Skip to main content
Log in

Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

This review concerns basic research on cellulases and cellulose-specific carbohydrate-binding modules (CBMs). As a background, glycosyl hydrolases are also briefly reviewed. The nomenclature of cellulases and CBMs is discussed. The main cellulase-producing organisms and their cellulases are described. Synergy, enantioseparation, cellulases in plants, cellulosomes, cellulases and CBMs as analytical tools and cellulase-like enzymes are also briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abuja PM, Pilz I, Claeyssens M, Tomme P (1988)Domain structure of cellobiohydrolase II as studied by small angle X-ray scattering:close resemblance to cellobiohydrolase I. Biochem.Biophys.Res.Comm. 156:180–185.

    Google Scholar 

  • Appel RD, Bairoch A, Hochstrasser DF (1994)A new-generation of information-retrieval tools for biologists–the example of the expasy www server. Trends Biochem.Sci. 19:258–260.

    Google Scholar 

  • Banka RR, Mishra S (2002)Adsorption properties of the bril forming protein from Trichoderma reesei.Enzyme Microb.Technol. 31:784–793.

    Google Scholar 

  • Banka RR, Mishra S, Ghose TK (1998)Fibril formation from cellulose by a novel protein from Trichoderma reesei:a non-hydrolytic cellulolytic component?World J.Microb.Biot. 14:551–558.

    Google Scholar 

  • Boraston AB, McLean BW, Kormos JM, Alam M, Gilkes NR, Haynes CA, Tomme P, Kilburn DG, Warren RAJ (1999) Carbohydrate-binding modules:diversity of structure and function.In:Gilbert HJ,Davies GJ,Henrissat B,Svensson B,eds.Recent Advances in Carbohydrate Bioengineering. Cambridge:The Royal Society of Chemistry,pp. 202–211.

  • Bourquin V, Nishikubo N, Abe H, Brumer H, Denman S, Eklund M, Christiernin M, Teeri TT, Sundberg B, Mellerowicz EJ (2002)Xyloglucan endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues.Plant Cell.14:3073–8308.

    Google Scholar 

  • Bray MR, Johnson PE, Gilkes NR, McIntosh LP, Kilburn DG, Warren RAJ (1996)Probing the role of tryptophan residues in a cellulose-binding domain by chemical modification. Protein Sci. 5:2311–2318.

    Google Scholar 

  • Brun E, Moriaud F, Gans P, Blackledge MJ,Barras F, Marion D (1997)Solution structure of the cellulose-binding domain of the endoglucanase z secreted by Erwinia chrysanthemi. Biochemistry.36:16074–16086.

    Google Scholar 

  • Carrard G, Linder M (1999)Widely different off rates of two closely related cellulose-binding domains from Trichoderma reesei.Eur.J.Biochem.262:637–643.

    Google Scholar 

  • Carrard G, Koivula A, Soderlund H, Beguin P (2000)Cellu-lose-binding domains promote hydrolysis of different sites on crystalline cellulose.Proc.Natl.Acad.Sci.USA 97: 10342–10347.

    Google Scholar 

  • Chapon V, Czjzek M, El Hassouni M, Py B, Juy M, Barras F (2001)Type II protein secretion in Gram-negative patho-genic bacteria:the study of structure/secretion relationships of the cellulase Cel5 (formerly EGz)from Erwinia chrysanthemi. J.Mol.Biol.310:1055–1066.

    Google Scholar 

  • Chapon V, Simpson HD, Morelli X, Brun E, Barras F (2000) Alteration of a single tryptophan residue of the cellulose-binding domain blocks secretion of the Erwinia chrysanthemi Cel5 cellulase (Ex-EGz)via the type II system.J.Mol.Biol. 303:117–123.

    Google Scholar 

  • Creagh AL, Ong E, Jervis E, Kilburn DG, Haynes CA (1996) Binding of the cellulose-binding domain of exoglucanase Cex from Cellulomonas mi to insoluble microcrystalline cellulose is entropically driven.Proc.Natl.Acad.Sci.USA.93: 12229–12234.

    Google Scholar 

  • Daniel G (1994)Use of electron microscopy for aiding our understanding of wood biodegradation.FEMS Microbiol. Rev.13:199–233.

    Google Scholar 

  • Davies GJ, Brzozowski AM, Dauter M, Varrot A, Schu ¨lein M (2000)Structure and function of Humicola insolens family 6 cellulases:structure of the endoglucanase,Cel6B,at 1.6 A ¢ª resolution.Biochem.J.348:201–207.

    Google Scholar 

  • Davies GJ, Dauter M, Brzozowski AM, Eskelund Bjørnvad M, Andersen KV, Schu ¨lein M (1998)Structure of the Bacillus agaradherans family 5 endoglucanase at 1.6 A ¢ªand its cellobiose complex at 2.0 A ¢ªresolution.Biochemistry 37: 1926–1932.

    Google Scholar 

  • Davies G, Henrissat B (1995)Structures and mechanisms of glycosyl hydrolases.Structure 3:853–859.

    Google Scholar 

  • Din N, Gilkes NR, Tekant B, Miller J, Robert C, Warren RAJ, Kilburn DG (1991)Non-hydrolytic disruption of cellulose bres by the binding domain of a bacterial cellulase.Bio-Technology 9:1096–1099.

    Google Scholar 

  • Divne C, Sta ¢ªhlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles JCK, Teeri TT, Jones TA (1994)The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei.Science 265: 524–528.

    Google Scholar 

  • Doi RH, Kosugi A, Murashima K, Tamaru Y, Han SO (2003) Cellulosomes from mesophilic bacteria.J.Bacteriol.185: 5907–5914.

    Google Scholar 

  • Esteghlalian AR, Srivastava V, Gilkes NR, Kilburn DG,x Warren RAJ, Saddler JN (2001)Do cellulose binding domains increase substrate accessibility?Appl.Biochem. Biotechnol.91–3:575–592.

    Google Scholar 

  • Fornstedt T, Go ¨tmar G, Andersson M, Guiochon G (1999) Dependence on the mobile-phase pH of the adsorption behaviour of propranolol enantiomers on a cellulase protein used as the chiral selector.J.Am.Chem.Soc.121:1164–1174.

    Google Scholar 

  • Gielkens MMC, Dekkers E, Visser J, de Graa LH (1999)Two cellobiohydrolase-encoding genes from Aspergillus niger require D D-xylose and the xylanolytic transcriptional activator xlnr for their expression.Appl.Environ.Microbiol.65:4340–4345.

    Google Scholar 

  • Gilad R, Rabinovich L, Yaron S, Bayer EA, Lamed R, Gilbert HJ, Shoham Y (2003)Ce1I,a noncellulosomal family 9 enzyme from Clostridium thermocellum,is a processive endoglucanase that degrades crystalline cellulose.teriol.185:391–398.

    Google Scholar 

  • Gilkes NR, Kilburn DG, Miller J, Robert C, Warren RAJ, Sugiyama J, Chanzy H, Henrissat B (1993)Visualization of the adsorption of a bacterial endo-b 1,4-glucanase and its isolated cellulose-binding domain to crystalline cellulose.Int. J.Biol.Macromol.15:347–351.

    Google Scholar 

  • Guimaraes BG, Souchon H, Lytle BL, Wu DJH, Alzari PM (2002)The crystal structure and catalytic mechanism of cellobiohydrolase CelS,the major enzymatic component of the Clostridium thermocellum cellulosome.J.Mol.Biol.320: 587–596.

    Google Scholar 

  • Go ¨tmar G, Fornstedt T, Guiochon G (2000)Retention mechanism of b blockers on an immobilized cellulase. Relative importance of the hydrophobic and ionic contribu-tions to their enantioselective and nonselective interactions. Anal.Chem.72:3908–3915.

    Google Scholar 

  • Hakamada Y, Endo K, Takizawa S, Kobayashi T, Shirai T, Yamane T, Ito S (2002)Enzymatic properties,crystalliza-tion,and deduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans.Biochim.Biophys. Acta 1570:174–180.

    Google Scholar 

  • Ha ¨llberg M (2002)Structural studies on the extracellular. avocytochrome cellobiose dehydrogenase from Phanerochaete chrysosporium.PhD-thesis.Uppsala University, Uppsala, Sweden (http://publications.uu.se/uu/fulltext/nbn_se_uu_di-va-2701.pdf).

    Google Scholar 

  • Harhangi HR, Freelove ACJ, Ubhayasekera W, van Dinther M,Steenbakkers PJM,Akhmanova A,van der Drift C,Jetten MSM,Mowbray SL,Gilbert HJ,den Camp H (2003)Cel6A,a major exoglucanase from the cellulosome of the anaerobic fungi Piromyces sp E2 and Piromyces equi.Biochim.Biophys.Acta-Gene Struct.Expression 1628:30–39.

    Google Scholar 

  • Henriksson H, Munoz IG, Isaksson R, Pettersson G, Johansson G (2000)Cellobiohydrolase 58 (P.c.Cel 7D)is comple-mentary to the homologous cbh I (T.r.Cel 7A)in enantioseparations.J.Chromatogr.A.898:63–74.

    Google Scholar 

  • Henriksson G, Nutt A, Henriksson H, Pettersson B, Sta ¢ªhlberg J, Johansson G, Pettersson G (1999)Endogluca-nase 28 (Cel12A),a new Phanerochaete chrysosporium cellulase.Eur.J.Biochem.259:88–95.

    Google Scholar 

  • Henriksson G, Salumets A, Divne C, Pettersson G (1997a) Studies of cellulose binding by cellobiose dehydrogenase and a comparison with cellobiohydrolase 1.Biochem.J.324: 833–838.

    Google Scholar 

  • Henriksson H, Sta ¢ªhlberg J, Koivula A, Pettersson G, Divne C, Valtcheva L, Isaksson R (1997b)The catalytic amino-acid residues in the active site of cellobiohydrolase I are involved in chiral recognition.J.Biotechnol.57:115–125.

    Google Scholar 

  • Henrissat B, Claeyssens M, Tomme P, Lemesle L, Mornon J-P (1989)Cellulase families reveald by hydrophobic cluster analysis.Gene 81:83–95.

    Google Scholar 

  • Hildeń L, Daniel G, Johansson G (2002) Use of a fluorescence labelled,carbohydrate-binding module from Phanerochaete chrysosporium Cel7D for studying wood cell wall ultrastructure.Biotechnol.Lett.25:553–558

    Google Scholar 

  • Irwin D, Shin D-H, Zhang S, Barr BK, Sakon J, Karplus PA, Wilson DB (1998)Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis.J.Bacteriol.180:1709–1714.

    Google Scholar 

  • Jeoh T, Wilson DB, Walker LP (2002)Cooperative and competitive binding in synergistic mixtures of Thermobi da fusca cellulases Cel5A,Cel6B and Cel9A.Biotechnol.Prog. 18:760–769.

    Google Scholar 

  • Jervis EJ, Haynes CA, Kilburn DG (1997)Surface diffusion of cellulases and their isolated binding domains on cellulose.J.Biol.Chem.272:24016–24023.

    Google Scholar 

  • Johansson G, Sta ¢ªhlberg J, Lindeberg G, Engstro ¨mA ¢ª,Pettersson G (1989)Isolated fungal cellulase terminal domains and a synthetic minimum analogue bind to cellulose.FEBS Lett. 243:389–393.

    Google Scholar 

  • Jung H, Wilson DB, Walker LP (2003)Binding and reversibility of Thermobi da fusca Cel5A,Cel6B and Cel48A and their respective catalytic domains to bacterial microcrystalline cellulose.Biotech.Bioeng.84:151–159.

    Google Scholar 

  • Juy M, Amit AG, Alzari PM, Poljak RJ, Claeyssens M, Be ´guin P, Aubert J-P (1992)Three-dimensional structure of a thermostable bacterial cellulase.Nature 357:89–91.

    Google Scholar 

  • Karlsson J, Medve J, Tjerneld F (1999)Hydrolysis of steam-pretreated lignocellulose–synergism and adsorption for cellobiohydrolase I and endoglucanase II of Trichoderma reesei.Appl.Biochem.Biotechnol.82:243–258.

    Google Scholar 

  • Khademi S, Zhang D, Swanson SM, Wartenberg A, Witte K, Meyer EF (2002)Determination of the structure of an endoglucanase from Aspergillus niger and its mode of inhibition by palladium chloride.Acta Cryst.D D58:660–667.

    Google Scholar 

  • Kim C-H, Kim D-S (1995)Puri cation and speci city of a speci c endo-b 1,4-D D-glucanase (avicelase II)resembling exo-cellobiohydrolase from Bacillus circulans.Enzyme Microb. Technol.17:248–254.

    Google Scholar 

  • Kleywegt GJ, Zou J-Y, Divne C, Davies GJ, Sinning I, Sta ¢ªhlberg J, Reinikainen T, Srisodsuk M, Teeri TT, Jones TA (1997)The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 A ¢ª resolution,and a comparison with related enzymes.J.Mol. Biol.272:383–397.

    Google Scholar 

  • Lee I, Evans BR, Woodward J (2000)The mechanism of cellulase action on cotton bres:evidence from atomic force microscopy.Ultramicroscopy 82:213–221.

    Google Scholar 

  • Leggio LL, Larsen S (2002)The 162 A ¢ªstructure of Thermoas-cus aurantiacus endoglucanase:completing the structural picture of sub-families in glycoside hydrolase family 5.FEBS Lett 523:103–108.

    Google Scholar 

  • Lehtiö J (2001)Functional studies and engineering of family 1 carbohydrate-binding modules.PhD-thesis.Stockholm, Sweden: Royal Institute of Technology(http://www.lib.kth.se/Sammanfattningar/lehtio010914.pdf).

    Google Scholar 

  • Lehtiö J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003)The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc.Natl.Acad.Sci.USA 100:484–489.

    Google Scholar 

  • Lehtiö J, Werne ´rus H, Samuelson P, Teeri TT, Sta ¢ªhl S (2001) Directed immobilization of recombinant staphylococci on cotton bres by functional display of a fungal cellulose-binding domain.FEMS Microbiol.Lett.195:197–204.

    Google Scholar 

  • Leibovitz E, Be ´guin P (1996)A new type of cohesin domain that speci cally binds the dockerin domain of the Clostri-dium thermocellum cellulosome-integrating protein CipA. J.Bacteriol.178:3077–3084.

    Google Scholar 

  • Levy I, Shoseyov O (2002)Cellulose-binding domains biotechnological applications.Biotechnol.Adv. 20:191–213.

    Google Scholar 

  • Levy I, Paldi T, Shoseyov O (2004)Engineering a bifunctional starch-cellulose cross-bridge protein.Biomaterials.25:1841–1849.

    Google Scholar 

  • Linder M, Lindeberg G, Reinikainen T, Teeri TT, Pettersson G (1995a)The difference in a community between two fungal cellulose-binding domains is dominated by a single amino acid substitution.FEBS Lett.372:96–98.

    Google Scholar 

  • Linder M, Mattinen M-L, Kontteli M, Lindeberg G, Sta ¢ªhlberg J, Drakenberg T, Reinikainen T, Pettersson G, Annila A (1995b)Identi cation of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I.Protein Sci.4:1056–1064.

    Google Scholar 

  • Linder M, Salovuori I, Ruohonen L, Teeri TT (1996)Charac-terization of a double cellulose-binding domain.J.Biol. Chem.271:21268–21272.

    Google Scholar 

  • Lytle BL, Volkman BF, Westler WM, Heckman MP, Wu JHD (2001)Solution structure of a type I dockerin domain,a novel prokaryotic,extracellular calcium-binding domain. J.Mol.Biol.307:745–753.

    Google Scholar 

  • Madkour M, Mayer F (2003)Structural organization of the intact bacterial cellulosome as revealed by electron micros-copy.Cell.Biol.Int.27:831–836.

    Google Scholar 

  • Mandelman D, Belaich A, Belaich JP, Aghajari N, Driguez H, Haser R (2003)X-ray crystal structure of the multidomain endoglucanase Cel9G from Clostridium cellulolyticum com-plexed with natural and synthetic cello-oligosaccharides. J.Bacteriol.185:4127–4135.

    Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Gelpke MDS, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004)Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain rp78. Nature Biotechnol.22:695–700.

    Google Scholar 

  • Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unravelling cell wall formation in the woody dicot stem.Plant Mol.Biol.47:239–274.

    Google Scholar 

  • Munoz IG, Ubhayasekera W, Henriksson H, Szabo I, Pettersson G, Johansson G, Mowbray SL, Stahlberg J (2001) Family 7 cellobiohydrolases from Phanerochaete chrysospo-rium:crystal structure of the catalytic module of Cel7D (CBH58)1. 32 Angstrom resolution and homology models of the isozymes.J.Mol.Biol.314:1097–1111.

    Google Scholar 

  • Munoz IG, Mowbray SL, Sta ¢ªhlberg J (2003)The catalytic module of Cel7D from Phanerochaete chrysosporium as a chiral selector:structural studies of its complex with the beta blocker (R )-propranolol.Acta Cryst.D D59:637–643.

    Google Scholar 

  • Murashima K, Kosugi A, Doi RH (2003)Synergistic effects of cellulosomal xylanase and cellulases from Clostridium cellulovorans on plant cell wall degradation.J.Bacteriol.185: 1518–1524.

    Google Scholar 

  • O ¨hman D, Norlander B, Peterson C, Bengtsson F (2002) Simultaneous determination of reboxetine and o-desethylre-boxetine enantiomers using enantioselective reversed-phase high-performance liquid chromatography.J.Chromatogr.A 947:247–254.

    Google Scholar 

  • O 'sullivan AC (1997)Cellulose:the structure slowly unravels. Cellulose 4:173–207.

    Google Scholar 

  • Pagès S, Be ´laïch A, Be ´laïch J-P, Morag E, Lamed R, Shoham Y, Bayer EA (1997)Species-speci city of the cohesindockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum:prediction of speci city determinants of the dockerin domain.Proteins 29:517–527.

    Google Scholar 

  • Park YW, Tominaga R, Sugiyama J, Furuta Y, Tanimoto E, Samejima M, Sakai F, Hayashi T (2003)Enhancement of growth by expression of poplar cellulase in Arabidopsis thaliana.Plant J.33:1099–1106.

    Google Scholar 

  • Parsiegla G, Belaý ¨ch A, Belaý ¨ch JP, Haser R (2002)Crystal structure of the cellulase Cel9M enlightens structure/function relationships of the variable catalytic modules in glycoside hydrolases.Biochemistry 41:11134–11142.

    Google Scholar 

  • Pei-Ji G, Guan-Jun C, Tian-Hong W, Ying-Shu Z, Jie L (2001) Non-hydrolytic disruption of crystalline structure of cellu-lose by cellulose binding domain and linker sequence of cellobiohydrolase I from Penicillium janthinellum.Acta Biochim.Biophys.Sin.33:13–18.

    Google Scholar 

  • Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles JKC, Teeri TT (1992) Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I.Proteins 14:475–482.

    Google Scholar 

  • Riedel K, Bronnenmeier K (1998)Intramolecular synergism in an engineered exo-endo-1,4-b glucanase fusion protein.Mol. Microbiol.28:767–775.

    Google Scholar 

  • Robson LM, Chambliss GH (1989)Cellulases of bacterial origin.Enzyme Microb.Technol.11:626–644.

    Google Scholar 

  • Rouvinen J, Bergfors T, Teeri T, Knowles JCK, Jones TA (1990)Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei.Science 249:380–386.

    Google Scholar 

  • Sakon J, Irwin D, Wilson DB, Karplus PA (1997)Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca.Nature Struct.Biol.4:810–818.

    Google Scholar 

  • Samejima M, Sugiyama J, Igarashi K, Eriksson K-EL (1998) Enzymatic hydrolysis of bacterial cellulose.Carbohydr.Res. 305:281–288.

    Google Scholar 

  • Sandgren M, Shaw A, Ropp TH, Wu S, Bott R, Cameron AD, Sta ¢ªhlberg J, Mitchinson C, Jones TA (2001)The X-ray crystal structure of the Trichoderma reesei family 12 endo-glucanase 3,Cel12A,at 1.9 A ¢ªresolution.J.Mol.Biol.308: 295–310.

    Google Scholar 

  • Schwarz WH (2001)The cellulosome and cellulose degradation by anaerobic bacteria.Appl.Microbiol.Biotechnol.56:634–649.

    Google Scholar 

  • Shepherd MG, Tong CC, Cole AL (1981)Substrate speci city and mode of action of the cellulases from the thermophilic fungus Thermoascus aurantiacus.Biochem.J.193:67–74.

    Google Scholar 

  • Shoham Y, Lamed R, Bayer EA (1999)The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccherides.Trends Microbiol.7:275–281.

    Google Scholar 

  • Spinelli S, Fie ´robe H-P, Belaïch A, Belaïch J-P, Henrissat B, Cambillau C (2000)Crystal structure of a cohesin module from Clostridium cellulolyticum:implications for dockerin recognition.J.Mol.Biol.304:189–200.

    Google Scholar 

  • Sta ¢ªhlberg J, Henriksson H, Divne C, Isaksson R, Pettersson G, Johansson G, Jones TA (2001)Structural basis for enantio-mer binding and separation of a common b blocker:crystal structure of cellobiohydrolase Cel7A with bound (S)-pro-pranolol at 1.9 A ¢ªresolution.J.Mol.Biol.305:79–93.

    Google Scholar 

  • Sta ¢ªhlberg J, Johansson G, Pettersson G (1991)A new model for enzymatic-hydrolysis of cellulose based on the 2-domain structure of cellobiohydrolase-I.Bio-Technol.9:286–290.

    Google Scholar 

  • Sulzenbacher G, Shareck F, Morosoli R, Dupont C, Davies GJ (1997)The Streptomyces lividans family 12 endoglucanase: construction of the catalytic core,expression,and X-ray structure at 1.75 A ¢ªresolution.Biochemistry 36:16032–16039.

    Google Scholar 

  • Taylor JG, Haigler CH, Kilburn DG, Blanton RL (1996) Detection of cellulose with improved speci city using laser-based instruments.Biotechnol.Histochem.71:215–223.

    Google Scholar 

  • Tomme P, Boraston A, McLean B, Kormos J, Creagh AL, Sturch K, Gilkes NR, Haynes CA, Warren RAJ, Kilburn DG (1998) Characterization and affinity applications of cellulose-binding domains.J.Chromatogr. B 715:283–296.

    Google Scholar 

  • Tomme P, Driver DP, Amandoron EA, Miller J, Robert C, Warren RAJ, Kilburn DG (1995)Comparison of a fungal (family I)and bacterial (family II)cellulose-binding domain.J.Bacteriol.177:4356–4363.

    Google Scholar 

  • Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA (1996)Crystal structure of a bacterial family-III cellulose-binding domain:a general mechanism for attachment to cellulose.EMBO J.15:5739–5751.

    Google Scholar 

  • Van Petegem F, Vandenberghe I, Bhat MK, Van Beeumen J (2002)Atomic resolution structure of the major endoglu-canase from Thermoascus aurantiacus.Biochem.Biophys. Res.Commun.296:161–166.

    Google Scholar 

  • van Solingen P, Meijer D, van der Kleij WAH, Barnett C, Bolle R, Power SD, Jones BE (2001)Cloning and expression of an endocellulase gene from a novel streptomycete isolated from an East African soda lake.Extremophiles 5:333–341.

    Google Scholar 

  • Varrot A, Davies G (2003)Direct experimental observation of the hydrogen-bonding network of a glycosidase along its reaction coordinate revealed by atomic resolution analyses of endoglucanase Cel5A.Acta Cryst.D D59:447–452.

    Google Scholar 

  • Varrot A, Hastrup S, Schu¨lein M, Davies GJ (1999)Crystal structure of the catalytic core domain of the family 6 cellobiohydrolase II,Cel6A,from Humicola insolens,at 1.92 A ¢ªresolution.Biochem.J.337:297–304.

    Google Scholar 

  • Va¨ljama¨e P, Kipper K, Pettersson G, Johansson G (2003) Synergistic cellulose hydrolysis can be described in terms of fractal-like kinetics.Biotechnol.Bioeng.84:254–257.

    Google Scholar 

  • Väljamäe P, Pettersson G, Johansson G (2001)Mechanism of substrate inhibition in cellulose synergistic degradation.Eur. J.Biochem.268:4520–4526.

    Google Scholar 

  • Väljamäe P, Sild V, Nutt A, Pettersson G, Johansson G (1999) Acid hydrolysis of bacterial cellulose reveals different modes of synergisitic action between cellobiohydrolase I and endoglucanase I.Eur.J.Biochem.266:327–334.

    Google Scholar 

  • Webb EC (1992)Enzyme Nomenclature 1992,Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes.San Diego: Academic Press.

    Google Scholar 

  • Woodward J (1991)Synergism in cellulase systems.Biores. Technol.36:67–75.

    Google Scholar 

  • Xiao ZZ, Gao PJ, Qu YB, Wang TH (2001)Cellulose-binding domain of endoglucanase III from Trichoderma reesei disrupting the structure of cellulose.Biotechnol.Lett.23: 711–715.

    Google Scholar 

  • Yang J-l, Pettersson B, Eriksson K-E (1988)Development of bioassays for the characterization of pulp ber surfaces,I. Characterization of various mechanical pulp ber surfaces by specific cellulolytic enzymes.Nord.Pulp Paper Res.J.42: 19–25.

    Google Scholar 

  • Yuan S, Wu Y, Cosgrove DJ (2001)A fungal endoglucanase with plant cell wall extension activity.Plant Physiol.127: 324–333.

    Google Scholar 

  • Zverlov V, Mahr S, Riedel K, Bronnenmeier K (1998) Properties and gene structure of a bifunctional cellulolytic enzyme (CelA)from the extreme thermophile 'Anaerocellum thermophilum' with separate glycosyl hydrolase family 9 and 48 catalytic domains.Microbiology 144:457–465.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hildén, L., Johansson, G. Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnology Letters 26, 1683–1693 (2004). https://doi.org/10.1007/s10529-004-4579-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-004-4579-8

Navigation