Skip to main content
Log in

Current perspective on improved fermentative production and purification of fungal cellulases for successful biorefinery applications: a brief review

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Cellulolytic enzymes play the most indispensable and centralized role in the hydrolysis of cellulosic material. Effective enzymatic hydrolysis is one of the major prerequisites in the development of a successful lignocellulosic biorefinery. However, the high cost of cellulase production yet remains to be the major bottleneck for large-scale commercial realization of lignocellusic bio-refinery. In addition, the lack of specificity and inconsistent bioconversion efficiencies of enzymes have restricted their applications towards bioconversion of narrow range of substrates. In view of addressing such bottlenecks associated with cellulase applications and further to improve the applicability of cellulase enzyme in various industrial processes, the current review essentially captures up-to-date information of various strategies adopted for the prospective production and purification of cellulase enzymes. Some holistic strategies deliberated in this review, which evolved over time and have brought about notable improvements in the final titer, yield, specificity, and productivity of the cellulolytic enzymes. It includes utilization of low-cost industrial or agricultural wastes for onsite production, application of enzyme, strain improvement through mutagenic, metabolic engineering and genetic engineering approaches, application of suitable bioprocess optimization techniques, development of ideal bioreactor configuration based on mode of fermentation process, and adaptation of the most intensive purification schemes. Additionally, to address the present existing challenges, more emphasizes have been concentrated towards economically sustainable and comprehensive production strategies of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors declare that all supporting data are available within the article.

References

  1. Rana V, Eckard AD, Teller P, Ahring BK (2014) On-site enzymes produced from Trichoderma reesei RUT-C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine. Bioresour Technol 154:282–289. https://doi.org/10.1016/J.BIORTECH.2013.12.059

    Article  Google Scholar 

  2. Sajith S, Priji P, Sreedevi S, Benjamin S (2016) An overview on fungal cellulases with an industrial perspective. J Nutr Food Sci 06:1–13. https://doi.org/10.4172/2155-9600.1000461

    Article  Google Scholar 

  3. Balasubramanian N, Simões N (2014) Bacillus pumilus S124A carboxymethyl cellulase; a thermo stable enzyme with a wide substrate spectrum utility. Int J Biol Macromol 67:132–139. https://doi.org/10.1016/j.ijbiomac.2014.03.014

    Article  Google Scholar 

  4. Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235

    Google Scholar 

  5. Siqueira JGW, Rodrigues C, Vandenberghe LP de S,Woiciechowski AL, Soccol CR (2020) Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: a review. Biomass Bioenergy 132:105419. doi: https://doi.org/10.1016/j.biombioe.2019.105419

  6. Pathak P, Bhardwaj NK, Singh AK (2014) Production of crude cellulase and xylanase from Trichoderma harzianum PPDDN10 NFCCI-2925 and its application in photocopier waste paper recycling. Appl Biochem Biotechnol 172:3776–3797. https://doi.org/10.1007/s12010-014-0758-9

    Article  Google Scholar 

  7. Sathya TA, Khan M (2014) Diversity of glycosyl hydrolase enzymes from metagenome and their application in food industry. J Food Sci 79:R2149–R2156. https://doi.org/10.1111/1750-3841.12677

    Article  Google Scholar 

  8. Han W, He M (2010) The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition. Bioresour Technol 101:3724–3731. https://doi.org/10.1016/j.biortech.2009.12.104

    Article  Google Scholar 

  9. Mandels M, Weber J (1969) The production of cellulases. Cell Their Appl pp:391–414

  10. Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20:372–380. https://doi.org/10.1016/j.copbio.2009.05.009

    Article  Google Scholar 

  11. Hansen GH, Lübeck M, Frisvad JC, Lübeck PS, Andersen B (2015) Production of cellulolytic enzymes from ascomycetes: comparison of solid state and submerged fermentation. Process Biochem 50:1327–1341. https://doi.org/10.1016/j.procbio.2015.05.017

    Article  Google Scholar 

  12. Kuhad RC, Deswal D, Sharma S, Bhattacharya A, Jain KK, Kaur A, Pletschke BI, Singh A, Karp M (2016) Revisiting cellulase production and redefining current strategies based on major challenges. Renew Sust Energ Rev 55:249–272. https://doi.org/10.1016/j.rser.2015.10.132

    Article  Google Scholar 

  13. Nair AS, Al-Battashi H, Al-Akzawi A, Annamalai N, Gujarathi A, Al-Bahry S, Dhillon GS, Sivakumar N (2018) Waste office paper: a potential feedstock for cellulase production by a novel strain Bacillus velezensis ASN1. Waste Manag 79:491–500. https://doi.org/10.1016/J.WASMAN.2018.08.014

    Article  Google Scholar 

  14. Acharya S, Chaudhary A (2012) Bioprospecting thermophiles for cellulase production: a review. Brazilian J Microbiol 43:844–856. https://doi.org/10.1590/S1517-83822012000300001

    Article  Google Scholar 

  15. Pointing SB (1999) Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers 2:17–33

    Google Scholar 

  16. Milala M, Shugaba A, Gidado A, Ene AC, Wafar JA (2005) Studies on the use of agricultural wastes for cellulase enzyme production by Aspegillus niger. Res J Agric Biol Sci 1:325–328

    Google Scholar 

  17. Kumar S, Sharma HK, Sarkar BC (2011) Effect of substrate and fermentation conditions on pectinase and cellulase production by Aspergillus niger NCIM 548 in submerged (SmF) and solid state fermentation (SSF). Food Sci Biotechnol 20:1289–1298. https://doi.org/10.1007/s10068-011-0178-3

    Article  Google Scholar 

  18. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzym Microb Technol 46:541–549. https://doi.org/10.1016/J.ENZMICTEC.2010.03.010

    Article  Google Scholar 

  19. Li C, Yang Z, He Can Zhang R, Zhang D, Chen S, Ma L (2013) Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis. J Biotechnol 168:470–477. https://doi.org/10.1016/j.jbiotec.2013.10.003

    Article  Google Scholar 

  20. Han X, Song W, Liu G, Li Z, Yang P, Qu Y (2017) Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy. Bioresour Technol 227:155–163. https://doi.org/10.1016/j.biortech.2016.11.079

    Article  Google Scholar 

  21. Ahamed A, Vermette P (2010) Effect of mechanical agitation on the production of cellulases by Trichoderma reesei RUT-C30 in a draft-tube airlift bioreactor. Biochem Eng J 49:379–387. https://doi.org/10.1016/J.BEJ.2010.01.014

    Article  Google Scholar 

  22. Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res. https://doi.org/10.4061/2011/280696

  23. Verma N, Kumar V, Bansal MC (2020) Valorization of waste biomass in fermentative production of cellulases: a review. Waste Biomass Valori:1–28. https://doi.org/10.1007/s12649-020-01048-8

  24. Hangasky JA, Detomasi TC, Marletta MA (2019) Glycosidic bond hydroxylation by polysaccharide monooxygenases. Trends Chem 1:198–209. https://doi.org/10.1016/j.trechm.2019.01.007

    Article  Google Scholar 

  25. Moore-Landecker E (1996) Fundamentals of the Fungi, 4th edn Benjamin Cummings

    Google Scholar 

  26. Alexopoulos CJ, Mims CW, Blackwell MM (1996) Introductory mycology, 4th edn. Wiley

  27. Zhang Y-HP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481. https://doi.org/10.1016/j.biotechadv.2006.03.003

    Article  Google Scholar 

  28. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10. https://doi.org/10.1186/1754-6834-3-10

    Article  Google Scholar 

  29. Hildén L, Johansson G (2004) Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnol Lett 26:1683–1693. https://doi.org/10.1007/s10529-004-4579-8

    Article  Google Scholar 

  30. Salwee Y, R LM, F AN (2013) Isolation, characterization and molecular weight determination of cellulase from Trichoderma viride. African J Biotechnol 12:4503–4511. doi: https://doi.org/10.5897/ajb2013.12275

  31. Baraldo Junior A, Borges DG, Tardioli PW, Farinas CS (2014) Characterization of β -glucosidase produced by Aspergillus niger under solid-state fermentation and partially purified using MANAE-agarose. Biotechnol Res Int 2014:1–8. https://doi.org/10.1155/2014/317092

    Article  Google Scholar 

  32. Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A (2013) A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol 135:513–522. https://doi.org/10.1016/j.biortech.2012.10.047

    Article  Google Scholar 

  33. EC 3.2.1.91 IUBMB Enzyme Nomenclature. https://www.qmul.ac.uk/sbcs/iubmb/enzyme/EC3/2/1/91.html. Accessed 11 Oct 2020

  34. Bayer EA, Morag E, Lamed R (1994) The cellulosome - a treasure-trove for biotechnology. Trends Biotechnol 12:379–386. https://doi.org/10.1016/0167-7799(94)90039-6

    Article  Google Scholar 

  35. Singh A (1999) Engineering enzyme properties. Indian J Microbiol 39:65–67

    Google Scholar 

  36. Jayasekara S, Ratnayake R (2019) Microbial Cellulases: an overview and applications. Cellulose. https://doi.org/10.5772/intechopen.84531

  37. Wood TM (1985) Properties of cellulolytic enzyme systems. Biochem Soc Trans 13:407–410. https://doi.org/10.1042/bst0130407

    Article  Google Scholar 

  38. Ahamed A, Vermette P (2008) Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochem Eng J 42:41–46. https://doi.org/10.1016/j.bej.2008.05.007

    Article  Google Scholar 

  39. Adrio JL, Demain AL (2006) Genetic improvementof processes yielding microbial products. FEMS Microbiol Rev 30:187–214. https://doi.org/10.1111/j.1574-6976.2005.00009.x

    Article  Google Scholar 

  40. Jennert KCB, Tardif C, Young DI, Young M (2000) Gene transfer to Clostridium cellulolyticum ATCC 35319. Microbiology 146:3071–3080. https://doi.org/10.1099/00221287-146-12-3071

    Article  Google Scholar 

  41. Qian Y, Zhong L, Gao J, Sun N, Wang Y, Sun G, Qu Y, Zhong Y (2017) Production of highly efficient cellulase mixtures by genetically exploiting the potentials of Trichoderma reesei endogenous cellulases for hydrolysis of corncob residues microbial cell factories. Microb Cell Factories 16:207. https://doi.org/10.1186/s12934-017-0825-3

    Article  Google Scholar 

  42. Qian Y, Zhong L, Hou Y, Qu Y, Zhong Y (2016) Characterization and strain improvement of a hypercellulytic variant, Trichoderma reesei SN1, by genetic engineering for optimized cellulase production in biomass conversion improvement. Front Microbiol 7:1349. https://doi.org/10.3389/fmicb.2016.01349

    Article  Google Scholar 

  43. Fang C, Wang Q, Selvaraj JN, Zhou Y, Ma L, Zhang G, Ma Y (2017) High copy and stable expression of the xylanase XynHB in Saccharomyces cerevisiae by rDNA-mediated integration. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-08647-x

    Article  Google Scholar 

  44. Yang T, Guo Y, Gao N, Li X, Jhao J (2020) Modification of a cellulase system by engineering Penicillium oxalicum to produce cellulose nanocrystal. Carbohydr Polym 234:115862. https://doi.org/10.1016/j.carbpol.2020.115862

    Article  Google Scholar 

  45. Meng QS, Liu CG, Zhao XQ, Bai FW (2018) Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass. J Biotechnol 285:56–63. https://doi.org/10.1016/j.jbiotec.2018.09.001

    Article  Google Scholar 

  46. Wakai S, Nakashima N, Ogino C, Tsutsumi H, Hata Y, Kondo A (2019) Modified expression of multi-cellulases in a filamentous fungus Aspergillus oryzae. Bioresour Technol 276:146–153. https://doi.org/10.1016/j.biortech.2018.12.117

    Article  Google Scholar 

  47. Ellilä S, Fonseca L, Uchima C, Cota J, Goldman GH, Saloheimo M, Sacon V, Siika-aho M (2017) Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol Biofuels 10:1–17. https://doi.org/10.1186/s13068-017-0717-0

    Article  Google Scholar 

  48. Li T, Wu YR, He J (2018) Heterologous expression, characterization and application of a new β-xylosidase identified in solventogenic Clostridium sp. strain BOH3. Process Biochem 67:99–104. https://doi.org/10.1016/j.procbio.2018.02.003

    Article  Google Scholar 

  49. Aftab MN, Zafar A, Awan AR (2017) Expression of thermostable β-xylosidase in Escherichia coli for use in saccharification of plant biomass. Bioengineered 8:665–669. https://doi.org/10.1080/21655979.2016.1267884

    Article  Google Scholar 

  50. Kim CK, Choi HS, Lee SJ, Lee JH, Lee JH, Yoo HY, Han SO, Kim SW (2018) Production of xylanase from a novel engineered Pichia pastoris and application to enzymatic hydrolysis process for biorefinery. Process Biochem 65:130–135. https://doi.org/10.1016/j.procbio.2017.11.001

    Article  Google Scholar 

  51. Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54:287–301. https://doi.org/10.1007/s002530000403

    Article  Google Scholar 

  52. Singh A, Patel AK, Adsul M, Singhania RR (2017) Genetic modification: a tool for enhancing cellulase secretion. Biofuel Res J 4:600–610. doi: https://doi.org/10.18331/BRJ2017.4.2.5

  53. Liu G, Zhang L, Qin Y, Zou G, Li Z, Yan X, Wei X, Chen M, Chen L, Zheng K, Zhang J, Ma L, Li J, Liu R, Xu H, Bao X, Fang X, Wang L, Zhong Y, Liu W, Zheng H, Wang S, Wang C, Xun L, Zhao G-P, Wang T, Zhou Z, Qu Y (2013) Long-term strain improvements accumulate mutations in regulatory elements responsible for hyper-production of cellulolytic enzymes. Sci Rep 3:1–7. https://doi.org/10.1038/srep01569

    Article  Google Scholar 

  54. Kumar AK (2015) UV mutagenesis treatment for improved production of endoglucanase and β-glucosidase from newly isolated thermotolerant actinomycetes, Streptomyces griseoaurantiacus. Bioresour Bioprocess 2:1–22. https://doi.org/10.1186/s40643-015-0052-x

    Article  Google Scholar 

  55. Zhang J, Shi H, Xu L, Zhu X, Li X (2015) Site-directed mutagenesis of a hyperthermophilic endoglucanase Cel12B from Thermotoga maritima based on rational design. PLoS One 10:e0133824. https://doi.org/10.1371/journal.pone.0133824

    Article  Google Scholar 

  56. Teng C, Jiang Y, Xu Y, Lie Q, Li X, Fan G, Xiong K, Yang R, Zhang C, Ma R, Zhu Y, Li J, Wang C (2019) Improving the thermostability and catalytic efficiency of GH11 xylanase PjxA by adding disulfide bridges. Int J Biol Macromol 128:354–362. https://doi.org/10.1016/j.ijbiomac.2019.01.087

    Article  Google Scholar 

  57. Seidl V, Seiboth B (2010) Trichoderma reesei: genetic approaches to improving strain efficiency. Biofuels 1:343–354. https://doi.org/10.4155/bfs.10.1

    Article  Google Scholar 

  58. Ng IS, Li CW, Yeh YF, Chen PT, Chir JL, Ma CH, Yu SM, Ho THD, Tong CG (2009) A novel endo-glucanase from the thermophilic bacterium Geobacillus sp. 70PC53 with high activity and stability over a broad range of temperatures. Extremophiles 13:425–435. https://doi.org/10.1007/s00792-009-0228-4

    Article  Google Scholar 

  59. Li W, Zhang WW, Yang MM, Chen YL (2008) Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol Biotechnol 40:195–201. https://doi.org/10.1007/s12033-008-9079-y

    Article  Google Scholar 

  60. Afzal S, Saleem M, Yasmin R, Naz M, Imran M (2010) Pre and post cloning characterization of a β-1,4-endoglucanase from Bacillus sp. Mol Biol Rep 37:1717–1723. https://doi.org/10.1007/s11033-009-9592-5

    Article  Google Scholar 

  61. Jung YR, Park JM, Heo SY, Hong WK, Lee SM, Oh BR, Park SM, Seo JW, Kim CH (2015) Cellulolytic enzymes produced by a newly isolated soil fungus Penicillium sp. TG2 with potential for use in cellulosic ethanol production. Renew Energy 76:66–71. https://doi.org/10.1016/j.renene.2014.10.064

    Article  Google Scholar 

  62. Matkar K, Chapla D, Divecha J, Nighojkar A, Madamwar D (2013) Production of cellulase by a newly isolated strain of Aspergillus sydowii and its optimization under submerged fermentation. Int Biodeterior Biodegrad 78:24–33. https://doi.org/10.1016/j.ibiod.2012.12.002

    Article  Google Scholar 

  63. De Cassia Pereira J, Marques NP, Rodrigues A,Oliveira TBd, Boscolo M, Silva Rd, Gomes E, Martins DAB (2015) Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. J Appl Microbiol 118:928–939. doi: https://doi.org/10.1111/jam.12757

  64. Kumar S, Sharma N, Pathania S (2017) Cost effective production of cellulase using wheat bran from Bacillus subtilis BM1 and encoding endo-beta-1,4-glucanase producing gene. Res Environ Life Sci 10:507–512

    Google Scholar 

  65. Arana-Cuenca A, Tovar-Jiménez X, Favela-Torres E, Perraud-Gaime I, González-Becerra AE, Martínez A, Moss-Acosta CL, Mercado-Flores Y, Téllez-Jurado A (2019) Use of water hyacinth as a substrate for the production of filamentous fungal hydrolytic enzymes in solid-state fermentation. 3. Biotech 9:1–9. https://doi.org/10.1007/s13205-018-1529-z

    Article  Google Scholar 

  66. Dey P (2019) Development of improved production process of cellulase from waste pulp and paper sludge material. http://www.ipindia.nic.in/writereaddata/Portal/IPOJournal/1_4761_1/Part-1.pdf , Page: 33

  67. Wang W, Kang L, Lee YY (2010) Production of cellulase from kraft paper mill sludge by trichoderma reesei rut C-30. Appl Biochem Biotechnol 161:382–394. https://doi.org/10.1007/s12010-009-8863-x

    Article  Google Scholar 

  68. Yang P, Zhang H, Cao L, Zheng Z, Jiang S (2016) Construction of Aspergillus niger integrated with cellulase gene from Ampullaria gigas Spix for improved enzyme production and saccharification of alkaline-pretreated rice straw. 3 Biotech. doi: https://doi.org/10.1007/s13205-016-0545-0

  69. Zhao C, Xie B, Zhao R, Fang H (2019) Microbial oil production by Mortierella isabellina from sodium hydroxide pretreated rice straw degraded by three-stage enzymatic hydrolysis in the context of on-site cellulase production. Renew Energy 130:281–289. https://doi.org/10.1016/j.renene.2018.06.080

    Article  Google Scholar 

  70. Nazir A, Soni R, Saini HS, Kaur A, Chadha BS (2010) Profiling differential expression of cellulases and metabolite footprints in aspergillus terreus. Appl Biochem Biotechnol 162:538–547. https://doi.org/10.1007/s12010-009-8775-9

    Article  Google Scholar 

  71. Li Y, Peng X, Chen H (2013) Comparative characterization of proteins secreted by Neurospora sitophila in solid-state and submerged fermentation. J Biosci Bioeng 116:493–498. https://doi.org/10.1016/j.jbiosc.2013.04.001

    Article  Google Scholar 

  72. Singhania RR, Sukumaran RK, Rajasree KP, Mathew A, Gottumukkala L, Pandey A (2011) Properties of a major β-glucosidase-BGL1 from Aspergillus niger NII-08121 expressed differentially in response to carbon sources. Process Biochem 46:1521–1524. https://doi.org/10.1016/j.procbio.2011.04.006

    Article  Google Scholar 

  73. Zhao C, Zou Z, Li J, Ji H, Liesche J, Chen S, Fang H (2018) Efficient bioethanol production from sodium hydroxide pretreated corn stover and rice straw in the context of on-site cellulase production. Renew Energy 118:14–24. https://doi.org/10.1016/j.renene.2017.11.001

    Article  Google Scholar 

  74. Soltanian S, Aghbashlo M, Almasi F, Hosseinzadeh-Bandbafh H, Nizami AS, Ok YS, Lam SS, Tabatabae M (2020) A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. Energy Convers Manag 212:112792. https://doi.org/10.1016/j.enconman.2020.112792

    Article  Google Scholar 

  75. Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78. https://doi.org/10.1016/j.biombioe.2012.03.026

    Article  Google Scholar 

  76. Saha M, Saynik PB, Borah A, Malani RS, Arya P, Shivangic MVS (2019) Dioxane-based extraction process for production of high quality lignin. Bioresour Technol Reports 5:206–211. https://doi.org/10.1016/j.biteb.2019.01.018

    Article  Google Scholar 

  77. da Silva ARG, Torres Ortega CE, Rong BG (2016) Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production. Bioresour Technol 218:561–570. https://doi.org/10.1016/j.biortech.2016.07.007

    Article  Google Scholar 

  78. Dey P, Pal P, Kevin JD, Das DB (2020) Lignocellulosic bioethanol production: prospects of emerging membrane technologies to improve the process - a critical review. Rev Chem Eng 36:333–367. https://doi.org/10.1515/revce-2018-0014

    Article  Google Scholar 

  79. Kumar B, Bhardwaj N, Agrawal K, Chaturvedi V, Verma P (2020) Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Process Technol 199:106244. https://doi.org/10.1016/j.fuproc.2019.106244

    Article  Google Scholar 

  80. Da Silva ASA, Inoue H, Endo T, Yano S, Bon EPS (2010) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 101:7402–7409. https://doi.org/10.1016/j.biortech.2010.05.008

    Article  Google Scholar 

  81. Haque KE (1999) Microwave energy for mineral treatment processes - a brief review. Int J Miner Process 57:1–24. https://doi.org/10.1016/s0301-7516(99)00009-5

    Article  Google Scholar 

  82. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550. https://doi.org/10.1016/j.pecs.2012.02.002

    Article  Google Scholar 

  83. Heitz M, Carrasco F, Rubio M, Chauvette G, Chornet E, Jaulin L, Overend RP (1986) Generalized correlations for the aqueous liquefaction of lignocellulosics. Can J Chem Eng 64:647–650. https://doi.org/10.1002/CJCE.5450640416

    Article  Google Scholar 

  84. Dey P, Singh J, Scaria J, Anand AP (2018) Improved production of cellulase by Trichoderma reesei (MTCC 164) from coconut mesocarp-based lignocellulosic wastes under response surface-optimized condition. 3 Biotech 402:13 doi: https://doi.org/10.1007/s13205-018-1421-x

  85. Sen B, Chou YP, Wu SY, Liu CM (2016) Pretreatment conditions of rice straw for simultaneous hydrogen and ethanol fermentation by mixed culture. Int J Hydrog Energy 41:4421–4428. https://doi.org/10.1016/j.ijhydene.2015.10.147

    Article  Google Scholar 

  86. Solarte-Toro JC, Romero-García JM, Martínez-Patiño JC, Ruiz-Ramos E, Castro-Galiano E, Cardona-Alzate CA (2019) Acid pretreatment of lignocellulosic biomass for energy vectors production: a review focused on operational conditions and techno-economic assessment for bioethanol production. Renew Sust Energ Rev 107:587–601. https://doi.org/10.1016/j.rser.2019.02.024

    Article  Google Scholar 

  87. Wen Z, Wu M, Lin Y, Yang L, Lin J, Cen P (2014) Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans. Microb Cell Factories 13:92. https://doi.org/10.1186/s12934-014-0092-5

    Article  Google Scholar 

  88. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DV (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005

    Article  Google Scholar 

  89. Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part II: fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose. Biofuels. Bioprod Biorefining 6:561–579. https://doi.org/10.1002/bbb.1350

    Article  Google Scholar 

  90. Li Y, Liu C, Bai F, Zhao X (2016) Overproduction of cellulase by Trichoderma reesei RUT C30 through batch-feeding of synthesized low-cost sugar mixture. Bioresour Technol 216:503–510. https://doi.org/10.1016/j.biortech.2016.05.108

    Article  Google Scholar 

  91. Sateesh L, Rodhe AV, Naseeruddin S, Yadav KS, Prasad Y, Rao LV (2012) Simultaneous Cellulase production, Saccharification and detoxification using dilute acid hydrolysate of S. spontaneum with Trichoderma reesei NCIM 992 and Aspergillus niger. Indian J Microbiol 52:258–262. https://doi.org/10.1007/s12088-011-0184-4

    Article  Google Scholar 

  92. Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sust Energ Rev 16:1462–1476. https://doi.org/10.1016/j.rser.2011.11.035

    Article  Google Scholar 

  93. Datta S, Holmes B, Park JI, Chen Z, Dibble DC, Hadi M, Blanch HW, Simmons BA, Sapra R (2010) Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem 12:338–334. https://doi.org/10.1039/b916564a

    Article  Google Scholar 

  94. Zheng GJ, Zhou YJ, Zhang J, Cheng K, Zhao X, Zhang T, Liu D (2007) Pretreatment of rice hulls for cellulase production by solid substrate fermentation. J Wood Chem Technol 27:65–71. https://doi.org/10.1080/02773810701486675

    Article  Google Scholar 

  95. Horisawa S, Ando H, Ariga O, Sakuma Y (2015) Direct ethanol production from cellulosic materials by consolidated biological processing using the wood rot fungus Schizophyllum commune. Bioresour Technol 197:37–41. https://doi.org/10.1016/j.biortech.2015.08.031

    Article  Google Scholar 

  96. Jahnavi G, Prashanthi GS, Sravanthi K, Rao LV (2017) Status of availability of lignocellulosic feed stocks in India: biotechnological strategies involved in the production of bioethanol. Renew Sust Energ Rev 73:798–820. https://doi.org/10.1016/J.RSER.2017.02.018

    Article  Google Scholar 

  97. Rastogi M, Shrivastava S (2017) Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renew Sust Energ Rev 80:330–340. https://doi.org/10.1016/j.rser.2017.05.225

    Article  Google Scholar 

  98. Chen H, He Q, Liu L (2011) Cellulase production from the corn stover fraction based on the organ and tissue. Biotechnol Bioprocess Eng 16:867–874. https://doi.org/10.1007/s12257-011-0171-y

    Article  Google Scholar 

  99. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093

    Article  Google Scholar 

  100. Culbertson A, Jin M, Da Costa SL, Dale BE, Balan V (2013) In-house cellulase production from AFEX™ pretreated corn stover using Trichoderma reesei RUT C-30. RSC Adv 3:25960–25969. https://doi.org/10.1039/c3ra44847a

    Article  Google Scholar 

  101. Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011:787532. https://doi.org/10.4061/2011/787532

    Article  Google Scholar 

  102. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  Google Scholar 

  103. Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass - an overview. Bioresour Technol 199:76–82. https://doi.org/10.1016/j.biortech.2015.08.030

    Article  Google Scholar 

  104. Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447–1457. https://doi.org/10.1016/j.biotechadv.2012.03.003

    Article  Google Scholar 

  105. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46. https://doi.org/10.1016/S0960-8524(01)00118-3

    Article  Google Scholar 

  106. Cen P, Xia L (1999) Production of cellulase by solid-state fermentation. Springer, Berlin, Heidelberg, pp 69–92

    Google Scholar 

  107. Hölker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186. https://doi.org/10.1007/s00253-003-1504-3

    Article  Google Scholar 

  108. Shah AR, Madamwar D (2005) Xylanase production under solid-state fermentation and its characterization by an isolated strain of Aspergillus foetidus in India. World J Microbiol Biotechnol 21:233–243. https://doi.org/10.1007/s11274-004-3622-1

    Article  Google Scholar 

  109. Chen H, He Q (2012) Value-added bioconversion of biomass by solid-state fermentation. J Chem Technol Biotechnol 87:1619–1625. https://doi.org/10.1002/jctb.3901

    Article  Google Scholar 

  110. Hong LS, Ibrahim D, Omar IC (2011) Lignocellulolytic materials-as a raw material for the production of fermentable sugars via solid state fermentation. Asian J Sci Res 4:53–61. https://doi.org/10.3923/ajsr.2011.53.61

    Article  Google Scholar 

  111. Yong Syuan K, Ong Gaik Ai L, Kim Suan T (2018) Evaluation of cellulase and xylanase production from Trichoderma harzianum using acid-treated rice straw as solid substrate. Mater Today Proc 5: 22109–22117. doi: https://doi.org/10.1016/j.matpr.2018.07.077

  112. Dhillon GS, Oberoi HS, Kaur S, Bansal S, Brar SK (2011) Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind Crop Prod 34:1160–1167. https://doi.org/10.1016/j.indcrop.2011.04.001

    Article  Google Scholar 

  113. Salihu A, Abbas O, Sallau AB, Alam MZ (2015) Agricultural residues for cellulolytic enzyme production by Aspergillus niger: effects of pretreatment. 3. Biotech 5:1101–1106. https://doi.org/10.1007/s13205-015-0294-5

    Article  Google Scholar 

  114. Shi J, Sharma-Shivappa RR, Chinn MS (2009) Microbial pretreatment of cotton stalks by submerged cultivation of Phanerochaete chrysosporium. Bioresour Technol 100:4388–4395. https://doi.org/10.1016/j.biortech.2008.10.060

    Article  Google Scholar 

  115. Khan MMH, Ali S, Fakhru’l-Razi A, Alam MZ (2007) Use of fungi for the bioconversion of rice straw into cellulase enzyme. J Environ Sci Heal - Part B Pestic Food Contam Agric Wastes 42:381–386. https://doi.org/10.1080/03601230701312647

    Article  Google Scholar 

  116. Jha K, Khare SK, Gandhi AP (1995) Solid-state fermentation of soyhull for the production of cellulase. Bioresour Technol 54:321–322. https://doi.org/10.1016/0960-8524(95)00154-9

    Article  Google Scholar 

  117. Philippoussis A, Diamantopoulou P, Papadopoulou K, Lakhtar H, Roussos S, Parissopoulos G, Papanikolaou S (2011) Biomass, laccase and endoglucanase production by Lentinula edodes during solid state fermentation of reed grass, bean stalks and wheat straw residues. World J Microbiol Biotechnol 27:285–297. https://doi.org/10.1007/s11274-010-0458-8

    Article  Google Scholar 

  118. Deswal D, Khasa YP, Kuhad RC (2011) Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol 102:6065–6072. https://doi.org/10.1016/j.biortech.2011.03.032

    Article  Google Scholar 

  119. Elisashvili V, Kachlishvili E, Tsiklauri N, Khardziani T, Agathos SN (2009) Lignocellulose-degrading enzyme production by white-rot Basidiomycetes isolated from the forests of Georgia. World J Microbiol Biotechnol 25:331–339. https://doi.org/10.1007/s11274-008-9897-x

    Article  Google Scholar 

  120. Hamidi-Esfahani Z, Shojaosadati SA, Rinzema A (2004) Modelling of simultaneous effect of moisture and temperature on A. niger growth in solid-state fermentation. Biochem Eng J 21:265–272. https://doi.org/10.1016/j.bej.2004.07.007

    Article  Google Scholar 

  121. Pirzadah T, Garg S, Singh J, Vyas A, Kumar M, Gaur N, Bala M, Rehman R, Varma A, Kumar V, Kumar M (2014) Characterization of Actinomycetes and Trichoderma spp. for cellulase production utilizing crude substrates by response surface methodology. Springerplus 3:622. https://doi.org/10.1186/2193-1801-3-622

  122. Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44:13–18. https://doi.org/10.1016/j.bej.2008.10.019

    Article  Google Scholar 

  123. Alam MZ, Muyibi SA, Wahid R (2008) Statistical optimization of process conditions for cellulase production by liquid state bioconversion of domestic wastewater sludge. Bioresour Technol 99:4709–4716. https://doi.org/10.1016/j.biortech.2007.09.072

    Article  Google Scholar 

  124. Amadi OC, Egong EJ, Nwagu TN, Okpala G, Onwosi CO, Chukwu GC, Okoloa BN, Agu RC, Moneke AN (2020) Process optimization for simultaneous production of cellulase, xylanase and ligninase by Saccharomyces cerevisiae SCPW 17 under solid state fermentation using Box-Behnken experimental design. Heliyon 6:e04566. https://doi.org/10.1016/j.heliyon.2020.e04566

    Article  Google Scholar 

  125. Acharya BK, Mohana S, Jog R, Divecha J, Madamwar D (2010) Utilization of anaerobically treated distillery spent wash for production of cellulases under solid-state fermentation. J Environ Manag 91:2019–2027. https://doi.org/10.1016/j.jenvman.2010.05.001

    Article  Google Scholar 

  126. Ezeilo UR, Wahab RA, Mahat NA (2020) Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation. Renew Energy 156:1301–1312. https://doi.org/10.1016/j.renene.2019.11.149

    Article  Google Scholar 

  127. Hu Y, Du C, Pensupa N, Lin CSK (2018) Optimisation of fungal cellulase production from textile waste using experimental design. Process Saf Environ Prot 118:133–142. https://doi.org/10.1016/j.psep.2018.06.009

    Article  Google Scholar 

  128. Marraiki N, Vijayaraghavan P, Elgorban AM, Dhas DSD, Al-Rashed S, Yassina MT (2020) Low cost feedstock for the production of endoglucanase in solid state fermentation by Trichoderma hamatum NGL1 using response surface methodology and saccharification efficacy. J King Saud Univ - Sci 32:1718–1724. https://doi.org/10.1016/j.jksus.2020.01.008

    Article  Google Scholar 

  129. Qadir F, Shariq M, Ahmed A, Sohail M (2018) Evaluation of a yeast co-culture for cellulase and xylanase production under solid state fermentation of sugarcane bagasse using multivariate approach. Ind Crop Prod 123:407–415. https://doi.org/10.1016/j.indcrop.2018.07.021

    Article  Google Scholar 

  130. Verma N, Kumar V (2020) Impact of process parameters and plant polysaccharide hydrolysates in cellulase production by Trichoderma reesei and Neurospora crassa under wheat bran based solid state fermentation. Biotechnol Reports 25:e00416. https://doi.org/10.1016/j.btre.2019.e00416

    Article  Google Scholar 

  131. Ramesh D, Muniraj IK, Thangavelu K, Karthikeyan S (2019) Knowledge update on bioreactor technology for cellulase production. In: New Futur. Dev, Microb. Biotechnol. Bioeng. From Cellul. to Cell. Strateg. to Improv. Biofuel Prod. Elsevier, pp 181–193

    Google Scholar 

  132. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84. https://doi.org/10.1016/S1369-703X(02)00121-3

    Article  Google Scholar 

  133. Durand A (2003) Bioreactor designs for solid state fermentation. Biochem Eng J 13:113–125. https://doi.org/10.1016/S1369-703X(02)00124-9

    Article  Google Scholar 

  134. Couto SR, Sanromán MÁ (2006) Application of solid-state fermentation to food industry-a review. J Food Eng 76:291–302. https://doi.org/10.1016/j.jfoodeng.2005.05.022

    Article  Google Scholar 

  135. Weber FJ, Tramper J, Rinzema A (1999) A simplified material and energy balance approach for process development and scale-up of Coniothyrium minitans conidia production by solid-state cultivation in a packed-bed reactor. Biotechnol Bioeng 65:447–458. https://doi.org/10.1002/(SICI)1097-0290(19991120)65:4<447::AID-BIT9>3.0.CO;2-K

    Article  Google Scholar 

  136. Kalogeris E, Iniotaki F, Topakas E, Christakopoulos P, Kekos D, Macris BJ (2003) Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw. Bioresour Technol 86:207–213. https://doi.org/10.1016/S0960-8524(02)00175-X

    Article  Google Scholar 

  137. Yoon LW, Ang TN, Ngoh GC, Chua ASM (2014) Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass Bioenergy 67:319–338. https://doi.org/10.1016/j.biombioe.2014.05.013

    Article  Google Scholar 

  138. Kumar NV, Rani ME, Gunaseeli R, Kannan ND, Sridhar J (2012) Modeling and structural analysis of cellulases using Clostridium thermocellum as template. Bioinformation 8:1105–1110. https://doi.org/10.6026/97320630081105

    Article  Google Scholar 

  139. Jou RY, Lo CT (2011) Heat and mass transfer measurements for tray-fermented fungal products. Int J Thermophys 32:523–536. https://doi.org/10.1007/s10765-011-0934-x

    Article  Google Scholar 

  140. Manan MA, Webb C (2020) Newly designed multi-stacked circular tray solid-state bioreactor: analysis of a distributed parameter gas balance during solid-state fermentation with influence of variable initial moisture content arrangements. Bioresour Bioprocess 7:16. https://doi.org/10.1186/s40643-020-00307-9

    Article  Google Scholar 

  141. Robinson T, Nigam P (2003) Bioreactor design for protein enrichment of agricultural residues by solid state fermentation. Biochem Eng J 13:197–203. https://doi.org/10.1016/S1369-703X(02)00132-8

    Article  Google Scholar 

  142. Chen H (2013) Modern solid state fermentation: theory and practice. Mod Solid State Ferment Theory Pract. https://doi.org/10.1007/978-94-007-6043-1_1

  143. Mitchell DA, Berovič M, Krieger N (2006) Solid-state fermentation bioreactor fundamentals: introduction and overview. Solid-State Ferment Bioreact Fundam Des Oper:1–12. https://doi.org/10.1007/3-540-31286-2_1

  144. Chen HZ, Xu J, Li ZH (2005) Temperature control at different bed depths in a novel solid-state fermentation system with two dynamic changes of air. Biochem Eng J 23:117–122. https://doi.org/10.1016/j.bej.2004.11.003

    Article  Google Scholar 

  145. Brijwani K, Oberoi HS, Vadlani PV (2010) Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem 45:120–128. https://doi.org/10.1016/j.procbio.2009.08.015

    Article  Google Scholar 

  146. Arora S, Rani R, Ghosh S (2018) Bioreactors in solid state fermentation technology: design, applications and engineering aspects. J Biotechnol 269:16–34. https://doi.org/10.1016/j.jbiotec.2018.01.010

    Article  Google Scholar 

  147. Aparecida P, Frassatto C (2016) Cellulase production in packed-bed bioreactor by solid-state fermentation. https://doi.org/10.5071/21stEUBCE2013-3DV.1.13

  148. Assamoi AA, Destain J, Delvigne F, Lognay G, Thonart P (2008) Solid-state fermentation of xylanase from Penicillium canescens 10-10c in a multi-layer-packed bed reactor. Appl Biochem Biotechnol 145:87–98. https://doi.org/10.1007/s12010-007-8077-z

    Article  Google Scholar 

  149. Perez CL, Casciatori FP, Thoméo JC (2019) Strategies for scaling-up packed-bed bioreactors for solid-state fermentation: the case of cellulolytic enzymes production by a thermophilic fungus. Chem Eng J 361:1142–1151. https://doi.org/10.1016/j.cej.2018.12.169

    Article  Google Scholar 

  150. Ortiz GE, Guitart ME, Cavalitto SF, Albertó EO, Fernández-Lahore M, Blasco M (2015) Characterization, optimization, and scale-up of cellulases production by trichoderma reesei cbs 836.91 in solid-state fermentation using agro-industrial products. Bioprocess Biosyst Eng 38:2117–2128. https://doi.org/10.1007/s00449-015-1451-2

    Article  Google Scholar 

  151. Lin YS, Lee WC, Duan KJ, Lin YH (2013) Ethanol production by simultaneous saccharification and fermentation in rotary drum reactor using thermotolerant Kluveromyces marxianus. Appl Energy 105:389–394. https://doi.org/10.1016/j.apenergy.2012.12.020

    Article  Google Scholar 

  152. Alam MZ, Mamun AA, Qudsieh IY, Muyibi SA, Salleh HM, Omar NM (2009) Solid state bioconversion of oil palm empty fruit bunches for cellulase enzyme production using a rotary drum bioreactor. Biochem Eng J 46:61–64. https://doi.org/10.1016/j.bej.2009.03.010

    Article  Google Scholar 

  153. Thomas L, Ram H, Kumar A, Singh VP (2016) Production, optimization, and characterization of organic solvent tolerant cellulases from a lignocellulosic waste-degrading Actinobacterium, Promicromonospora sp. VP111. Appl Biochem Biotechnol 179:863–879. https://doi.org/10.1007/s12010-016-2036-5

    Article  Google Scholar 

  154. Roghair I, Gallucci F, van Sint AM (2014) Novel developments in fluidized bed membrane reactor technology. Adv Chem Eng 45:159–283. https://doi.org/10.1016/B978-0-12-800422-7.00004-2

    Article  Google Scholar 

  155. Tengerdy RP, Rho WH, Mohagheghi A (1991) Liquid fluidized bed starter culture of Trichoderma reesei for cellulase production. Appl Biochem Biotechnol 27:195–204. https://doi.org/10.1007/BF02921535

    Article  Google Scholar 

  156. Pirota RDPB, Tonelotto M, Delabona PS, Fonseca RF, Paixão DAA, Baleeiro FCF, Neto VB, Farinas CS (2016) Bioprocess developments for cellulase production by aspergillus oryzae cultivated under solid-state fermentation. Brazilian J Chem Eng 33:21–31. doi: https://doi.org/10.1590/0104-6632.20160331s00003520

  157. Rodríguez-Zúñiga UF, Couri S, Neto VB, Crestana S, Farinas CS (2013) Integrated strategies to enhance cellulolytic enzyme production using an instrumented bioreactor for solid-state fermentation of sugarcane bagasse. Bioenergy Res 6:142–152. https://doi.org/10.1007/s12155-012-9242-y

    Article  Google Scholar 

  158. Zeng W, Chen HZ (2009) Air pressure pulsation solid state fermentation of feruloyl esterase by Aspergillus niger. Bioresour Technol 100:1371–1375. https://doi.org/10.1016/j.biortech.2008.08.032

    Article  Google Scholar 

  159. Li H, Chen H (2008) Detoxification of steam-exploded corn straw produced by an industrial-scale reactor. Process Biochem 43:1447–1451. https://doi.org/10.1016/j.procbio.2008.05.003

    Article  Google Scholar 

  160. Ibrahim D, Omar IC, Lee CK, Pang PK (2010) WO2010095919A1 - a solid state fermentation (ssf) system

  161. dos Reis L, Fontana RC, da Silva DP, da Silva Lima DJ, Camassola M, da Cruz Pradella JG, Dillon AJP (2013) Increased production of cellulases and xylanases by Penicillium echinulatum S1M29 in batch and fed-batch culture. Bioresour Technol 146:597–603. https://doi.org/10.1016/J.BIORTECH.2013.07.124

    Article  Google Scholar 

  162. Gouda MK (2000) Purification and partial characterization of cellulase-free xylanase produced by Aspergillus tamarii. Adv Food Sci 22:31–37

    Google Scholar 

  163. Li DC, Lu M, Li YL, Lu J (2003) Purification and characterization of an endocellulase from the thermophilic fungus Chaetomium thermophilum CT2. Enzym Microb Technol 33:932–937. https://doi.org/10.1016/S0141-0229(03)00245-X

    Article  Google Scholar 

  164. Saha BC (2004) Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides. Process Biochem 39:1871–1876. https://doi.org/10.1016/j.procbio.2003.09.013

    Article  Google Scholar 

  165. Romero MD, Aguado J, González L, Ladero M (1999) Cellulase production by Neurospora crassa on wheat straw. Enzym Microb Technol 25:244–250. https://doi.org/10.1016/S0141-0229(99)00035-6

    Article  Google Scholar 

  166. Grigorevski De Lima AL, Pires Do Nascimento R, Da Silva Bon EP, Coelho RRR (2005) Streptomyces drozdowiczii cellulase production using agro-industrial by-products and its potential use in the detergent and textile industries. Enzym Microb Technol 37:272–277. https://doi.org/10.1016/j.enzmictec.2005.03.016

    Article  Google Scholar 

  167. Szabó IJ, Johansson G, Pettersson G (1996) Optimized cellulase production by Phanerochaete chrysosporium: control of catabolite repression by fed-batch cultivation. J Biotechnol 48:221–230. https://doi.org/10.1016/0168-1656(96)01512-X

    Article  Google Scholar 

  168. Khusro A, Kaliyan BK, Al-Dhabi NA, Arasu MV, Agastian P (2016) Statistical optimization of thermo-alkali stable xylanase production from Bacillus tequilensis strain ARMATI. Electron J Biotechnol 22:16–25. https://doi.org/10.1016/j.ejbt.2016.04.002

    Article  Google Scholar 

  169. Bocchini DA, Alves-Prado HF, Baida LC, Roberto IC, Gomes E, Da Silva R (2002) Optimization of xylanase production by Bacillus circulans D1 in submerged fermentation using response surface methodology. Process Biochem 38:727–731. https://doi.org/10.1016/S0032-9592(02)00207-8

    Article  Google Scholar 

  170. Irfan M, Asghar U, Nadeem M, Nelofer R, Syed Q (2016) Optimization of process parameters for xylanase production by Bacillus sp. in submerged fermentation. J Radiat Res Appl Sci 9:139–147. https://doi.org/10.1016/j.jrras.2015.10.008

    Article  Google Scholar 

  171. Li Y, Liu Z, Zhao H, Xu Y, Cui F (2007) Statistical optimization of xylanase production from new isolated Penicillium oxalicum ZH-30 in submerged fermentation. Biochem Eng J 34:82–86. https://doi.org/10.1016/j.bej.2006.11.011

    Article  Google Scholar 

  172. Prasanna HN, Ramanjaneyulu G, Rajasekhar Reddy B (2016) Optimization of cellulase production by Penicillium sp. 3 Biotech 162. doi: https://doi.org/10.1007/s13205-016-0483-x

  173. Nisar K, Abdullah R, Kaleem A, Iqtedar M (2020) Statistical optimization of cellulase production by Thermomyces dupontii. Iran J Sci Technol Trans A Sci 44:1269–1277. https://doi.org/10.1007/s40995-020-00932-1

    Article  Google Scholar 

  174. Saravanan P, Muthuvelayudham R, Viruthagiri T (2013) Enhanced production of cellulase from pineapple waste by response surface methodology J Eng Article ID 979547

  175. Sirohi R, Singh A, Tarafdar A, Shahi NC, Verma AK, Kushwaha A (2019) Cellulase production from pre-treated pea hulls using Trichoderma reesei under submerged fermentation. Waste Biomass Valori 10:2651–2659. https://doi.org/10.1007/s12649-018-0271-4

    Article  Google Scholar 

  176. Sharma S, Sharma V, Kuila A (2016) Cellulase production using natural medium and its application on enzymatic hydrolysis of thermo chemically pretreated biomass. 3 Biotech 6:1–11. doi: https://doi.org/10.1007/s13205-016-0465-z

  177. Bajar S, Singh A, Bishnoi NR (2020) Exploration of low-cost agro-industrial waste substrate for cellulase and xylanase production using Aspergillus heteromorphus. Appl Water Sci 10:153. https://doi.org/10.1007/s13201-020-01236-w

    Article  Google Scholar 

  178. Carvalho ML de A de, Carvalho DF, Gomes E de B, Maeda RN, Anna LMMS, de Castro AM, Pereira N (2014) Optimisation of cellulase production by Penicillium funiculosum in a stirred tank bioreactor using multivariate response surface analysis Enzyme Res Article ID 703291

  179. Rodriguez-Gomez D, Hobley TJ (2013) Is an organic nitrogen source needed for cellulase production by Trichoderma reesei Rut-C30? World J Microbiol Biotechnol 29:2157–2165. https://doi.org/10.1007/s11274-013-1381-6

    Article  Google Scholar 

  180. Ahamed A, Vermette P (2008) Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochem Eng J 40:399–407. https://doi.org/10.1016/j.bej.2007.11.030

    Article  Google Scholar 

  181. Deshavath NN, Sahoo SK, Panda MM, Mahanta S, Goutham DSN,Goud VV, Dasu VV, Jetty A (2018) The cost-effective stirred tank reactor for cellulase production from alkaline-pretreated agriculture waste biomass. Util Manag Bioresour. Springer Singapore, pp 25–35

  182. Kim SW, Kang SW, Lee JS (1997) Cellulase and xylanase production by Aspergillus niger KKS in various bioreactors. Bioresour Technol 59:63–67. https://doi.org/10.1016/S0960-8524(96)00127-7

    Article  Google Scholar 

  183. Der Jang H, Chang KS (2005) Thermostable cellulases from Streptomyces sp.: scale-up production in a 50-l fermenter. Biotechnol Lett 27:239–242. https://doi.org/10.1007/s10529-004-8356-5

    Article  Google Scholar 

  184. Campesi A, Cerri MO, Hokka CO, Badino AC (2009) Determination of the average shear rate in a stirred and aerated tank bioreactor. Bioprocess Biosyst Eng 32:241–248. https://doi.org/10.1007/s00449-008-0242-4

    Article  Google Scholar 

  185. Cerri MO, Badino AC (2010) Oxygen transfer in three scales of concentric tube airlift bioreactors. Biochem Eng J 51:40–47. https://doi.org/10.1016/j.bej.2010.04.013

    Article  Google Scholar 

  186. Ritter CET, Fontana RC, Camassola M, da Silveira MM, Dillon AJP (2013) The influence of sorbitol on the production of cellulases and xylanases in an airlift bioreactor. Bioresour Technol 148:86–90. https://doi.org/10.1016/j.biortech.2013.08.125

    Article  Google Scholar 

  187. Esperança MN, Cunha FM, Cerri MO, Zangirolami TC, Farinas CS, Badino AC (2014) Gas hold-up and oxygen mass transfer in three pneumatic bioreactors operating with sugarcane bagasse suspensions. Bioprocess Biosyst Eng 37:805–812. https://doi.org/10.1007/s00449-013-1049-5

    Article  Google Scholar 

  188. Pino MS, Rodríguez-Jasso RM, Michelin M, Flores-Gallegos AC, Morales-Rodriguez R, Teixeira JA, Ruiz HA (2018) Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept. Chem Eng J 347:119–136. https://doi.org/10.1016/j.cej.2018.04.057

    Article  Google Scholar 

  189. Libardi N, Soccol CR, Tanobe VOA, Vandenberghe LP de S (2020) Definition of liquid and powder cellulase formulations using domestic wastewater in bubble column reactor. Appl Biochem Biotechnol 190:113–128. doi: https://doi.org/10.1007/s12010-019-03075-1

  190. Humbird D, Davis R, McMillan JD (2017) Aeration costs in stirred-tank and bubble column bioreactors. Biochem Eng J 127:161–166. https://doi.org/10.1016/j.bej.2017.08.006

    Article  Google Scholar 

  191. Abdella A, Mazeed TES, El-Baz AF, Yang ST (2016) Production of β-glucosidase from wheat bran and glycerol by Aspergillus niger in stirred tank and rotating fibrous bed bioreactors. Process Biochem 51:1331–1337. https://doi.org/10.1016/j.procbio.2016.07.004

    Article  Google Scholar 

  192. Esterbauer H, Steiner W, Labudova I, Hermann A, Hayna M (1991) Production of Trichoderma cellulase in laboratory and pilot scale. Bioresour Technol 36:51–65. https://doi.org/10.1016/0960-8524(91)90099-6

    Article  Google Scholar 

  193. Abdella A, Segato F, Wilkins MR (2020) Optimization of process parameters and fermentation strategy for xylanase production in a stirred tank reactor using a mutant Aspergillus nidulans strain. Biotechnol Rep 26:e00457. https://doi.org/10.1016/j.btre.2020.e00457

    Article  Google Scholar 

  194. Ramamoorthy NK, T R S, Sahadevan R (2019) Assessment of fed-batch strategies for enhanced cellulase production from a waste lignocellulosic mixture. Biochem Eng J 152:107387. doi: https://doi.org/10.1016/j.bej.2019.107387

  195. Hendy NA, Wilke CR, Blanch HW (1984) Enhanced cellulase production in fed-batch culture of Trichoderma reesei C30. Enzym Microb Technol 6:73–77. https://doi.org/10.1016/0141-0229(84)90038-3

    Article  Google Scholar 

  196. Chaudhuri BK, Sahai V (1993) Production of cellulase enzyme from lactose in batch and continuous cultures by a partially constitutive strain of Trichoderma reesei. Enzym Microb Technol 15:513–518. https://doi.org/10.1016/0141-0229(93)90085-G

    Article  Google Scholar 

  197. Han X, Liu G, Song W, Qin Y, Qua Y (2017) Continuous feeding of spent ammonium sulphite liquor improves the production and saccharification performance of cellulase by Penicillium oxalicum. Bioresour Technol 245:984–992. https://doi.org/10.1016/j.biortech.2017.09.042

    Article  Google Scholar 

  198. Parry JB, Stewart JC, Heptinstall J (1983) Purification of the major endoglucanase from Aspergillus fumigatus Fresenius. Biochem J 213:437–444. https://doi.org/10.1042/bj2130437

    Article  Google Scholar 

  199. Yan TR, Lin CL (1997) Purification and characterization of a glucose-tolerant β-glucosidase from aspergillus Niger CCRC 31494. Biosci Biotechnol Biochem 61:965–970. https://doi.org/10.1271/bbb.61.965

    Article  Google Scholar 

  200. Nazir A, Soni R, Saini HS, Manhas RK, Chadha BS (2009) Purification and characterization of an endoglucanase from Aspergillus terreus highly active against barley β-glucan and xyloglucan. World J Microbiol Biotechnol 25:1189–1197. https://doi.org/10.1007/s11274-009-0001-y

    Article  Google Scholar 

  201. Pal S, Banik SP, Ghorai S, Chowdhury S, Khowala S (2010) Purification and characterization of a thermostable intra-cellular β-glucosidase with transglycosylation properties from filamentous fungus Termitomyces clypeatus. Bioresour Technol 101:2412–2420. https://doi.org/10.1016/j.biortech.2009.11.064

    Article  Google Scholar 

  202. Farouq AA, Abdullah DK, Abdullah N, Hooi-Ling F (2012) Cellulase enzyme production from lignocellulosic substrates by individual and consortium of new fungi isolated from asian elephant (Elephas maximus) dung. J Enzyme Res 3:34–38

    Google Scholar 

  203. Reddy GPK, Narasimha G, Kumar KD, Ramanjaneyulu G, Ramya A, Kumari BSS, Reddy BR (2015) Cellulase production by Aspergillus Niger on different natural lignocellulosic substrates. IntJCurrMicrobiolAppSci 4:835–845

    Google Scholar 

  204. Singhania RR, Saini R, Adsul M, Saini JK, Mathur A, Tuli D (2015) An integrative process for bio-ethanol production employing SSF produced cellulase without extraction. Biochem Eng J 102:45–48. https://doi.org/10.1016/j.bej.2015.01.002

    Article  Google Scholar 

  205. Mahalakshmi N, Jayalakshmi S (2016) Cellulase production by Aspergillus niger under solid state fermentation using agro industrial wastes | semantic scholar. Int J Adv Multidiscip Res 3(2):78–83

    Google Scholar 

  206. Gaur R, Tiwari S (2015) Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol 15:19. https://doi.org/10.1186/s12896-015-0129-9

    Article  Google Scholar 

  207. Megha S, Maragathavalli S, Brindha S, V Annadurai V, Gangwar SK, Karthikeyan V (2015) Isolation and purification of cellulase. Int J Sci Nat 6:474–479

  208. Begum MF, Absar N (2009) Purification and characterization of intracellular cellulase from Aspergillus oryzae ITCC-4857.01. Mycobiology 37:121. doi: https://doi.org/10.4489/MYCO.2009.37.2.121

  209. Hamdan NT, Jasim HM (2018) Purification and characterization of cellulase enzyme from Trichoderma longibrachiatum isolated in Iraqi soil. IOSR J Biotechnol Biochem (IOSR-JBB) 4:32–41. https://doi.org/10.9790/264X-04013241

    Article  Google Scholar 

  210. Fischer C, Krause A, Kleinschmidt T (2014) Optimization of production, purification and lyophilisation of cellobiose dehydrogenase by Sclerotium rolfsii. BMC Biotechnol 14:1–12. https://doi.org/10.1186/s12896-014-0097-5

    Article  Google Scholar 

  211. Islam F, Roy N (2018) Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC Res Notes 11:445. https://doi.org/10.1186/s13104-018-3558-4

    Article  Google Scholar 

  212. Goel N, Patra R, Kumar Verma S, Chand Sharma P (2019) Purification and characterization of cellulase from Pseudomonas sp. isolated from waste dumping site soil. J Appl Biotechnol Bioengineg 6:118–124. doi: https://doi.org/10.15406/jabb.2019.06.00183

  213. Okada G (2014) Purification and properties of a cellulase from Aspergillus niger. Agric Biol Chem 49:1257–1265. https://doi.org/10.1080/00021369.1985.10866894

    Article  Google Scholar 

  214. Ellouz S, Durand H, Tiraby G (1987) Analytical separation of Trichoderma reesei cellulases by ion-exchange fast protein liquid chromatography. J Chromatogr A 396:307–317. https://doi.org/10.1016/S0021-9673(01)94068-3

    Article  Google Scholar 

  215. Pachauri P, Aranganathan V, More S, Sullia SB, Deshmukh S (2020) Purification and characterization of cellulase from a novel isolate of Trichoderma longibrachiatum. Biofuels 11:85–91. https://doi.org/10.1080/17597269.2017.1345357

    Article  Google Scholar 

  216. Mores WD, Knutsen JS, Davis RH (2001) Cellulase recovery via membrane filtration. Appl Biochem Biotechnol 91:297–309. https://doi.org/10.1385/ABAB:91-93:1-9:297

    Article  Google Scholar 

  217. Rashid SS, Alam MZ, Fazli MBFA (2013) Separation of cellulase enzyme from fermentation broth of palm oil mill effluent by ultrafiltration process. Int J Chem Environ Biol Sci 1:501–506

    Google Scholar 

  218. Lemmer B, Jákói Z, Gulyás N, Kertész S, Beszédes S, László Z, Hodúr C (2020) The effect of sonication and stirring on ultrafiltration of fermentation broth. Environ Prot Eng 46:49–62. doi: https://doi.org/10.37190/epe200104

  219. Judd S (2010) The MBR book: principles and applications of membrane bioreactors for water and wastewater treatment. Butterworth-Heinemann

  220. Malmali M, Stickel J, Wickramasinghe SR (2015) Investigation of a submerged membrane reactor for continuous biomass hydrolysis. Food Bioprod Process 96:189–197. https://doi.org/10.1016/j.fbp.2015.07.001

    Article  Google Scholar 

  221. Zhang J, Chua HC, Zhou J, Fane AG (2006) Factors affecting the membrane performance in submerged membrane bioreactors. J Memb Sci 284:54–66. https://doi.org/10.1016/j.memsci.2006.06.022

    Article  Google Scholar 

  222. Hilal N, Ogunbiyi OO, Miles NJ, Nigmatullin R (2005) Methods employed for control of fouling in MF and UF membranes: a comprehensive review. Sep Sci Technol 40:1957–2005. https://doi.org/10.1081/SS-200068409

    Article  Google Scholar 

  223. Su BH, Fu P, Li Q, Tao Y, Li Z, Hs Z, Cs Z (2008) Evaluation of polyethersulfone highflux hemodialysis membrane in vitro and in vivo. J Mater Sci Mater Med 19:745–751. https://doi.org/10.1007/s10856-007-3006-9

    Article  Google Scholar 

  224. Rahimpour A, Madaeni SS (2007) Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: preparation, morphology, performance and antifouling properties. J Memb Sci 305:299–312. https://doi.org/10.1016/j.memsci.2007.08.030

    Article  Google Scholar 

  225. Méndez ML, Romero AI, Rajal VB, Castro E, Jl C, Palacio L (2014) Properties of polyethersulfone ultrafiltration membranes modified with polyethylene glycols. Polym Eng Sci 54:1211–1221. https://doi.org/10.1002/pen.23637

    Article  Google Scholar 

  226. Alenazi NA, Hussein MA, Alamry KA, Asiri AM (2017) Modified polyether-sulfone membrane: a mini review. Des Monomers Polym 20:532–546. https://doi.org/10.1080/15685551.2017.1398208

    Article  Google Scholar 

  227. Global Markets for Enzymes in Industrial Applications (2018) https://www.bccresearch.com/market-research/biotechnology/global-markets-for-enzymes-in-industrial-applications.html.

  228. Global Cellulase (CAS 9012-54-8) Market Research Report 2020: ReportsnReports. https://www.reportsnreports.com/reports/2803977-global-cellulase-cas-9012-54-8-market-research-report-2020.html.

  229. Zhang Z-J, Chen Y-Z, Hu H-R, Sang Y-Z (2013) The Beatability-aiding effect of Aspergillus niger crude cellulase on bleached Simao Pine kraft pulp and its mechanism of action. BioResources 8:5861–5870

    Google Scholar 

  230. Baker RA, Wicker L (1996) Current and potential applications of enzyme infusion in the food industry. Trends Food Sci Technol 7:279–284. https://doi.org/10.1016/0924-2244(96)10030-3

    Article  Google Scholar 

  231. Srivastava N, Srivastava M, Mishra PK, Gupta VK, Molina G, Rodriguez-Couto S, Ambepu M, Ramteke PW (2015) Application of cellulases in biofuels industries: an overview. J Biofuels Bioenergy 1:55. doi: https://doi.org/10.5958/2454-8618.2015.00007.3

  232. DuPont Nutrition & Biosciences. https://www.dupontnutritionandbiosciences.com/. Accessed 15 Oct 2020

  233. More efficient denim finishing and abrasion, Novozymes. https://www.novozymes.com/en/advance-your-business/textiles/denim-finishing. Accessed 15 Oct 2020

Download references

Acknowledgments

The authors are thankful to short-term research grant provided by KITS for doing further research work related to the review topic.

Author information

Authors and Affiliations

Authors

Contributions

Overall data collection, final compilation of data, and writing were performed by Pinaki Dey. Some part of data collection and writing different portions of the manuscript were performed by Vivek Rangarajan and Joginder Singh. Jayato Nayak made overall modification of manuscript in terms of language, spelling, and decided the way of representation. Kevin Joseph Dilip made analysis of data, and designed all figures and tables. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pinaki Dey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability (software application or custom code)

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, P., Rangarajan, V., Singh, J. et al. Current perspective on improved fermentative production and purification of fungal cellulases for successful biorefinery applications: a brief review. Biomass Conv. Bioref. 12, 967–995 (2022). https://doi.org/10.1007/s13399-020-01227-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01227-6

Keywords

Navigation