chiodo V, Hauswirth W, Boye SE (2014) Dual AAV vectors result in efficient in vitro and in vivo expression of an oversized gene, MYO7A. Hum Gene Ther Methods 25:166–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lostal W, Bartoli M, Bourg N, Roudaut C, Bentaib A, Miyake K, Guerchet N, Fougerousse F, McNeil P, Richard I (2010) Efficient recovery of dysferlin deficiency by dual adeno-associated vector-mediated gene transfer. Hum Mol Genet 19(10):1897–1907

    Article  CAS  PubMed  Google Scholar 

  21. Chao H, Sun L, Bruce A, Xiao X, Walsh CE (2002) Expression of human factor VIII by splicing between dimerized AAV vectors. Mol Ther 5(6):716–722

    Article  CAS  PubMed  Google Scholar 

  22. Zhu F, Liu Z, Miao J, Qu H, Chi X (2012) Enhanced plasma factor VIII activity in mice via cysteine mutation using dual vectors. Sci China Life Sci 55(6):521–526

    Article  CAS  PubMed  Google Scholar 

  23. Colella P, Trapani I, Cesi G, Sommella A, Manfredi A, Puppo A, Iodice C, Rossi S, Simonelli F, Giunti M, Bacci ML, Auricchio A (2014) Efficient gene delivery to the cone-enriched pig retina by dual AAV vectors. Gene Ther 21(4):450–456

    Article  CAS  PubMed  Google Scholar 

  24. Ghosh A, Yue Y, Long C, Bostick B, Duan D (2007) Efficient whole-body transduction with trans-splicing adeno-associated viral vectors. Mol Ther 15(4):750–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ghosh A, Yue Y, Shin JH, Duan D (2009) Systemic Trans-splicing adeno-associated viral delivery efficiently transduces the heart of adult mdx mouse, a model for duchenne muscular dystrophy. Hum Gene Ther 20(11):1319–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Halbert CL, Allen JM, Miller AD (2002) Efficient mouse airway transduction following recombination between AAV vectors carrying parts of a larger gene. Nat Biotechnol 20(7):697–701

    Article  CAS  PubMed  Google Scholar 

  27. Ghosh A, Yue Y, Duan D (2006) Viral serotype and the transgene sequence influence overlapping adeno-associated viral (AAV) vector-mediated gene transfer in skeletal muscle. J Gene Med 8(3):298–305

    Article  PubMed  PubMed Central  Google Scholar 

  28. Odom GL, Gregorevic P, Allen JM, Chamberlain JS (2011) Gene therapy of mdx mice with large truncated dystrophins generated by recombination using rAAV6. Mol Ther 19(1):36–45

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Yue Y, Li L, Hakim CH, Zhang K, Thomas GD, Duan D (2013) Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy. Hum Mol Genet 22:3720–3729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pryadkina M, Lostal W, Bourg N, Charton K, Roudaut C, Hirsch ML, Richard I (2015) A comparison of AAV strategies distinguishes overlapping vectors for efficient systemic delivery of the 6.2 kb Dysferlin coding sequence. Mol Ther Methods Clin Dev 2:15009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Potter RA, Griffin DA, Sondergaard PC, Johnson RW, Pozsgai ER, Heller KN, Peterson EL, Lehtimäki KK, Windish HP, Mittal PJ, Albrecht DE, Mendell JR, Rodino-Klapac LR (2017) Systemic delivery of dysferlin overlap vectors provides long-term gene expression and functional improvement for dysferlinopathy. Hum Gene Ther. https://doi.org/10.1089/hum.2017.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sondergaard PC, Griffin DA, Pozsgai ER, Johnson RW, Grose WE, Heller KN, Shontz KM, Montgomery CL, Liu J, Clark KR, Sahenk Z, Mendell JR, Rodino-Klapac LR (2015) AAV.Dysferlin overlap vectors restore function in dysferlinopathy animal models. Ann Clin Transl Neurol 2(3):256–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lopes VS, Boye SE, Louie CM, Boye S, Dyka F, Chiodo V, Fofo H, Hauswirth WW, Williams DS (2013) Retinal gene therapy with a large MYO7A cDNA using adeno-associated virus. Gene Ther 20(8):824–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vidal P, Pagliarani S, Colella P, Costa Verdera H, Jauze L, Gjorgjieva M, Puzzo F, Marmier S, Collaud F, Simon Sola M, Charles S, Lucchiari S, van Wittenberghe L, Vignaud A, Gjata B, Richard I, Laforet P, Malfatti E, Mithieux G, Rajas F, Comi GP, Ronzitti G, Mingozzi F (2018) Rescue of GSDIII phenotype with gene transfer requires liver- and muscle-targeted GDE expression. Mol Ther 26(3):890–901

    Article  CAS  PubMed  Google Scholar 

  35. Kodippili K, Hakim C, Pan X, Yang HT, Yue Y, Zhang Y, Shin JH, Yang NN, Duan D (2018) Dual AAV gene therapy for Duchenne muscular dystrophy with a 7-kb mini-dystrophin gene in the canine model. Hum Gene Ther 29(3):299–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ghosh A, Yue Y, Duan D (2011) Efficient transgene reconstitution with hybrid dual AAV vectors carrying the minimized bridging sequences. Hum Gene Ther 22(1):77–83

    Article  CAS  PubMed  Google Scholar 

  37. Ghosh A, Yue Y, Lai Y, Duan D (2008) A hybrid vector system expands adeno-associated viral vector packaging capacity in a transgene-independent manner. Mol Ther 16(1):124–130

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Y, Dongsheng D (2012) Novel mini-dystrophin gene dual AAV vectors restore nNOS expression at the sarcolemma. Hum Gene Ther 23(1):98–103

    Article  PubMed  CAS  Google Scholar 

  39. Song Y, Lou H, Boyer J, Limberis M, Vandenberghe L, Hackett N, Leopold P, Wilson J, Crystal R (2009) Functional CFTR expression in cystic fibrosis airway epithelial cells by AAV6.2-mediated segmental trans-splicing. Hum Gene Ther 20(3):267–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carvalho LS, Turunen HT, Wassmer SJ, Luna-Velez MV, Xiao R, Bennett J, Vandenberghe LH (2017) Evaluating efficiencies of dual AAV approaches for retinal targeting. Front Neurosci 11:503

    Article  PubMed  PubMed Central  Google Scholar 

  41. Koo T, Popplewell LJ, Athanasopoulos T, Dickson G (2014) Triple trans-splicing AAV vectors capable of transferring the coding sequence for full-length dystrophin protein into dystrophic mice. Hum Gene Ther 25(2):98–108

    Article  CAS  PubMed  Google Scholar 

  42. Lostal W, Kodippili K, Yue Y, Duan D (2014) Full-length dystrophin reconstitution with adeno-associated viral vectors. Hum Gene Ther 25(6):552–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maddalena A, Tornabene P, Tiberi P, Minopoli R, Manfredi A, Mutarelli M, Rossi S, Simonelli F, Naggert JK, Cacchiarelli D, Auricchio A (2018) Triple vectors expand AAV transfer capacity in the retina. Mol Ther 26:524–541

    Article  CAS  PubMed  Google Scholar 

  44. McClements ME, MacLaren RE (2017) Adeno-associated virus (AAV) dual vector strategies for gene therapy encoding large transgenes. Yale J Biol Med 90(4):611–623

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Trapani I, Toriello E, de Simone S, Colella P, Iodice C, Polishchuk EV, Sommella A, Colecchi L, Rossi S, Simonelli F, Giunti M, Bacci ML, Polishchuk RS, Auricchio A (2015) Improved dual AAV vectors with reduced expression of truncated proteins are safe and effective in the retina of a mouse model of Stargardt disease. Hum Mol Genet 24(23):6811–6825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hinderer C, Katz N, Buza EL, Dyer C, Goode T, Bell P, Richman L, Wilson JM (2018) Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an AAV vector expressing human SMN. Hum Gene Ther 29(3):285–298. https://doi.org/10.1089/hum.2018.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Allocca M, Doria M, Petrillo M, Colella P, Garcia-Hoyos M, Gibbs D, Kim SR, Maguire A, Rex TS, Di Vicino U, Cutillo L, Sparrow JR, Williams DS, Bennett J, Auricchio A (2008) Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 118(5):1955–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu Z, Yang H, Colosi P (2010) Effect of genome size on AAV vector packaging. Mol Ther 18(1):80–86

    Article  CAS  PubMed  Google Scholar 

  49. Dong B, Nakai H, Xiao W (2010) Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther 18(1):87–92

    Article  CAS  PubMed  Google Scholar 

  50. Lai Y, Yue Y, Duan D (2010) Evidence for the failure of adeno-associated virus serotype 5 to package a viral genome > or = 8.2 kb. Mol Ther 18(1):75–79

    Article  CAS  PubMed  Google Scholar 

  51. Hirsch ML, Agbandje-McKenna M, Samulski RJ (2010) Little vector, big gene transduction: fragmented genome reassembly of adeno-associated virus. Mol Ther 18(1):6–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hirsch ML, Li C, Bellon I, Yin C, Chavala S, Pryadkina M, Richard I, Samulski RJ (2013) Oversized AAV transduction is mediated via a DNA-PKcs independent, Rad51C-dependent repair pathway. Mol Ther 21(12):2205–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grieger JC, Samulski RJ (2005) Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps. J Virol 79(15):9933–9944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yan Z, Keiser NW, Song Y, Deng X, Cheng F, Qiu J, Engelhardt JF (2013) A novel chimeric adenoassociated virus 2/human bocavirus 1 parvovirus vector efficiently transduces human airway epithelia. Mol Ther 21(12):2181–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nambiar B, Cornell Sookdeo C, Berthelette P, Jackson R, Piraino S, Burnham B, Nass S, Souza D, O’Riordan CR, Vincent KA, Cheng SH, Armentano D, Kyostio-Moore S (2017) Characteristics of minimally oversized adeno-associated virus vectors encoding human factor VIII generated using producer cell lines and triple transfection. Hum Gene Ther Methods 28(1):23–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Monahan PE, Lothrop CD, Sun J, Hirsch ML, Kafri T, Kantor B, Sarkar R, Tillson DM, Elia JR, Samulski RJ (2010) Proteasome inhibitors enhance gene delivery by AAV virus vectors expressing large genomes in hemophilia mouse and dog models: a strategy for broad clinical application. Mol Ther 18(11):1907–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Holehonnur R, Lella SK, Ho A, Luong JA, Ploski JE (2015) The production of viral vectors designed to express large and difficult to express transgenes within neurons. Mol Brain 8:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Yan Z, Sun X, Feng Z, Li G, Fisher JT, Stewart ZA, Engelhardt JF (2015) Optimization of rAAV-mediated expression for large transgenes using a synthetic promoter and tandem array enhancers. Hum Gene Ther 26(6):334–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bosch MK, Nerbonne JM, Ornitz DM (2014) Dual transgene expression in murine cerebellar Purkinje neurons by viral transduction in vivo. PLoS One 9(8):e104062

    Article  PubMed  PubMed Central  Google Scholar 

  60. Palfi A, Chadderton N, McKee AG, Blanco-Fernandez A, Humphries P, Kenna PF, Farrar GJ (2012) Efficacy of co-delivery of dual AAV2/5 vectors in the murine retina and hippocampus. Hum Gene Ther 23(8):847–858

    Article  CAS  PubMed  Google Scholar 

  61. Shen Y, Muramatsu SI, Ikeguchi K, Fujimoto KI, Fan DS, Ogawa M, Mizukami H, Urabe M, Kume A, Nagatsu I, Urano F, Suzuki T, Ichinose H, Nagatsu T, Monahan J, Nakano I, Ozawa K (2000) Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-L-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson’s disease. Hum Gene Ther 11:1509–1519

    Article  CAS  PubMed  Google Scholar 

  62. Muramatsu S, Fujimoto K, Ikeguchi K, Shizuma N, Kawasaki K, Ono F, Shen Y, Wang L, Mizukami H, Kume A, Matsumura M, Nagatsu I, Urano F, Ichinose H, Nagatsu T, Terao K, Nakano I, Ozawa K (2002) Behavioral recovery in a primate model of Parkinson’s disease by triple transduction of striatal cells with adeno-associated viral vectors expressing dopamine-synthesizing enzymes. Hum Gene Ther 13(3):345–354

    Article  CAS  PubMed  Google Scholar 

  63. Colella P, Sommella A, Marrocco E, Di Vicino U, Polishchuk E, Garcia Garrido M, Seeliger MW, Polishchuk R, Auricchio A (2013) Myosin7a deficiency results in reduced retinal activity which is improved by gene therapy. PLoS One 8:e72027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lu H, Chen L, Wang J, Huack B, Sarkar R, Zhou S, Xu R, Ding Q, Wang X, Wang H, Xiao W (2008) Complete correction of hemophilia A with adeno-associated viral vectors containing a full-size expression cassette. Hum Gene Ther 19(6):648–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Grose WE, Clark KR, Griffin D, Malik V, Shontz KM, Montgomery CL, Lewis S, Brown RHJ, Janssen PM, Mendell JR, Rodino-Klapac LR (2012) Homologous recombination mediates functional recovery of dysferlin deficiency following AAV5 gene transfer. PLoS One 7(6):e39233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cao M, Khan JA, Kang BY, Mehta JL, Hermonat PL (2012) Dual AAV/IL-10 plus STAT3 anti-inflammatory gene delivery lowers atherosclerosis in LDLR KO mice, but without increased benefit. Int J Vasc Med 2012:524235

    PubMed  Google Scholar 

  67. Zhang P, Sun B, Osada T, Rodriguiz RM, Yang XY, Luo X, Kemper AR, Clay TM, Koeberl D (2012) Immunodominant, liver-specific expression suppresses transgene-directed immune responses in murine Pompe disease. Hum Gene Ther 23(5):460–472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Gafni Y, Pelled G, Zilberman Y, Turgeman G, Apparailly F, Yotvat H, Galun E, Gazit Z, Jorgensen C, Gazit D (2004) Gene therapy platform for bone regeneration using an exogenously regulated, AAV-2-based gene expression system. Mol Ther 9(4):587–595

    Article  CAS  PubMed  Google Scholar 

  69. Ren S, Liu Y, Ma J, Liu Y, Diao Z, Yang D, Zhang X, Xi Y, Hu Y (2013) Treatment of rabbit intervertebral disc degeneration with co-transfection by adeno-associated virus-mediated SOX9 and osteogenic protein-1 double genes in vivo. Int J Mol Med 32(5):1063–1068

    Article  CAS  PubMed  Google Scholar 

  70. Millington-Ward S, Chadderton N, O’Reilly M, Palfi A, Goldmann T, Kilty C, Humphries M, Wolfrum U, Bennett J, Humphries P, Kenna PF, Farrar GJ (2011) Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19(4):642–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Doerfler PA, Todd AG, Clément N, Falk DJ, Nayak S, Herzog RW, Byrne BJ (2016) Copackaged AAV9 vectors promote simultaneous immune tolerance and phenotypic correction of Pompe disease. Hum Gene Ther 27(1):43–59

    Article  CAS  PubMed  Google Scholar 

  72. Yang Y, Wang L, Bell P, McMenamin D, He Z, White J, Yu H, Xu C, Morizono H, Musunuru K, Batshaw ML, Wilson JM (2016) A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 34(3):334–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu W, Duan Y, Ma G, Zhou G, Park-Windhol C, D’Amore PA, Lei H (2017) AAV-CRISPR/Cas9-mediated depletion of VEGFR2 blocks angiogenesis in vitro. Invest Ophthalmol Vis Sci 58(14):6082–6090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR, Chamberlain JS (2017) Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 8:14454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ruan GX, Barry E, Yu D, Lukason M, Cheng SH, Scaria A (2017) CRISPR/Cas9-mediated genome editing as a therapeutic approach for Leber congenital Amaurosis 10. Mol Ther 25(2):331–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yu W, Mookherjee S, Chaitankar V, Hiriyanna S, Kim JW, Brooks M, Ataeijannati Y, Sun X, Dong L, Li T, Swaroop A, Wu Z (2017) Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice. Nat Commun 8:14716

    Article  PubMed  PubMed Central  Google Scholar 

  77. Monteys AM, Ebanks SA, Keiser MS, Davidson BL (2017) CRISPR/Cas9 editing of the mutant Huntingtin allele in vitro and in vivo. Mol Ther 25(1):12–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tabebordbar M, Zhu K, Cheng JK, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA, Cong L, Zhang F, Vandenberghe LH, Church GM, Wagers AJ (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351(6271):407–411

    Article  CAS  PubMed  Google Scholar 

  79. Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX, Asokan A, Zhang F, Duan D, Gersbach CA (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351(6271):403–407

    Article  CAS  PubMed  Google Scholar 

  80. Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351(6271):400–403

    Article  CAS  PubMed  Google Scholar 

  81. Hakim CH, Wasala NB, Nelson CE, Wasala LP, Yue Y, Louderman JA, Lessa TB, Dai A, Zhang K, Jenkins GJ, Nance ME, Pan X, Kodippili K, Yang NN, Chen SJ, Gersbach CA, Duan D (2018) AAV CRISPR editing rescues cardiac and muscle function for 18 months in dystrophic mice. JCI Insight 3 (23) http://doi.org/10.1172/jci.insight.124297

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Jackson Freel DMD Research Fund (D.D.), National Institutes of Health (AR-69085) (D.D.), Department of Defense (MD150133) (D.D.), Hope for Javier (D.D.), and Duchenne Parent Project (the Netherlands) (Y.L.).

Disclosure: D.D. is a member of the scientific advisory board for Solid Biosciences and an equity holder of Solid Biosciences. D.D. has received research supports from Solid Biosciences, which are unrelated to this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Patel, A., Zhao, J., Duan, D., Lai, Y. (2019). Design of AAV Vectors for Delivery of Large or Multiple Transgenes. In: Castle, M. (eds) Adeno-Associated Virus Vectors. Methods in Molecular Biology, vol 1950. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9139-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9139-6_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9138-9

  • Online ISBN: 978-1-4939-9139-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics