Skip to main content

Advertisement

Log in

The effect of lentivirus-mediated TH and GDNF genetic engineering mesenchymal stem cells on Parkinson’s disease rat model

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

This study was designed to assess the potential therapeutic efficacy of gene-modified mesenchymal stem cells (MSCs), MSCs-TH and MSCs-GDNF, in PD rats. Fifty-nine PD rat models were divided into five groups and then the gene-modified MSCs were transplanted into the striatum of rats according to the design. Apomorphine-induced rotational behavior in rats was observed weekly; rats which received both MSCs-TH and MSCs-GDNF showed the most significant improvement compared with those in other groups (P < 0.01). Three weeks later, immunohistochemistry analysis found TH-positive cells and GDNF-positive cells in striatal. Eight weeks later, PD rats were killed. HPLC and ELISA results showed DA and GDNF content in striatum of rats which received both MSCs-TH, and MSCs-GDNF was considerably higher compared with those of other groups (P < 0.01),respectively. In conclusion, our results suggest that combined transplantation of MSCs expressing TH and GDNF can lead to remarkable therapeutic effects in a rat model of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rub U (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249(Suppl 3):III/1–5

    Google Scholar 

  2. Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 3:932–942

    Article  CAS  PubMed  Google Scholar 

  3. Gerlach M, Braak H, Hartmann A, Jost WH, Odin P, Priller J, Schwarz J (2002) Current state of stem cell research for the treatment of Parkinson’s disease. J Neurol 249(Suppl 3):III/33–35

    Google Scholar 

  4. Bensadoun JC, Deglon N, Tseng JL, Ridet JL, Zurn AD, Aebischer P (2000) Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson’s disease using GDNF. Exp Neurol 164:15–24

    Article  CAS  PubMed  Google Scholar 

  5. Choi-Lundberg DL, Lin Q, Chang YN, Chiang YL, Hay CM, Mohajeri H, Davidson BL, Bohn MC (1997) Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 275:838–841

    Article  CAS  PubMed  Google Scholar 

  6. Kirik D, Rosenblad C, Bjorklund A, Mandel RJ (2000) Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci 20:4686–4700

    CAS  PubMed  Google Scholar 

  7. Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen EY, Palfi S, Roitberg BZ, Brown WD, Holden JE, Pyzalski R, Taylor MD, Carvey P, Ling Z, Trono D, Hantraye P, Deglon N, Aebischer P (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773

    Article  CAS  PubMed  Google Scholar 

  8. Mandel RJ, Snyder RO, Leff SE (1999) Recombinant adeno-associated viral vector-mediated glial cell line-derived neurotrophic factor gene transfer protects nigral dopamine neurons after onset of progressive degeneration in a rat model of Parkinson’s disease. Exp Neurol 160:205–214

    Article  CAS  PubMed  Google Scholar 

  9. Mandel RJ, Spratt SK, Snyder RO, Leff SE (1997) Midbrain injection of recombinant adeno-associated virus encoding rat glial cell line-derived neurotrophic factor protects nigral neurons in a progressive 6-hydroxydopamine-induced degeneration model of Parkinson’s disease in rats. Proc Natl Acad Sci USA 94:14083–14088

    Article  CAS  PubMed  Google Scholar 

  10. Barker RA (2000) Prospects for the treatment of Parkinson’s disease using neural grafts. Expert Opin Pharmacother 1:889–902

    Article  CAS  PubMed  Google Scholar 

  11. Kordower JH, Freeman TB, Chen EY, Mufson EJ, Sanberg PR, Hauser RA, Snow B, Olanow CW (1998) Fetal nigral grafts survive and mediate clinical benefit in a patient with Parkinson’s disease. Mov Disord 13:383–393

    Article  CAS  PubMed  Google Scholar 

  12. Olanow CW, Freeman T, Kordower J (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 345:146 author reply 147

    Article  CAS  PubMed  Google Scholar 

  13. Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370

    Article  CAS  PubMed  Google Scholar 

  14. Brazelton TR, Rossi FM, Keshet GI, Blau HM (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290:1775–1779

    Article  CAS  PubMed  Google Scholar 

  15. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1782

    Article  CAS  PubMed  Google Scholar 

  16. Munoz-Elias G, Marcus AJ, Coyne TM, Woodbury D, Black IB (2004) Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. J Neurosci 24:4585–4595

    Article  CAS  PubMed  Google Scholar 

  17. Woodbury D, Reynolds K, Black IB (2002) Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res 69:908–917

    Article  CAS  PubMed  Google Scholar 

  18. Moffat M, Harmon S, Haycock J, O’Malley KL (1997) L-Dopa and dopamine-producing gene cassettes for gene therapy approaches to Parkinson’s disease. Exp Neurol 144:69–73

    Article  CAS  PubMed  Google Scholar 

  19. Jiang Q, Liu J, Ge K, Liu WC, Sun LY, Liu XY, Zheng ZC (1999) Cloning of glial cell line-derived neurotrophic factor gene and its expression in eukaryotic cells. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 31:150–154

    CAS  Google Scholar 

  20. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  CAS  PubMed  Google Scholar 

  21. Qin D, Zeng Y, Qian C, Huang Z, Lv Z, Cheng L, Yao S, Tang Q, Chen X, Lu C (2008) Induction of lytic cycle replication of Kaposi’s sarcoma-associated herpesvirus by herpes simplex virus type 1: involvement of IL-10 and IL-4. Cell Microbiol 10:713–728

    Article  CAS  PubMed  Google Scholar 

  22. Hudson JL, van Horne CG, Stromberg I, Brock S, Clayton J, Masserano J, Hoffer BJ, Gerhardt GA (1993) Correlation of apomorphine- and amphetamine-induced turning with nigrostriatal dopamine content in unilateral 6-hydroxydopamine lesioned rats. Brain Res 626:167–174

    Article  CAS  PubMed  Google Scholar 

  23. Olanow CW, Brin MF, Obeso JA (2000) The role of deep brain stimulation as a surgical treatment for Parkinson’s disease. Neurology 55:S60–S66

    CAS  PubMed  Google Scholar 

  24. Krause M, Fogel W, Heck A, Hacke W, Bonsanto M, Trenkwalder C, Tronnier V (2001) Deep brain stimulation for the treatment of Parkinson’s disease: subthalamic nucleus versus globus pallidus internus. J Neurol Neurosurg Psychiatry 70:464–470

    Article  CAS  PubMed  Google Scholar 

  25. Bjorklund A, Kirik D, Rosenblad C, Georgievska B, Lundberg C, Mandel RJ (2000) Towards a neuroprotective gene therapy for Parkinson’s disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res 886:82–98

    Article  CAS  PubMed  Google Scholar 

  26. Shingo T, Date I, Yoshida H, Ohmoto T (2002) Neuroprotective and restorative effects of intrastriatal grafting of encapsulated GDNF-producing cells in a rat model of Parkinson’s disease. J Neurosci Res 69:946–954

    Article  CAS  PubMed  Google Scholar 

  27. Wang ZH, Ji Y, Shan W, Zeng B, Raksadawan N, Pastores GM, Wisniewski T, Kolodny EH (2002) Therapeutic effects of astrocytes expressing both tyrosine hydroxylase and brain-derived neurotrophic factor on a rat model of Parkinson’s disease. Neuroscience 113:629–640

    Article  CAS  PubMed  Google Scholar 

  28. Gallichan WS, Kafri T, Krahl T, Verma IM, Sarvetnick N (1998) Lentivirus-mediated transduction of islet grafts with interleukin 4 results in sustained gene expression and protection from insulitis. Hum Gene Ther 9:2717–2726

    Article  CAS  PubMed  Google Scholar 

  29. Ju Q, Edelstein D, Brendel MD, Brandhorst D, Brandhorst H, Bretzel RG, Brownlee M (1998) Transduction of non-dividing adult human pancreatic beta cells by an integrating lentiviral vector. Diabetologia 41:736–739

    Article  CAS  PubMed  Google Scholar 

  30. Kafri T, Blomer U, Peterson DA, Gage FH, Verma IM (1997) Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Genet 17:314–317

    Article  CAS  PubMed  Google Scholar 

  31. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self-inactivating lentivirus vector. J Virol 72:8150–8157

    CAS  PubMed  Google Scholar 

  32. Rebolledo MA, Krogstad P, Chen F, Shannon KM, Klitzner TS (1998) Infection of human fetal cardiac myocytes by a human immunodeficiency virus-1-derived vector. Circ Res 83:738–742

    CAS  PubMed  Google Scholar 

  33. Sutton RE, Wu HT, Rigg R, Bohnlein E, Brown PO (1998) Human immunodeficiency virus type 1 vectors efficiently transduce human hematopoietic stem cells. J Virol 72:5781–5788

    CAS  PubMed  Google Scholar 

  34. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    CAS  PubMed  Google Scholar 

  35. Van Damme A, Thorrez L, Ma L, Vandenburgh H, Eyckmans J, Dell’Accio F, De Bari C, Luyten F, Lillicrap D, Collen D, VandenDriessche T, Chuah MK (2006) Efficient lentiviral transduction and improved engraftment of human bone marrow mesenchymal cells. Stem Cells 24:896–907

    Article  PubMed  Google Scholar 

  36. Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ (1998) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats–similarities to astrocyte grafts. Proc Natl Acad Sci USA 95:3908–3913

    Article  CAS  PubMed  Google Scholar 

  37. Mezey E, Key S, Vogelsang G, Szalayova I, Lange GD, Crain B (2003) Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci USA 100:1364–1369

    Article  CAS  PubMed  Google Scholar 

  38. Eglitis MA, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94:4080–4085

    Article  CAS  PubMed  Google Scholar 

  39. Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG (2006) Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198:54–64

    Article  CAS  PubMed  Google Scholar 

  40. Garcia R, Aguiar J, Alberti E, de la Cuetara K, Pavon N (2004) Bone marrow stromal cells produce nerve growth factor and glial cell line-derived neurotrophic factors. Biochem Biophys Res Commun 316:753–754

    Article  CAS  PubMed  Google Scholar 

  41. Mahmood A, Lu D, Chopp M (2004) Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma 21:33–39

    Article  PubMed  Google Scholar 

  42. During MJ, Naegele JR, O’Malley KL, Geller AI (1994) Long-term behavioral recovery in parkinsonian rats by an HSV vector expressing tyrosine hydroxylase. Science 266:1399–1403

    Article  CAS  PubMed  Google Scholar 

  43. Pereira RF, Halford KW, O’Hara MD, Leeper DB, Sokolov BP, Pollard MD, Bagasra O, Prockop DJ (1995) Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA 92:4857–4861

    Article  CAS  PubMed  Google Scholar 

  44. Weimann JM, Charlton CA, Brazelton TR, Hackman RC, Blau HM (2003) Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc Natl Acad Sci USA 100:2088–2093

    Article  CAS  PubMed  Google Scholar 

  45. Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC (2002) Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 174:11–20

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Natural Sciences Foundation of JiangSu Province (No.BK2007257).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Miao or Weixing Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, D., Chen, G., Lv, L. et al. The effect of lentivirus-mediated TH and GDNF genetic engineering mesenchymal stem cells on Parkinson’s disease rat model. Neurol Sci 32, 41–51 (2011). https://doi.org/10.1007/s10072-010-0385-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-010-0385-3

Keywords

Navigation