Skip to main content
Log in

Profiling Differential Expression of Cellulases and Metabolite Footprints in Aspergillus terreus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study reports differential expression of endoglucanase (EG) and β-glucosidase (βG) isoforms of Aspergillus terreus. Expression of multiple isoforms was observed, in presence of different carbon sources and culture conditions, by activity staining of poly acrylamide gel electrophoresis gels. Maximal expression of four EG isoforms was observed in presence of rice straw (28 U/g DW substrate) and corn cobs (1.147 U/ml) under solid substrate and shake flask culture, respectively. Furthermore, the sequential induction of EG isoforms was found to be associated with the presence of distinct metabolites (monosaccharides/oligosaccharides) i.e., xylose (X), G1, G3 and G4 as well as putative positional isomers (G1/G2, G2/G3) in the culture extracts sampled at different time intervals, indicating specific role of these metabolites in the sequential expression of multiple EGs. Addition of fructose and cellobiose to corn cobs containing medium during shake flask culture resulted in up-regulation of EG activity, whereas addition of mannitol, ethanol and glycerol selectively repressed the expression of three EG isoforms (Ia, Ic and Id). The observed regulation profile of βG isoforms was distinct when compared to EG isoforms, and addition of glucose, fructose, sucrose, cellobiose, mannitol and glycerol resulted in down-regulation of one or more of the four βG isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fierobe, H. P., Bayer, E. A., Tardif, C., Czjzek, M., Mechaly, A., & Belaich, A. (2002). Degradation of cellulose substrates by cellulosome chimeras. Substrate targeting versus proximity of enzyme components. Journal of Biological Chemistry, 277, 49621–49630.

    Article  CAS  Google Scholar 

  2. Doi, R. H., & Tamaru, Y. (2001). The Clostridium cellulovorans cellulosome: An enzyme complex with plant cell wall degrading activity. Chemical Records, 1, 24–32.

    Article  CAS  Google Scholar 

  3. Badhan, A., Chadha, B. S., Kaur, J., Saini, H. S., & Bhat, M. K. (2007). Role of transglycosylation products in the expression of multiple xylanases in Myceliophthora sp. IMI 387099. Current Microbiology, 54, 405–409.

    Article  CAS  Google Scholar 

  4. Badhan, A. K., Chadha, B. S., Kaur, J., Saini, H. S., & Bhat, M. K. (2007). Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Bioresource Technology, 98, 504–510.

    Article  CAS  Google Scholar 

  5. Collins, T., Gerday, C., & Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews, 29, 3–23.

    Article  CAS  Google Scholar 

  6. Sánchez-Herrera, L. M., Ramos-Valdivia, A. C., Torre, M., Salgado, L. M., & Ponce-Noyola, T. (2007). Differential expression of cellulases and xylanases by Cellulomonas flavigena grown on different carbon sources. Applied Microbiology and Biotechnology, 77, 589–595.

    Article  Google Scholar 

  7. Soni, R., Nazir, A., Chadha, B. S., & Saini, H. S. (2008). Novel sources of fungal cellulases for efficient deinking of composite paper waste. Bioresources, 3, 234–246.

    Google Scholar 

  8. Nazir, A., Soni, R., Saini, H. S., Manhas, R. K., & Chadha, B. S. (2009). Regulation of expression of multiple β- glucosidases of Aspergillus terreus and their purification and characterization. Bioresources, 4, 155–171.

    CAS  Google Scholar 

  9. Miller, G. L. (1959). Use of dinitrosalicyclic acid reagent for determination of reducing sugars. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  10. Parry, N. J., Beever, D. E., Owen, E., Vandenberghe, I., van Beeumen, J., & Bhat, M. K. (2001). Biochemical characterization and mechanism of action of a thermostable β-glucosidase purified from Thermoascus aurantiacus. Biochemical Journal, 353, 117–127.

    Article  CAS  Google Scholar 

  11. Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F., & Xi, Y. (2008). Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid state cultivation of corn stover. Bioresource Technology, 99, 7623–7629.

    Article  CAS  Google Scholar 

  12. Gao, J., Weng, H., Xi, Y., Zhu, D., & Han, S. (2008). Purification and characterization of a novel endo-β-1, 4-glucanase from the thermoacidophilic Aspergillus terreus. Biotechnology Letters, 30, 323–327.

    Article  CAS  Google Scholar 

  13. Nazir, A., Soni, R., Saini, H. S., Manhas, R. K., & Chadha, B. S. (2009). Purification and characterization of an endoglucanasefrom Aspergillus terreus highly active against barley b-glucan and xyloglucan. World Journal of Microbiology and Biotechnology, 25, 1189–1197.

    Article  CAS  Google Scholar 

  14. Badhan, A. K., Chadha, B. S., Sonia, K. G., Saini, H. S., & Bhat, M. K. (2004). Functionally diverse multiple xylanases of thermophilic fungus, Myceliophthora sp. IMI 387099. Enzyme & Microbial Technology, 35, 460–466.

    Article  CAS  Google Scholar 

  15. Blouzard, J., Bourgeois, C., de Philip, P., Valette, O., Bélaïch, A., Tardif, C., et al. (2007). Enzyme diversity of the cellulolytic system produced by Clostridium cellulolyticum explored by two-dimensional analysis: Identification of seven genes encoding new dockerin-containing proteins. Journal of Bacteriology, 189, 2300–2309.

    Article  CAS  Google Scholar 

  16. Ilmén, M., Saloheimo, A., Onnela, M. L., & Penttila, M. E. (1997). Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Applied and Environmental Microbiology, 63, 1298–306.

    Google Scholar 

  17. Stricker, A. S., Mach, R. L., & de Graff, L. H. (2008). Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Applied Microbiology and Biotecnology, 78, 211–220.

    Article  CAS  Google Scholar 

  18. Rauscher, A. J., Würleitner, E., Wacenovsky, C., Aro, N., Stricker, A. R., et al. (2006). Transcriptional regulation of xyn1, encoding xylanase I, in Hypocrea jecorina. Eukaryotic cell, 5, 447–456.

    Article  CAS  Google Scholar 

  19. Nakari-Setala, T., & Penttila, M. (1995). Production of Trichoderma reesei cellulases on glucose-containing media. Applied and Environmental Microbiology, 63, 3650–3655.

    Google Scholar 

  20. Messner, R., Gruber, F., & Kubicek, C. P. (1988). Differential regulation of synthesis of multiple forms of specific endoglucanases by Trichoderma reesei QM9414. Journal of Bacteriology, 170, 3689–3693.

    CAS  Google Scholar 

  21. Zhou, S., & Ingram, L. O. (2000). Synergistic hydrolysis of carboxymethyl cellulose and acid-swollen cellulose by two endoglucanases (CelZ and CelY) from Erwinia chrysanthemi. Journal of Bacteriology, 182, 5676–5682.

    Article  CAS  Google Scholar 

  22. Villas-Bôas, S. G., Noel, S., Lane, G. A., Attwood, G., & Cookson, A. (2006). Extracellular metabolomics: A metabolic footprinting approach to assess fiber degradation in complex media. Analytical Biochemistry, 349, 297–305.

    Article  Google Scholar 

  23. Panagiotou, G., Chrstakopoulos, P., & Olsson, L. (2005). Simultaneous saccharification and fermentation of cellulose by Fusarium oxysporum F3-growth characteristics and metabolite profiling. Enzyme and Microbial Technology, 36, 693–699.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Chadha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazir, A., Soni, R., Saini, H.S. et al. Profiling Differential Expression of Cellulases and Metabolite Footprints in Aspergillus terreus . Appl Biochem Biotechnol 162, 538–547 (2010). https://doi.org/10.1007/s12010-009-8775-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8775-9

Keywords

Navigation