Skip to main content

Mesenchymal Stem Cell Genetic Engineering and Regenerative Medicine

  • Chapter
  • First Online:
Mesenchymal Stem Cell in Veterinary Sciences

Abstract

Characteristic properties of mesenchymal stem cells (MSCs) make them a suitable candidate in regenerative medicine. There are various associated limitations in MSCs in vivo applications like their short survival and limited expression of particular genes. Genetic engineering of MSCs may be employed to address such issues. Various genetic engineering methods have been incorporated although without any established standard technique. Genetically engineered MSCs are being studied in various kinds of ailments of different tissues with variably promising results. The current chapter focusses on the MSC genetic engineering in relation to the regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Araujo JA, Zhang M, Yin F (2012) Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Front Pharmacol 3:119

    PubMed  PubMed Central  Google Scholar 

  • Ayala-Cuellar AP, Kim CW, Hwang KA, Kang JH, Lee G, Cho J, Choi KC (2019) Characterization of canine adipose tissue-derived mesenchymal stem cells immortalized by SV40-T retrovirus for therapeutic use. J Cell Physiol 234(9):16630–16642

    CAS  Google Scholar 

  • Bathina S, Das UN (2015) Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 11(6):1164–1178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bersenev A, Levine BL (2012) Convergence of gene and cell therapy. Regen Med 7:50–56

    CAS  PubMed  Google Scholar 

  • Boura JS, Vance M, Yin W, Madeira C, Lobato da Silva C, Porada CD, Almeida Porada G (2014) Evaluation of gene delivery strategies to efficiently overexpress functional HLA-G on human bone marrow stromal cells. Mol Ther Methods Clin Dev 2014(1):14041

    PubMed  Google Scholar 

  • Colleoni S, Donofrio G, Lagutina I, Duchi R, Galli C, Lazzari G (2005) Establishment, differentiation, electroporation, viral transduction, and nuclear transfer of bovine and porcine mesenchymal stem cells. Cloning Stem Cells 7(3):154–166. https://doi.org/10.1089/clo.2005.7.154

    Article  CAS  PubMed  Google Scholar 

  • Cortez J, Bahamonde J, De los Reyes M, Palomino J, Torres CG, Peralta OA (2018) In vitro differentiation of bovine bone marrow-derived mesenchymal stem cells into male germ cells by exposure to exogenous bioactive factors. Reprod Domest Anim 53(3):700–709

    CAS  PubMed  Google Scholar 

  • Dai KR, Xu XL, Tang TT, Zhu ZA, Yu CF, Lou JR, Zhang XL (2005) Repairing of goat Tibial bone defects with BMP-2 gene-modified tissue-engineered bone. Calcif Tissue Int 77:55–61

    CAS  PubMed  Google Scholar 

  • Díaz P, Cuevas F, Peralta OA (2015) GFP labelling and epigenetic enzyme expression of bone marrow-derived mesenchymal stem cells from bovine foetuses. Res Vet Sci 99:120–128

    PubMed  Google Scholar 

  • Gage FH (2012) Transplantation in the future. Prog Brain Res 200:7–13

    PubMed  Google Scholar 

  • Ghasemzadeh-Hasankolaei M, Sedighi-Gilani MA, Eslaminejad MB (2014) Induction of ram bone marrow mesenchymal stem cells into germ cell lineage using transforming growth factor-b superfamily growth factors. Reprod Dom Anim 49:588–598

    CAS  Google Scholar 

  • Ghasemzadeh-Hasankolaei M, Eslaminejad BM, Sedighi-Gilani M (2015) Derivation of male germ cells from ram bone marrow mesenchymal stem cells by three different methods and evaluation of their fate after transplantation into the testis. In Vitro Cell DevBiol Anim 52(1):49–61

    Google Scholar 

  • Ghasemzadeh-Hasankolai M, Batavani R, Eslaminejad BM, Sedighi-Gilani M (2012) Effect of zinc ions on differentiation of bone marrow-derived mesenchymal stem cells to male germ cells and some germ cell-specific gene expression in rams. Biol Trace Elem Res 150:137–146

    PubMed  Google Scholar 

  • Griffin M, Greiser U, Barry F, O’Brien T, Ritter T (2010) Genetically modified mesenchymal stem cells and their clinical potential in acute cardiovascular disease. Discov Med 9:219–223

    PubMed  Google Scholar 

  • Gugjoo MB, Amarpal, Chandra V, Wani MY, Dhama K, Sharma GT (2018) Mesenchymal stem cell research in veterinary medicine. Current Stem Cell Research and Therapy 13(8):645–657

    CAS  PubMed  Google Scholar 

  • Gugjoo MB, Amarpal, Fazili MR, Shah RA, Sharma GT (2019) Mesenchymal stem cell: basic research and potential applications in cattle and buffalo. J Cell Physiol 234(6):8618–8635

    CAS  PubMed  Google Scholar 

  • Gugjoo MB, Amarpal, Fazili MR, Shah RA, Mir MS, Sharma GT (2020) Goat mesenchymal stem cell basic research and potential applications. Small Rum Res 183:106045

    Google Scholar 

  • Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E (2003a) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256

    PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P (2003b) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    CAS  PubMed  Google Scholar 

  • Han Y, Tao R, Han Y, Sun T, Chai J, Xu G, Liu J (2014) Microencapsulated VEGF gene–modified umbilical cord mesenchymal stromal cells promote the vascularization of tissue-engineered dermis: an experimental study. Cytotherapy 16(2):160–169

    CAS  PubMed  Google Scholar 

  • Hang D, Wang Q, Guo C, Chen Z, Yan Z (2012) Treatment of osteonecrosis of the femoral head with VEGF165 transgenic bone marrow mesenchymal stem cells in mongrel dogs. Cells Tissues Organs 195:495–506

    CAS  PubMed  Google Scholar 

  • Hansen M, Boesen A, Holm L, Flyvbjerg A, Langberg H, Kjaer M (2013) Local administration of insulin-like growth factor-I (IGF-I) stimulates tendon collagen synthesis in humans. Scand J Med Sci Sports 23(5):614–619

    CAS  PubMed  Google Scholar 

  • He HL, Liu L, Chen QH, Cai SX, Han JB, Hu SL, Chun P, Yang Y, Guo FM, Huang YZ, Qiu HB (2014) MSCs modified with ACE2 restore endothelial function following LPS challenge by inhibiting the activation of RAS. J Cell Physiol 230(3):691–701

    Google Scholar 

  • Hnatiuk AP, Ong S-G, Olea FD, Locatelli P, Riegler J, Lee WH, Jen CH, De Lorenzi A, Gimenez CS, Laguens R, Wu JC, Crottogini A (2016) Allogeneic Mesenchymal stromal cells overexpressing mutant human hypoxia-inducible factor 1-a (HIF1-a) in an sheep model of acute myocardial infarction. J Am Heart Assoc 5:e003714

    PubMed  PubMed Central  Google Scholar 

  • Khan IU, Yoon Y, Kim A, Jo KR, Choi KU, Jung T, Kim N, Son Y, Kim WH, Kweon O (2018) Improved healing after the co-transplantation of HO-1 and BDNF overexpressed mesenchymal stem cells in the subacute spinal cord injury of dogs. Cell Transplant 27:1140–1153

    PubMed  PubMed Central  Google Scholar 

  • Kim YI, Ryu JS, Yeo JE, Choi YJ, Kim YS, Ko K, Koh YG (2014) Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells. Biochem Biophys Res Commun 450(4):1593–1599

    CAS  PubMed  Google Scholar 

  • Kode JA, Mukherjee S, Joglekar MV, Hardikar AA (2009) Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 11:377–391

    CAS  PubMed  Google Scholar 

  • Li PZ, Yan GY, Han L, Pang J, Zhong BS, Zhang GM, Wang F, Zhang YL (2017) Overexpression of STRA8, BOULE, and DAZL genes promotes goat bone marrow-derived mesenchymal stem cells in vitro trans-differentiation toward putative male germ cells. Reprod Sci 24(2):300–312

    PubMed  Google Scholar 

  • Locatelli P, Olea FD, Hnatiuk A, De Lorenzi A, Cerdá M, Giménez CS, Sepúlveda D, Laguens R, Crottogini A (2015) Mesenchymal stromal cells overexpressing vascular endothelial growth factor in sheep myocardial infarction. Gene Ther 22(6):449–457

    CAS  PubMed  Google Scholar 

  • Lu W, Yaoming N, Boli R, Jun C, Changhai Z, Yang Z, Zhiyuan S (2013) mHCN4 genetically modified canine mesenchymal stem cells provide biological pacemaking function in complete dogs with atrioventricular block. Pacing Clin Electrophysiol 36(9):1138–1149

    PubMed  Google Scholar 

  • Mählmann K, Feige K, Juhls C, Endmann A, Schuberth H-J, Oswald D, Hellige M, Doherr M, Cavalleri J-MV (2015) Local and systemic effect of transfection-reagent formulated DNA vectors on equine melanoma. BMC Vet Res 11:107

    PubMed  PubMed Central  Google Scholar 

  • Marquez-Curtis LA, Gul-Uludag H, Xu P, Chen J, Janowska-Wieczorek A (2013) CXCR4 transfection of cord blood mesenchymal stromal cells with the use of cationic liposome enhances their migration toward stromal cell-derived factor-1. Cytotherapy 15(7):840–849

    CAS  PubMed  Google Scholar 

  • Martin PK, Stilhano RS, Samoto VY, Takiya CM, Peres GB, da Silva Michelacci YM, da Silva FH, Pereira VG, D'Almeida V, Marques FL, Otake AH, Chammas R, Han SW (2014) Mesenchymal stem cells do not prevent antibody responses against human α-L-iduronidase when used to treat mucopolysaccharidosis type I. PLoS One 9(3):e92420

    PubMed  PubMed Central  Google Scholar 

  • Meng YB, Li X, Li ZY, Zhao J, Yuan XB, Ren Y, Cui ZD, Liu YD, Yang XJ (2015) microRNA-21 promotes osteogenic differentiation of mesenchymal stem cells by the PI3K/β catenin pathway. J Orthop Res 33(7):957–964

    CAS  PubMed  Google Scholar 

  • Mok PL, Cheong SK, Leong CF, Chua KH, Ainoon O (2012) Extended and stable gene expression via nucleofection of MIDGE construct into adult human marrow mesenchymal stromal cells. Cytotechnology 64(2):203–216

    CAS  PubMed  Google Scholar 

  • Nowakowski A, Andrzejewska A, Janowski M, Walczak P, Lukomska B (2013) Genetic engineering of stem cells for enhanced therapy. Acta Neurobiol Exp 73:1–18

    Google Scholar 

  • Nowakowski A, Walczak P, Janowski M, Lukomska B (2015) Genetic engineering of mesenchymal stem cells for regenerative medicine. Stem Cells Dev 24(19):2219–2242

    CAS  PubMed  Google Scholar 

  • Papanikolaou E, Pappa KI, Anagnou NP (2011) Genetic manipulation of stem cells. Gynecol Obstetric S6:001

    Google Scholar 

  • Phillips MI, Tang YL (2008) Genetic modification of stem cells for transplantation. Adv Drug Deliv Rev 60(2):160–172

    CAS  PubMed  Google Scholar 

  • Piao W, Wang H, Inoue M, Hasegawa M, Hamada H, Huang J (2010) Transplantation of Sendai viral angiopoietin-1-modified mesenchymal stem cells for ischemic limb disease. Angiogenesis 13(3):203–210

    CAS  PubMed  Google Scholar 

  • Pinel CB, Pluhar GE (2012) Clinical application of recombinant human bone morphogenetic protein in cats and dogs: a review of 13 cases. Can Vet J 53:767–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rejman J, Tavernier G, Bavarsad N, Demeester J, de Smedt SC (2010) mRNA transfection of cervical carcinoma and mesenchymal stem cells mediated by cationic carriers. J Control Release 147(3):385–391

    CAS  PubMed  Google Scholar 

  • Roís CN, Skoracki RJ, Mathur AB (2012) GNAS1 and PHD2 short-interfering RNA support bone regeneration in vitro and in an in vivo sheep model. Clin Orthop Relat Res 470(9):2541–2553

    Google Scholar 

  • Schnabel L, Lynch M, Van der Meulen M, Yeager A, Kornatowski M, Nixon A (2009) Mesenchymal stem cells and insulin-like growth factor-I gene-enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons. J Orthop Res 27:1392–1398

    CAS  PubMed  Google Scholar 

  • Sharma N, SWK DLH, Ghosh M, Sodhi SS, Singh AK, Kim NE et al (2017) A PiggyBac mediated approach for lactoferricin gene transfer in bovine mammary epithelial stem cells for management of bovine mastitis. Oncotarget 8(61):104272

    PubMed  PubMed Central  Google Scholar 

  • Song J, Kim Y, Kweon O-K, Kang B-J (2017) Use of stem-cell sheets expressing bone morphogenetic protein-7 in the management of a nonunion radial fracture in a toy poodle. J Vet Sci 18(4):555–558

    PubMed  PubMed Central  Google Scholar 

  • Tang TT, Lu B, Yue B, Xie XH, Xie YZ, Dai KR, Lu JX, Lou JR (2007) Treatment of osteonecrosis of the femoral head with hBMP-2-gene-modified tissue-engineered bone in goats. J Bone Joint Surg Br 89(1):127–129

    CAS  PubMed  Google Scholar 

  • Tseng TC, Hsu SH (2014) Substrate-mediated nanoparticle/gene delivery to MSC spheroids and their applications in peripheral nerve regeneration. Biomaterials 35(9):2630–2641

    CAS  PubMed  Google Scholar 

  • Wagner W, Ho AD (2007) Mesenchymal stem cell preparations—comparing apples and oranges. Stem Cell Rev 3:239–248

    PubMed  Google Scholar 

  • Watkins DJ, Zhou Y, Matthews MA, Chen L, Besner GE (2014) HB-EGF augments the ability of mesenchymal stem cells to attenuate intestinal injury. J Pediatr Surg 49(6):938–944

    PubMed  PubMed Central  Google Scholar 

  • Wright EJ, Farrell KA, Malik N, Kassem M, Lewis AL, Wallrapp C, Holt CM (2012) Encapsulated glucagon-like peptide-1-producing mesenchymal stem cells have a beneficial effect on failing pig hearts. Stem Cells Transl Med 1(10):759–769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan G, Fan Y, Li P, Zhang Y, Wang F (2015) Ectopic expression of DAZL gene in goat bone marrow-derived mesenchymal stem cells enhances the trans-differentiation to putative germ cells compared to the exogenous treatment of retinoic acid or bone morphogenetic protein 4 signalling molecules. Cell Biol Int 39(1):74–83

    Google Scholar 

  • Zhang YL, Li PZ, Pang J, Wan YJ, Zhang GM, Fan YX, Wang ZY, Tao NH (2019) Induction of goat bone marrow mesenchymal stem cells into putative male germ cells using mRNA for STRA8. BOULE and DAZLCytotechnol 71(2):563–572

    CAS  Google Scholar 

  • Zhu S, Zhang B, Man C, Ma Y, Hu J (2011) NELL like molecule-1 modified bone marrow mesenchymal stem cells/poly-lactic-co-glycolic acid composite improves repair of large osteochondral defects in mandibular condyle. Osteoarthr Cart 19:743–750

    CAS  Google Scholar 

  • Zhu S, Zhang T, Sun C, Yu A, Qi B, Cheng H (2013) Bone marrow mesenchymal stem cells combined with calcium alginate gel modified by hTGF-β1 for the construction of tissue-engineered cartilage in three-dimensional conditions. Exp Ther Med 5(1):95–101

    CAS  PubMed  Google Scholar 

  • Zhu X, Liu Z, Deng W, Zhang Z, Liu Y, Wei L, Zhang Y, Zhou L, Wang Y (2017) Derivation and characterization of sheep bone marrow-derived mesenchymal stem cells induced with telomerase reverse transcriptase. Saudi J Biolog Sci 24:519–525

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gugjoo, M.B., Rasool, E., Pal, A. (2020). Mesenchymal Stem Cell Genetic Engineering and Regenerative Medicine. In: Gugjoo, M.B., Pal, A. (eds) Mesenchymal Stem Cell in Veterinary Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-15-6037-8_6

Download citation

Publish with us

Policies and ethics