Skip to main content
Log in

Determination of the average shear rate in a stirred and aerated tank bioreactor

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A method for evaluating the average shear rate (\( \dot \gamma _{{\text{av}}} \)) in a stirred and aerated tank bioreactor has been proposed for non-Newtonian fluids. The volumetric oxygen transfer coefficient (k L a) was chosen as the appropriate characteristic parameter to evaluate the average shear rate (\( \dot \gamma _{{\text{av}}} \)). The correlations for the average shear rate as a function of N and rheological properties of the fluid (K and n) were obtained for two airflow rate conditions (ϕair). The shear rate values estimated by the proposed methodology lay within the range of the values calculated by classical correlations. The proposed correlations were utilized to predict the \( \dot \gamma _{{\text{av}}} \) during the Streptomyces clavuligerus cultivations carried out at 0.5 vvm and four different rotational impeller speeds. The results show that the values of the average shear rate (\( \dot \gamma _{{\text{av}}} \)) varied from 437 to 2,693 s−1 by increasing with N and flow index (n) and decreasing with the fluid consistency index (K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

a, b, c :

parameters of Eq. 10

d, e, f :

parameters of Eq. 12

Ce:

dissolved oxygen concentration (mmol L−1)

Ce0 :

dissolved oxygen concentration at t = t 0 (mmol L−1)

Ces :

saturation concentration of dissolved oxygen with air (mmol L−1)

d i :

impeller diameter (m)

k e :

constant of the oxygen probe (s−1)

k :

proportionality constant

k L a :

volumetric oxygen transfer coefficient (s−1)

K :

consistency index (Pa sn)

n :

flow index

N :

rotational impeller speed (rpm)

Q :

volumetric flow rate (m3 s−1)

P :

power input (W)

t :

time (“s” in the equation 6 and “h” in the Fig. 4)

U GR :

superficial gas velocity in the riser region (m s−1)

V :

working volume (m3)

ϕair :

specific air flow rate (vvm)

\( \dot \gamma \) :

shear rate (s−1)

\( \dot \gamma _{{{\text{av}}}} \) :

average shear rate (s−1)

\( \dot \gamma _{{\max }} \) :

maximum shear rate (s−1)

μ :

dynamic viscosity (Pa s)

μ app :

apparent viscosity (Pa s)

μ L :

dynamic viscosity of liquid (Pa s)

σ:

surface tension of fluid (N m−1)

τ :

shear stress (Pa)

τ e :

response time (s)

References

  1. Badino AC, Facciotti MCR, Schmidell W (2001) Volumetric oxygen transfer coefficients (kla) in batch cultivations involving non-newtonian broths. Biochem Eng J 8:111–119

    Article  CAS  Google Scholar 

  2. Belmar-Beiny MT, Thomas CR (1991) Morphology and clavulanic acid production of streptomyces clavuligerus: effect of stirred speed in batch fermentations. Biotechnol Bioeng 37:456–462

    Article  CAS  Google Scholar 

  3. Blažej M, Juraščík M, Annus J, Markoš J (2004) Measurement of mass transfer coefficient in an airlift reactor with internal loop using coalescent and non-coalescent liquid media. J Chem Technol Biotechnol 79:1405–1411

    Article  Google Scholar 

  4. Bowen RL (1986) Unraveling the mysteries of shear-sensitive mixing systems. Chem Eng 93:55–63

    CAS  Google Scholar 

  5. Calderbank PH, Moo-Young MB (1959) The prediction of power consumption in the agitation of non-Newtonian fluids. Chem Eng Res Des 37:26–33

    Google Scholar 

  6. Cerri MO, Futiwaki L, Jesus CDF, Cruz AJG, Badino AC (2008) Average shear rate for non Newtonian fluids in a concentric-tube airlift bioreactor. Biochem Eng J 39:51–57

    Article  CAS  Google Scholar 

  7. Chisti MY, Moo-Young M (1987) Airlift reactors: characteristics, applications and design considerations. Chem Eng Comm 60:195–242

    Article  CAS  Google Scholar 

  8. Chisti Y (2001) Hydrodynamic damage to animal cells. Crit Rev Biotechnol 21:67–110

    Article  CAS  Google Scholar 

  9. Gavrilescu M, Roman RV, Efimov V (1993) The volumetric oxygen mass transfer coefficient in antibiotic biosynthesis liquids. Acta Biotechnol 13:59–70

    Article  CAS  Google Scholar 

  10. Hoffmann J, Buescher K, Hempel DC (1995) Determination of maximum shear-stress in stirred vessels. Chem Ing Tech 67:210–214

    Article  CAS  Google Scholar 

  11. Kawase K, Hashiguchi N (1996) Gas-liquid mass transfer in external-loop airlift columns with Newtonian and non-Newtonian fluids. Chem Eng J 62:35–42

    CAS  Google Scholar 

  12. Kelly W, Gigas B (2003) Using CFD to predict the behavior of power law fluids near axial-flow impellers operation in the transitional flow regime. Chem Eng Sci 58:2141–2152

    Article  CAS  Google Scholar 

  13. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Mathem 11:431–441

    Article  Google Scholar 

  14. Metzner AB, Otto RE (1957) Agitation of non-Newtonian fluids. Am Inst Chem Eng J 3:3–10

    CAS  Google Scholar 

  15. Metzner AB, Feehs RH, Ramos LH, Tuthill Otto RE, JB (1961) Agitation of viscous Newtonian and non-Newtonian fluids. Am Inst Chem Eng J 7:3–9

    CAS  Google Scholar 

  16. Pérez JAS, Porcel EMR, López JLC, Sevilla JMF, Chisti Y (2006) Shear rate in stirred tank and bubble column bioreactors. Chem Eng J 124:1–5

    Article  Google Scholar 

  17. Robertson B, Ulbrecht JJ (1987) Measurement of shear rate on an agitator in a fermentation broth, In: Ho CS, Oldshue JY (ed), Biotechnology Processes, Am Inst Chem Eng, New York

  18. Rosa JC, Baptista-Neto A, Hokka CO, Badino AC (2005) Influence of dissolved oxygen and shear conditions on clavulanic acid production by Streptomyces clavuligerus. Bioproc Biosyst Eng 27:99–104

    Article  CAS  Google Scholar 

  19. Wichterle K, Kadlec M, Zak L, Mitschka P (1984) Shear rates on turbine impeller blades. Chem Eng Comm 26:25–32

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support of FAPESP (Grant Proc. 05/55079-4) and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto C. Badino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campesi, A., Cerri, M.O., Hokka, C.O. et al. Determination of the average shear rate in a stirred and aerated tank bioreactor. Bioprocess Biosyst Eng 32, 241–248 (2009). https://doi.org/10.1007/s00449-008-0242-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0242-4

Keywords

Navigation