Skip to main content
Log in

Watermelon peel hydrolysate production optimization and ethanologenesis employing yeast isolates

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Securing “energy from waste” appeared as the most engrossed research area to find out global solutions for waste disposal and energy production. Watermelon peels (WMPs) are discarded as bulk waste in the whole oriental region that demands appropriate disposal to save environment from pollution. This study investigates the potential of yeast employing WMPs that embodies significant sugars to be fermented into ethanol. For this purpose, WMPs were subjected to dilute sulfuric acid hydrolysis under optimized conditions (6% H2SO4 at 50 °C for 60 min) elucidated by response surface methodology (RSM) of central composite design (CCD). The experimental design dealt with the optimization of fermentation influencing independent parameters which included pretreated WMP hydrolysate, synthetic medium ratio (X1), hydrolysis temperature (X2), and incubation period (X3) for maximal ethanol yield while employing standard (Saccharomyces cerevisiae K7) and experimental (Metchnikowia cibodasensis Y34) yeast isolates. The significance of the model for experimental yeast was envisaged by 6.22 F value (0.0060 P), 0.8616 R2 and 8.393 adequate precision. The optimized parameters were found as 52.03 mL WMP hydrolysate concentration at 29.46 °C after an incubation period of 15 days. Maximal ethanol yield (g/g reducing sugars) obtained from Saccharomyces cerevisiae K7 was 0.33 ± 0.05, while Metchnikowia cibodasensis Y34 showed as 0.38 ± 0.01. From this research, the ethanologenic and ethanol tolerant potential of yeast Metchnikowia cibodasensis Y34 is apparent to valorize WMPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Söderström J, Pilcher L, Galbe M, Zacchi G (2003) Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass Bioenerg 24(6):475–486

    Article  Google Scholar 

  2. Rivas-Cantu RC, Jones KD, Mills PL (2013) A citrus waste-based biorefinery as a source of renewable energy: technical advances and analysis of engineering challenges. Waste Manage Res 31(4):413–420

    Article  Google Scholar 

  3. Ch AK, Chan ES, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2(1):14–32

    Google Scholar 

  4. Goh CS, Tan KT, Lee KT, Bhatia S (2010) Bioethanol from lignocellulose: status, perspectives, and challenges in Malaysia. Biores Technol 101(13):4834–4841

    Article  CAS  Google Scholar 

  5. Ghosh P, Ghose TK (2003) Bioethanol in India: recent past and emerging future. Biotechnology in India II:1–27

    Google Scholar 

  6. Choudhary J, Singh S, Nain L (2016) Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electron J Biotechnol 21:82–92

    Article  Google Scholar 

  7. Hill J (2009) Environmental costs and benefits of transportation biofuel production from food-and lignocellulose-based energy crops: a review. Sustain Agric :125–139

  8. Asli MS (2010) A study on SOE efficient parameters in batch fermentation of ethanol using Saccharomyces cerevesiae SC1 extracted from fermented siahe sardasht pomace. Afr J Biotechnol 9(20)

  9. Fish WW, Bruton BD, Russo VM (2009) Watermelon juice: a promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production. Biotechnol Biofuels 2(1):1–9

    Article  Google Scholar 

  10. Johnson JT, Iwang EU, Hemen JT, Odey MO, Efiong EE, Eteng OE (2012) Evaluation of anti-nutrient contents of watermelon Citrullus lanatus. Ann Biol Res 3(11):5145–5150

    CAS  Google Scholar 

  11. FAOSTAT (2018) Food and agriculture organization of the United Nations. FOA. Retrieved from http://www.fao.org/faostat/en/#data/QC.

  12. Bhandari SV, Panchapakesan A, Shankar N, Kumar HA (2013) Production of bioethanol from fruit rinds by saccharification and fermentation. International Journal of Scientific Research Engineering & Technology 2(6):362–365

    Google Scholar 

  13. Alex S, Saira A, Nair DS, Soni KB, Sreekantan L, Rajmohan K, Reghunath BR (2017) Bioethanol production from watermelon rind by fermentation using Saccharomyces cerevisiae and Zymomonas mobilis. Indian J Biotechnol 16:663–666

    CAS  Google Scholar 

  14. Kassim MA, Hussin AH, Meng TK, Kamaludin R, Zaki MSIM, Zakaria WZEW (2022) Valorisation of watermelon (Citrullus lanatus) rind waste into bioethanol: an optimization and kinetic studies. Int J Environ Sci Technol 19(4):2545–2558

    Article  CAS  Google Scholar 

  15. Sininart C, Bancha L (2013) Bioethanol from prebiotic extracted jackfruit seeds. 6th PSU-UNS International Conference on Engineering and Technology (ICET 2013), 15–17 May 2013(University of Novi Sad, Faculty of Technical Sciences) 2013: 1–5

  16. Toquero C, Bolado S (2014) Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Biores Technol 157:68–76

    Article  CAS  Google Scholar 

  17. Loow Y, Wu TY, Md Jahim J, Mohammad AW, Teoh WH (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23:1491–1520

    Article  CAS  Google Scholar 

  18. Fernandes F, Farias A, Carneiro L, Santos R, Torres D, Silva J, Souza J, Souza E (2021) Dilute acid hydrolysis of wastes of fruits from Amazon for ethanol production. AIMS Bioengineering 8(3):221–234

    Article  CAS  Google Scholar 

  19. Sierra-Ibarra E, Alcaraz-Cienfuegos J, Vargas-Tah A, Rosas-Aburto A, Valdivia-López Á, Hernández-Luna MG, Vivaldo-Lima E, Martinez A (2022) Ethanol production by Escherichia coli from detoxified lignocellulosic teak wood hydrolysates with high concentration of phenolic compounds. Journal of Industrial Microbiology and Biotechnology, 49(2): kuab077

  20. Jahanbakhshi A, Salehi R (2019) Processing watermelon waste using Saccharomyces cerevisiae yeast and the fermentation method for bioethanol production. J Food Process Eng 42(7):13283

    Article  Google Scholar 

  21. Mazaheri D, Ahi M (2021) Evaluation and optimization of bioethanol production from pomegranate peel by Zymomonas mobilis. Journal of Applied Biotechnology Reports 8(3):275–282

    CAS  Google Scholar 

  22. Fakayode OA, Akpabli-Tsigbe NDK, Wahia H, Tu S, Ren M, Zhou C, Ma H (2021) Integrated bioprocess for bio-ethanol production from watermelon rind biomass: ultrasound-assisted deep eutectic solvent pretreatment, enzymatic hydrolysis, and fermentation. Renewable Energy 180:258–270

    Article  CAS  Google Scholar 

  23. Wagner E, Sierra-Ibarra E, Rojas NL, Martinez A (2022) One-pot bioethanol production from brewery spent grain using the ethanologenic Escherichia coli MS04. Renewable Energy 189:717–725

    Article  CAS  Google Scholar 

  24. Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Technology Biotechnology 56(2):174–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsegaye B, Balomajumder C, Roy P (2019) Optimization of microwave and NaOH pretreatments of wheat straw for enhancing biofuel yield. Energy Convers Manage 186:82–92

    Article  CAS  Google Scholar 

  26. Hu L, Li R, Liu Y, Souliyathai D, Zhang W, Chen Y (2021) Energy-efficient photothermal catalysis of rubber seed oil for the preparation of biofuel compounds. Fuel 306:121683

    Article  CAS  Google Scholar 

  27. Anderson WF, Akin DE (2008) Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J Ind Microbiol Biotechnol 35(5):355–366

    Article  CAS  PubMed  Google Scholar 

  28. Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT-Food Science and Technology 59(2):1311–1318

    Article  CAS  Google Scholar 

  29. Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  30. Zollner N, Kirsch K (1960) Separation of plasma lipids by column chromatography. 1. Methods and identification of fractions. Zeitschrift fur die gesamte experimentelle Medizin 134:10–28

    CAS  Google Scholar 

  31. Waterborg JH (2009) The Lowry method for protein quantitation. In The protein protocols handbook (pp. 7–10). Humana Press, Totowa

  32. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  33. Paez V, Barrett WB, Deng X, Diaz-Amigo C, Fiedler K, Fuerer C, Coates SG (2016) AOAC SMPR® 2016.002. J AOAC Int 99(4): 1122–1124

  34. Lin L, Yan R, Liu Y, Jiang W (2010) In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: cellulose, hemicellulose, and lignin. Biores Technol 101(21):8217–8223

    Article  CAS  Google Scholar 

  35. Iqbal A, Schulz P, Rizvi SS (2021) Valorization of bioactive compounds in fruit pomace from agro-fruit industries: present insights and future challenges. Food Biosci 44:101384

    Article  CAS  Google Scholar 

  36. Shahid MK, Batool A, Kashif A, Nawaz MH, Aslam M, Iqbal N, Choi Y (2021) Biofuels and biorefineries: development, application and future perspectives emphasizing the environmental and economic aspects. J Environ Manage 297:113268

    Article  CAS  PubMed  Google Scholar 

  37. Halsall-Whitney H, Taylor D, Thibault J (2003) Multicriteria optimization of gluconic acid production using net flow. Bioprocess Biosyst Eng 25(5):299–307

    Article  CAS  PubMed  Google Scholar 

  38. Bennett C (1971) Spectrophotometric acid dichromate method for the determination of ethyl alcohol. Am J Med Technol 37(6):217–220

    CAS  PubMed  Google Scholar 

  39. Al-Sayed HM, Ahmed AR (2013) Utilization of watermelon rinds and sharlyn melon peels as a natural source of dietary fiber and antioxidants in cake. Annals of Agricultural Sciences 58(1):83–95

    Article  Google Scholar 

  40. Bitaraf MS, Khodaiyan F, Mohammadifar MA, Mousavi SM (2012) Application of response surface methodology to improve fermentation time and rheological properties of probiotic yogurt containing Lactobacillus reuteri. Food Bioprocess Technol 5(4):1394–1401

    Article  CAS  Google Scholar 

  41. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Biores Technol 101(13):4851–4861

    Article  CAS  Google Scholar 

  42. Unhasirikul M, Naranong N, Narkrugsa W (2012) Reducing sugar production from durian peel by hydrochloric acid hydrolysis. World Academy of Science, Engineering and Technology 6(9):394–399

    Google Scholar 

  43. Saleem A, Hussain A, Chaudhary A, Ahmad Q, Iqtedar M, Javid A, Akram AM (2020) Acid hydrolysis optimization of pomegranate peels waste using response surface methodology for ethanol production. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01117-x

    Article  Google Scholar 

  44. Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion, and synergy. Biotechnol Adv 30:1458–1480

    Article  PubMed  Google Scholar 

  45. Leu SY, Zhu JY (2013) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenergy Research 6:405–415

    Article  CAS  Google Scholar 

  46. Shyam Kumar R, Gandhi M, Rajeshwari R, Harikrishnan H (2011) Utilization of waste ripe banana and peels for bioethanol production using Saccharomyces cerevisiae. Journal of Bioscience and Research 2:67–71

    Google Scholar 

  47. Jahid M, Gupta A, Sharma DK (2018) Production of bioethanol from fruit wastes (banana, papaya, pineapple and mango peels) under milder conditions. Journal of Bioprocessing & Biotechniques 8:327

    Article  Google Scholar 

  48. Chaudhary A, Hussain I, Ahmad Q, Hussain Z, Akram AM, Hussain A (2022) Efficient utilization of melon peels to produce ethanol: a step toward sustainable waste management. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02687-8

    Article  Google Scholar 

  49. Casabar JT, Unpaprom Y, Ramaraj R (2019) Fermentation of pineapple fruit peel wastes for bioethanol production. Biomass Conversion and Biorefinery 9:761–765

    Article  CAS  Google Scholar 

  50. Krishnan MS, Ho NW, Tsao GT (1999) Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400 (pLNH33). twentieth symposium on biotechnology for fuels and chemicals. Humana Press, Totowa NJ, pp 373–388

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.C.: conceptualization; A. H.: writing — review and editing; Q–A. A.: methodology; T. A.: data curation; Q. M. and B. D.: formal analysis; S. K.: critical review.

Corresponding author

Correspondence to Ali Hussain.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, A., Hussain, A., Ahmad, QuA. et al. Watermelon peel hydrolysate production optimization and ethanologenesis employing yeast isolates. Biomass Conv. Bioref. 14, 8671–8680 (2024). https://doi.org/10.1007/s13399-022-02923-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02923-1

Keywords

Navigation