Skip to main content
Log in

β-In2S3 as Water Splitting Photoanodes: Promise and Challenges

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

As the interest in sustainable energy production increases, water splitting through semiconductor materials to convert solar energy directly to hydrogen energy has been extensively reported to date. Recently, the III–VI group chalcogenide semiconductors have received great attention for narrow-gap photoelectrochemical (PEC) water splitting electrodes. Among the metal sulfides, beta indium sulfide (β-In2S3) shows remarkable properties for photoelectrodes such as high photoelectric sensitivity, high photoconductivity, large photoelectric conversion yield, low toxicity, high absorption coefficient, efficient charge separation, moderate charge transport, appropriate band position, and narrow band gap. Most of its unique properties come from the defective spinel crystal structure. Despite the superior advantages, there is a serious problem of photocorrosion induced by accumulated holes on the surface of the electrodes during the photocatalytic reaction under illumination which reduces the PEC properties. Herein, we review overall physicochemical and optoelectronic properties of β-In2S3, regardless of pros and cons, followed by the discussion of assorted strategies to further improve the PEC activities.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475

    Article  CAS  Google Scholar 

  2. Bockris, J.O.M.: The origin of ideas on a hydrogen economy and its solution to the decay of the environment. Int. J. Hydrog. Energy 27(7–8), 731–740 (2002)

    Article  CAS  Google Scholar 

  3. Choi, S., Kwon, K.C., Kim, S.Y., Jang, H.W.: Tailoring catalytic activities of transition metal disulfides for water splitting. FlatChem 4, 68–80 (2017). https://doi.org/10.1016/j.flatc.2017.06.010

    Article  CAS  Google Scholar 

  4. Park, H., Park, I.J., Lee, M.G., Kwon, K.C., Hong, S.P., Kim, D.H., Lee, S.A., Lee, T.H., Kim, C., Moon, C.W., Son, D.Y., Jung, G.H., Yang, H.S., Lee, J.R., Lee, J., Park, N.G., Kim, S.Y., Kim, J.Y., Jang, H.W.: Water splitting exceeding 17% solar-to-hydrogen conversion efficiency using solution-processed ni-based electrocatalysts and perovskite/Si tandem solar cell. ACS Appl. Mater. Interfaces. 11(37), 33835–33843 (2019). https://doi.org/10.1021/acsami.9b09344

    Article  CAS  Google Scholar 

  5. Andoshe, D.M., Jeon, J.-M., Kim, S.Y., Jang, H.W.: Two-dimensional transition metal dichalcogenide nanomaterials for solar water splitting. Electron. Mater. Lett. 11(3), 323–335 (2015). https://doi.org/10.1007/s13391-015-4402-9

    Article  CAS  Google Scholar 

  6. Lee, M.G., Park, J.S., Jang, H.W.: Solution-processed metal oxide thin film nanostructures for water splitting photoelectrodes: a review. J. Korean Ceram. Soc. 55(3), 185–202 (2018). https://doi.org/10.4191/kcers.2018.55.3.08

    Article  CAS  Google Scholar 

  7. Crabtree, G.W., Lewis, N.S.: Solar energy conversion. Phys. Today 60(3), 37–42 (2007). https://doi.org/10.1063/1.2718755

    Article  CAS  Google Scholar 

  8. Grätzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001)

    Article  Google Scholar 

  9. Chang Kwon, K., Choi, S., Lee, J., Hong, K., Sohn, W., Andoshe, D.M., Choi, K.S., Kim, Y., Han, S., Kim, S.Y., Jang, H.W.: Drastically enhanced hydrogen evolution activity by 2D to 3D structural transition in anion-engineered molybdenum disulfide thin films for efficient Si-based water splitting photocathodes. J. Mater. Chem. A 5(30), 15534–15542 (2017). https://doi.org/10.1039/c7ta03845c

    Article  CAS  Google Scholar 

  10. Honda, A.F.K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  Google Scholar 

  11. Bhat, S.S.M., Jun, S.E., Lee, S.A., Lee, T.H., Jang, H.W.: Influence of C3N4 precursors on photoelectrochemical behavior of TiO2/C3N4 photoanode for solar water oxidation. Energies (2020). https://doi.org/10.3390/en13040974

    Article  Google Scholar 

  12. Yoon, J.W., Kim, D.H., Kim, J.-H., Jang, H.W., Lee, J.-H.: NH2-MIL-125(Ti)/TiO2 nanorod heterojunction photoanodes for efficient photoelectrochemical water splitting. Appl. Catal. B Environ. 244, 511–518 (2019). https://doi.org/10.1016/j.apcatb.2018.11.057

    Article  CAS  Google Scholar 

  13. Choi, S., Hwang, J., Lee, T.H., Kim, H.-H., Hong, S.-P., Kim, C., Choi, M.-J., Park, H.K., Bhat, S.S.M., Suh, J.M., Lee, J., Choi, K.S., Hong, S.-H., Shin, J.C., Jang, H.W.: Photoelectrochemical hydrogen production at neutral pH phosphate buffer solution using TiO2 passivated InAs Nanowire/p-Si heterostructure photocathode. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.123688

    Article  Google Scholar 

  14. Bhat, S.S.M., Pawar, S.A., Potphode, D., Moon, C.-K., Suh, J.M., Kim, C., Choi, S., Patil, D.S., Kim, J.-J., Shin, J.C., Jang, H.W.: Substantially enhanced photoelectrochemical performance of TiO2 nanorods/CdS nanocrystals heterojunction photoanode decorated with MoS2 nanosheets. Appl. Catal. B Environ. (2019). https://doi.org/10.1016/j.apcatb.2019.118102

    Article  Google Scholar 

  15. Andoshe, D.M., Choi, S., Shim, Y.-S., Lee, S.H., Kim, Y., Moon, C.W., Kim, D.H., Lee, S.Y., Kim, T., Park, H.K., Lee, M.G., Jeon, J.-M., Nam, K.T., Kim, M., Kim, J.K., Oh, J., Jang, H.W.: A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes. J. Mater. Chem. A 4(24), 9477–9485 (2016). https://doi.org/10.1039/c6ta02987f

    Article  CAS  Google Scholar 

  16. Andoshe, D.M., Jin, G., Lee, C.-S., Kim, C., Kwon, K.C., Choi, S., Sohn, W., Moon, C.W., Lee, S.H., Suh, J.M., Kang, S., Park, J., Heo, H., Kim, J.K., Han, S., Jo, M.-H., Jang, H.W.: Directly assembled 3D molybdenum disulfide on silicon wafer for efficient photoelectrochemical water reduction. Adv. Sustain. Syst. (2018). https://doi.org/10.1002/adsu.201700142

    Article  Google Scholar 

  17. Pulipaka, S., Koushik, A.K.S., Deepa, M., Meduri, P.: Enhanced photoelectrochemical activity of Co-doped β-In2S3 nanoflakes as photoanodes for water splitting. RSC Adv. 9(3), 1335–1340 (2019). https://doi.org/10.1039/c8ra09660k

    Article  CAS  Google Scholar 

  18. Lee, B.R., Lee, M.G., Park, H., Lee, T.H., Lee, S.A., Bhat, S.S.M., Kim, C., Lee, S., Jang, H.W.: All-solution-processed WO3/BiVO4 core-shell nanorod arrays for highly stable photoanodes. ACS Appl. Mater. Interfaces. 11(22), 20004–20012 (2019). https://doi.org/10.1021/acsami.9b03712

    Article  CAS  Google Scholar 

  19. Lee, M.G., Kim, D.H., Sohn, W., Moon, C.W., Park, H., Lee, S., Jang, H.W.: Conformally coated BiVO4 nanodots on porosity-controlled WO3 nanorods as highly efficient type II heterojunction photoanodes for water oxidation. Nano Energy 28, 250–260 (2016). https://doi.org/10.1016/j.nanoen.2016.08.046

    Article  CAS  Google Scholar 

  20. Bhat, S., Lee, S., Suh, J., Hong, S.-P., Jang, H.: Triple planar heterojunction of SnO2/WO3/BiVO4 with enhanced photoelectrochemical performance under front illumination. Appl. Sci. (2018). https://doi.org/10.3390/app8101765

    Article  Google Scholar 

  21. Bhat, S.S.M., Lee, S.A., Lee, T.H., Kim, C., Park, J., Lee, T.-W., Kim, S.Y., Jang, H.W.: All-solution-processed BiVO4/TiO2 photoanode with NiCo2O4 nanofiber cocatalyst for enhanced solar water oxidation. ACS Appl. Energy Mater. 3(6), 5646–5656 (2020). https://doi.org/10.1021/acsaem.0c00607

    Article  CAS  Google Scholar 

  22. Lee, M.G., Moon, C.W., Park, H., Sohn, W., Kang, S.B., Lee, S., Choi, K.J., Jang, H.W.: Dominance of plasmonic resonant energy transfer over direct electron transfer in substantially enhanced water oxidation activity of BiVO4 by shape-controlled Au nanoparticles. Small (2017). https://doi.org/10.1002/smll.201701644

    Article  Google Scholar 

  23. Lee, M.G., Jin, K., Kwon, K.C., Sohn, W., Park, H., Choi, K.S., Go, Y.K., Seo, H., Hong, J.S., Nam, K.T., Jang, H.W.: efficient water splitting cascade photoanodes with ligand-engineered MnO cocatalysts. Adv. Sci. (Weinh) 5(10), 1800727 (2018). https://doi.org/10.1002/advs.201800727

    Article  CAS  Google Scholar 

  24. Bhat, S.S.M., Suh, J.M., Choi, S., Hong, S.-P., Lee, S.A., Kim, C., Moon, C.W., Lee, M.G., Jang, H.W.: Substantially enhanced front illumination photocurrent in porous SnO2 nanorods/networked BiVO4 heterojunction photoanodes. J. Mater. Chem. A 6(30), 14633–14643 (2018). https://doi.org/10.1039/c8ta03858a

    Article  CAS  Google Scholar 

  25. do Kim, H., Andoshe, D.M., Shim, Y.S., Moon, C.W., Sohn, W., Choi, S., Kim, T.L., Lee, M., Park, H., Hong, K., Kwon, K.C., Suh, J.M., Kim, J.S., Lee, J.H., Jang, H.W.: Toward high-performance hematite nanotube photoanodes: charge-transfer engineering at heterointerfaces. ACS Appl. Mater. Interfaces. 8(36), 23793–23800 (2016). https://doi.org/10.1021/acsami.6b05366

    Article  CAS  Google Scholar 

  26. Lee, M.G., Jang, H.W.: Photoactivities of nanostructured α-Fe2O3 anodes prepared by pulsed electrodeposition. J. Korean Ceram. Soc. 53(4), 400–405 (2016). https://doi.org/10.4191/kcers.2016.53.4.400

    Article  CAS  Google Scholar 

  27. Bhat, S.S.M., Jang, H.W.: Recent advances in bismuth-based nanomaterials for photoelectrochemical water splitting. Chemsuschem 10(15), 3001–3018 (2017). https://doi.org/10.1002/cssc.201700633

    Article  CAS  Google Scholar 

  28. Andoshe, D.M., Yim, K., Sohn, W., Kim, C., Kim, T.L., Kwon, K.C., Hong, K., Choi, S., Moon, C.W., Hong, S.-P., Han, S., Jang, H.W.: One-pot synthesis of sulfur and nitrogen codoped titanium dioxide nanorod arrays for superior photoelectrochemical water oxidation. Appl. Catal. B Environ. 234, 213–222 (2018). https://doi.org/10.1016/j.apcatb.2018.04.045

    Article  CAS  Google Scholar 

  29. Kim, T.L., Choi, M.J., Lee, T.H., Sohn, W., Jang, H.W.: Tailoring of interfacial band offsets by an atomically thin polar insulating layer to enhance the water-splitting performance of oxide heterojunction photoanodes. Nano Lett. 19(9), 5897–5903 (2019). https://doi.org/10.1021/acs.nanolett.9b01431

    Article  CAS  Google Scholar 

  30. Jeong, S.Y., Choi, K.S., Shin, H.M., Kim, T.L., Song, J., Yoon, S., Jang, H.W., Yoon, M.H., Jeon, C., Lee, J., Lee, S.: Enhanced photocatalytic performance depending on morphology of bismuth vanadate thin film synthesized by pulsed laser deposition. ACS Appl. Mater. Interfaces. 9(1), 505–512 (2017). https://doi.org/10.1021/acsami.6b15034

    Article  CAS  Google Scholar 

  31. Song, J., Cha, J., Lee, M.G., Jeong, H.W., Seo, S., Yoo, J.A., Kim, T.L., Lee, J., No, H., Kim, D.H., Jeong, S.Y., An, H., Lee, B.H., Bark, C.W., Park, H., Jang, H.W., Lee, S.: Template-engineered epitaxial BiVO4 photoanodes for efficient solar water splitting. J. Mater. Chem. A 5(35), 18831–18838 (2017). https://doi.org/10.1039/c7ta04695b

    Article  CAS  Google Scholar 

  32. Bera, S., Lee, S.A., Kim, C.-M., Khan, H., Jang, H.W., Kwon, S.-H.: Controlled synthesis of vertically aligned SnO2 nanograss-structured thin films for SnO2/BiVO4 core-shell heterostructures with highly enhanced photoelectrochemical properties. Chem. Mater. 30(23), 8501–8509 (2018). https://doi.org/10.1021/acs.chemmater.8b03179

    Article  CAS  Google Scholar 

  33. Kim, S., Yu, Y., Jeong, S.Y., Lee, M.G., Jeong, H.W., Kwon, Y.M., Baik, J.M., Park, H., Jang, H.W., Lee, S.: Plasmonic gold nanoparticle-decorated BiVO4/ZnO nanowire heterostructure photoanodes for efficient water oxidation. Catal. Sci. Technol. 8(15), 3759–3766 (2018). https://doi.org/10.1039/c8cy00685g

    Article  CAS  Google Scholar 

  34. Hong, Y., Ryu, H., Lee, W.-J.: Effects of urea as an additive in Fe2O3 thin-film photoelectrodes. Electron. Mater. Lett. 15(6), 733–742 (2019).

    Article  CAS  Google Scholar 

  35. Li, M., Tu, X., Su, Y., Lu, J., Hu, J., Cai, B., Zhou, Z., Yang, Z., Zhang, Y.: Controlled growth of vertically aligned ultrathin In2S3 nanosheet arrays for photoelectrochemical water splitting. Nanoscale 10(3), 1153–1161 (2018). https://doi.org/10.1039/c7nr06182j

    Article  CAS  Google Scholar 

  36. Baral, B., Mansingh, S., Reddy, K.H., Bariki, R., Parida, K.: Architecting a double charge-transfer dynamics In2S3/BiVO4 n-n isotype heterojunction for superior photocatalytic oxytetracycline hydrochloride degradation and water oxidation reaction: unveiling the association of physicochemical, electrochemical, and photocatalytic properties. ACS Omega 5(10), 5270–5284 (2020). https://doi.org/10.1021/acsomega.9b04323

    Article  CAS  Google Scholar 

  37. Huang, W., Gan, L., Yang, H., Zhou, N., Wang, R., Wu, W., Li, H., Ma, Y., Zeng, H., Zhai, T.: Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition. Adv. Funct. Mater. 27, 36 (2017). https://doi.org/10.1002/adfm.201702448

    Article  CAS  Google Scholar 

  38. Horani, F., Lifshitz, E.: Unraveling the growth mechanism forming stable γ-In2S3 and β-In2S3 colloidal nanoplatelets. Chem. Mater. 31(5), 1784–1793 (2019). https://doi.org/10.1021/acs.chemmater.9b00013

    Article  CAS  Google Scholar 

  39. Zhang, L., Zhang, W., Yang, H., Fu, W., Li, M., Zhao, H., Ma, J.: Hydrothermal synthesis and photoelectrochemical properties of In2S3 thin films with a wedgelike structure. Appl. Surf. Sci. 258(22), 9018–9024 (2012). https://doi.org/10.1016/j.apsusc.2012.05.141

    Article  CAS  Google Scholar 

  40. Tian, Y., Wang, L., Tang, H., Zhou, W.: Ultrathin two-dimensional β-In2S3 nanocrystals: oriented-attachment growth controlled by metal ions and photoelectrochemical properties. J. Mater. Chem. A 3(21), 11294–11301 (2015). https://doi.org/10.1039/c5ta01958c

    Article  CAS  Google Scholar 

  41. Xiong, Y., Yang, L., Nandakumar, D.K., Yang, Y., Dong, H., Ji, X., Xiao, P., Tan, S.C.: Highly efficient photoelectrochemical water oxidation enabled by enhanced interfacial interaction in 2D/1D In2S3@Bi2S3 heterostructures. J. Mater. Chem. A 8(11), 5612–5621 (2020). https://doi.org/10.1039/d0ta00149j

    Article  CAS  Google Scholar 

  42. Li, H., Chen, C., Huang, X., Leng, Y., Hou, M., Xiao, X., Bao, J., You, J., Zhang, W., Wang, Y., Song, J., Wang, Y., Liu, Q., Hope, G.A.: Fabrication of In2O3@In2S3 core–shell nanocubes for enhanced photoelectrochemical performance. J. Power Sources 247, 915–919 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.054

    Article  CAS  Google Scholar 

  43. Li, M., Tu, X., Wang, Y., Su, Y., Hu, J., Cai, B., Lu, J., Yang, Z., Zhang, Y.: Highly enhanced visible-light-driven photoelectrochemical performance of ZnO-modified In2S3 nanosheet arrays by atomic layer deposition. Nanomicro Lett. 10(3), 45 (2018). https://doi.org/10.1007/s40820-018-0199-z

    Article  CAS  Google Scholar 

  44. Sharma, M.D., Mahala, C., Basu, M.: Photoelectrochemical water splitting by In2S3/In2O3 composite nanopyramids. ACS Appl. Nano Mater. 3(11), 11638–11649 (2020). https://doi.org/10.1021/acsanm.0c02876

    Article  CAS  Google Scholar 

  45. Gao, Y., Zhang, S., Bu, X., Tian, Y.: Surface defect engineering via acid treatment improving photoelectrocatalysis of β-In2S3 nanoplates for water splitting. Catal. Today 327, 271–278 (2019). https://doi.org/10.1016/j.cattod.2018.04.039

    Article  CAS  Google Scholar 

  46. Gao, C., Li, J., Shan, Z., Huang, F., Shen, H.: Preparation and visible-light photocatalytic activity of In2S3/TiO2 composite. Mater. Chem. Phys. 122(1), 183–187 (2010). https://doi.org/10.1016/j.matchemphys.2010.02.030

    Article  CAS  Google Scholar 

  47. Sharma, R.K., Chouryal, Y.N., Chaudhari, S., Saravanakumar, J., Dey, S.R., Ghosh, P.: Adsorption-driven catalytic and photocatalytic activity of phase tuned In2S3 nanocrystals synthesized via ionic liquids. ACS Appl. Mater. Interfaces. 9(13), 11651–11661 (2017). https://doi.org/10.1021/acsami.7b01092

    Article  CAS  Google Scholar 

  48. Rengaraj, S., Venkataraj, S., Tai, C.W., Kim, Y., Repo, E., Sillanpaa, M.: Self-assembled mesoporous hierarchical-like In2S3 hollow microspheres composed of nanofibers and nanosheets and their photocatalytic activity. Langmuir 27(9), 5534–5541 (2011). https://doi.org/10.1021/la104780d

    Article  CAS  Google Scholar 

  49. Li, H., Yuan, Z., Bittencourt, C., Li, X., Li, W., Chen, M., Li, W., Snyders, R.: Anion exchange synthesis of hollow β-In2S3 nanoparticles: adsorption and visible light photocatalytic performances. J. Environ. Chem. Eng. 7, 1 (2019). https://doi.org/10.1016/j.jece.2019.102910

    Article  CAS  Google Scholar 

  50. Xu, H., Wang, Y., Dong, X., Zheng, N., Ma, H., Zhang, X.: Fabrication of In2O3/In2S3 microsphere heterostructures for efficient and stable photocatalytic nitrogen fixation. Appl. Catal. B Environ. 257 (2019). https://doi.org/10.1016/j.apcatb.2019.117932

  51. Hua, E., Jin, S., Wang, X., Ni, S., Liu, G., Xu, X.: Ultrathin 2D type-II p-n heterojunctions La2Ti2O7/In2S3 with efficient charge separations and photocatalytic hydrogen evolution under visible light illumination. Appl. Catal. B Environ. 245, 733–742 (2019). https://doi.org/10.1016/j.apcatb.2019.01.024

    Article  CAS  Google Scholar 

  52. Dan, M., Zhang, Q., Yu, S., Prakash, A., Lin, Y., Zhou, Y.: Noble-metal-free MnS/In2S3 composite as highly efficient visible light driven photocatalyst for H2 production from H2S. Appl. Catal. B Environ. 217, 530–539 (2017). https://doi.org/10.1016/j.apcatb.2017.06.019

    Article  CAS  Google Scholar 

  53. Liu, B., Hu, X., Li, X., Li, Y., Chen, C., Lam, K.H.: Preparation of ZnS@In2S3 Core@shell composite for enhanced photocatalytic degradation of gaseous o-dichlorobenzene under visible light. Sci. Rep. 7(1), 16396 (2017). https://doi.org/10.1038/s41598-017-16732-4

    Article  CAS  Google Scholar 

  54. Omelianovych, A., Kim, J.H., Liudmila, L., Ahn, B.T.: Effect of post annealing on the characteristics of In2S3 buffer layer grown by chemical bath deposition on a CIGS substrate. Curr. Appl. Phys. 15(12), 1641–1649 (2015). https://doi.org/10.1016/j.cap.2015.08.019

    Article  Google Scholar 

  55. Yuan, X., Luo, Y., Zhang, B., Dong, C., Lei, J., Yi, F., Duan, T., Zhu, W., He, R.: Decoration of In nanoparticles on In2S3 nanosheets enables efficient electrochemical reduction of CO2. Chem. Commun. (Camb.) 56(30), 4212–4215 (2020). https://doi.org/10.1039/c9cc10078d

    Article  CAS  Google Scholar 

  56. Yang, J., Zhu, X., Mo, Z., Yi, J., Yan, J., Deng, J., Xu, Y., She, Y., Qian, J., Xu, H., Li, H.: A multidimensional In2S3–CuInS2 heterostructure for photocatalytic carbon dioxide reduction. Inorgan. Chem. Front. 5(12), 3163–3169 (2018). https://doi.org/10.1039/c8qi00924d

    Article  CAS  Google Scholar 

  57. Xue, B., Xu, F., Wang, B., Dong, A.: Shape-controlled synthesis of β-In2S3 nanocrystals and their lithium storage properties. CrystEngComm 18(2), 250–256 (2016). https://doi.org/10.1039/c5ce01955a

    Article  CAS  Google Scholar 

  58. Lu, J., Zheng, Z., Gao, W., Yao, J., Zhao, Y., Xiao, Y., Wang, B., Li, J.: Epitaxial growth of large-scale In2S3 nanoflakes and the construction of a high performance In2S3/Si photodetector. J. Mater. Chem. C 7(39), 12104–12113 (2019). https://doi.org/10.1039/c9tc03795k

    Article  CAS  Google Scholar 

  59. Xie, X., Shen, G.: Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse. Nanoscale 7(11), 5046–5052 (2015). https://doi.org/10.1039/c5nr00410a

    Article  CAS  Google Scholar 

  60. Becker, R.S., Zheng, T., Elton, J., Saeki, M.: Synthesis and photoelectrochemistry of In2S3. Solar Energy Mater. 13, 97–107 (1986)

    Article  CAS  Google Scholar 

  61. Lai, X., Zhu, F., Wu, Y., Huang, R., Wu, X., Zhang, Q., Yang, K., Qin, S.: New high-pressure polymorph of In2S3 with defect Th3P4-type structure. J. Solid State Chem. 210(1), 155–159 (2014). https://doi.org/10.1016/j.jssc.2013.11.015

    Article  CAS  Google Scholar 

  62. Bayon, R., Herrero, J.: Structure and morphology of the indium hydroxy sulphide thin films. Appl. Surf. Sci. 158, 49–57 (2000)

    Article  CAS  Google Scholar 

  63. Ma, B., Yue, M., Zhang, P., Li, S., Cong, R., Gao, W., Yang, T.: Tetragonal β-In2S3: partial ordering of In3+ vacancy and visible-light photocatalytic activities in both water and nitrate reduction. Catal. Commun. 88, 18–21 (2017). https://doi.org/10.1016/j.catcom.2016.09.029

    Article  CAS  Google Scholar 

  64. Jayakrishnan, R., John, T.T., Kartha, C.S., Vijayakumar, K.P., Jain, D., Chandra, L.S.S., Ganesan, V.: Do the grain boundaries of β-In2S3 thin films have a role in sub-band-gap photosensitivity to 632.8 nm? J. Appl. Phys. (2008). https://doi.org/10.1063/1.2841488

    Article  Google Scholar 

  65. Fu, X., Wang, X., Chen, Z., Zhang, Z., Li, Z., Leung, D.Y.C., Wu, L., Fu, X.: Photocatalytic performance of tetragonal and cubic β-In2S3 for the water splitting under visible light irradiation. Appl. Catal. B Environ. 95(3–4), 393–399 (2010). https://doi.org/10.1016/j.apcatb.2010.01.018

    Article  CAS  Google Scholar 

  66. Jrad, F., Naceur, J.B., Ouertani, R., Chtourou, R.: Photo-electrochemical impedance spectroscopy analysis of hydrothermally synthesized β-In2S3 thin film photo-anodes. Physica E Low Dimens. Syst. Nanostruct. (2019). https://doi.org/10.1016/j.physe.2019.113585

    Article  Google Scholar 

  67. Kim, Y.H., Lee, J.H., Shin, D.W., Park, S.M., Moon, J.S., Nam, J.G., Yoo, J.B.: Synthesis of shape-controlled beta-In2S3 nanotubes through oriented attachment of nanoparticles. Chem. Commun. (Camb.) 46(13), 2292–2294 (2010). https://doi.org/10.1039/b922366e

    Article  CAS  Google Scholar 

  68. Braiek, Z., Brayek, A., Ghoul, M., Ben Taieb, S., Gannouni, M., Ben Assaker, I., Souissi, A., Chtourou, R.: Electrochemical synthesis of ZnO/In2S3 core–shell nanowires for enhanced photoelectrochemical properties. J. Alloys Compd.s 653, 395–401 (2015). https://doi.org/10.1016/j.jallcom.2015.08.204

    Article  CAS  Google Scholar 

  69. Xu, R., Li, H., Zhang, W., Yang, Z., Liu, G., Xu, Z., Shao, H., Qiao, G.: The fabrication of In2O3/In2S3/Ag nanocubes for efficient photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 18(4), 2710–2717 (2016). https://doi.org/10.1039/c5cp05833c

    Article  CAS  Google Scholar 

  70. Cao, S., Wu, Y., Hou, J., Zhang, B., Li, Z., Nie, X., Sun, L.: 3D porous pyramid heterostructure array realizing efficient photo-electrochemical performance. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201902935

    Article  Google Scholar 

  71. Chen, Y.-C., Chang, H.-H., Hsu, Y.-K.: Synthesis of CuInS2 quantum Dots/In2S3/ZnO nanowire arrays with high photoelectrochemical activity. ACS Sustain. Chem. Eng. 6(8), 10861–10868 (2018). https://doi.org/10.1021/acssuschemeng.8b02154

    Article  CAS  Google Scholar 

  72. Zheng, Z., Yu, J., Cheng, S., Lai, Y., Zheng, Q., Pan, D.: Investigation of structural, optical and electrical properties of Cu doped β-In2S3 thin films. J. Mater. Sci.: Mater. Electron. 27(6), 5810–5817 (2016). https://doi.org/10.1007/s10854-016-4496-3

    Article  CAS  Google Scholar 

  73. Lahoucine Atourki, K.B., Ahmed, I., El hassane Ihalane, Y.A., Abdeslam, Elfanaoui, H.K.: In2S3 buffer layer prepared by chemical bath deposition. In: 2014 International Renewable and Sustainable Energy Conference (IRSEC), pp. 85–88 (2014)

  74. Tian, W., Chen, C., Meng, L., Xu, W., Cao, F., Li, L.: PVP treatment induced gradient oxygen doping in In2S3 nanosheet to boost solar water oxidation of WO3 nanoarray photoanode. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.201903951

    Article  Google Scholar 

  75. Chen, D., Liu, Z.: Efficient indium sulfide photoelectrode with crystal phase and morphology control for high-performance photoelectrochemical water splitting. ACS Sustain. Chem. Eng. 6(9), 12328–12336 (2018). https://doi.org/10.1021/acssuschemeng.8b02801

    Article  CAS  Google Scholar 

  76. Fang, G., Liu, Z., Han, C., Cai, Q., Ma, C., Tong, Z.: ZnO/In2S3/Co–Pi ternary composite photoanodes for enhanced photoelectrochemical properties. J. Mater. Sci.: Mater. Electron. 30(20), 18943–18949 (2019). https://doi.org/10.1007/s10854-019-02251-7

    Article  CAS  Google Scholar 

  77. van de Krol, R., Parkinson, B.A.: Perspectives on the photoelectrochemical storage of solar energy. MRS Energy Sustain. 4, 3 (2017). https://doi.org/10.1557/mre.2017.15

    Article  Google Scholar 

  78. Lee, S.A., Choi, S., Kim, C., Yang, J.W., Kim, S.Y., Jang, H.W.: Si-based water oxidation photoanodes conjugated with earth-abundant transition metal-based catalysts. ACS Mater. Lett. 2(1), 107–126 (2019). https://doi.org/10.1021/acsmaterialslett.9b00422

    Article  CAS  Google Scholar 

  79. Lee, S.A., Lee, T.H., Kim, C., Choi, M.-J., Park, H., Choi, S., Lee, J., Oh, J., Kim, S.Y., Jang, H.W.: Amorphous Cobalt oxide nanowalls as catalyst and protection layers on n-type silicon for efficient photoelectrochemical water oxidation. ACS Catal. 10(1), 420–429 (2019). https://doi.org/10.1021/acscatal.9b03899

    Article  CAS  Google Scholar 

  80. Lee, T.H., Kim, S.Y., Jang, H.W.: Black phosphorus: critical review and potential for water splitting photocatalyst. Nanomaterials (Basel) (2016). https://doi.org/10.3390/nano6110194

    Article  Google Scholar 

  81. Hisatomi, T., Domen, K.: Introductory lecture: sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis. Faraday Discuss. 198, 11–35 (2017). https://doi.org/10.1039/c6fd00221h

    Article  CAS  Google Scholar 

  82. Hsieh, P.Y., Chiu, Y.H., Lai, T.H., Fang, M.J., Wang, Y.T., Hsu, Y.J.: TiO2 nanowire-supported sulfide hybrid photocatalysts for durable solar hydrogen production. ACS Appl. Mater. Interfaces. 11(3), 3006–3015 (2019). https://doi.org/10.1021/acsami.8b17858

    Article  CAS  Google Scholar 

  83. Zhao, Z., Cao, Y., Yi, J., He, X., Ma, C., Qiu, J.: Band-edge electronic structure of β-In2S3: the role of s or p orbitals of atoms at different lattice positions. ChemPhysChem 13(6), 1551–1556 (2012). https://doi.org/10.1002/cphc.201100968

    Article  CAS  Google Scholar 

  84. Pareek, A., Paik, P., Borse, P.H.: Nanoniobia modification of CdS photoanode for an efficient and stable photoelectrochemical cell. Langmuir 30(51), 15540–15549 (2014). https://doi.org/10.1021/la503713t

    Article  CAS  Google Scholar 

  85. Lucena, R., Fresno, F., Conesa, J.C.: Spectral response and stability of In2S3 as visible light-active photocatalyst. Catal. Commun. 20, 1–5 (2012). https://doi.org/10.1016/j.catcom.2011.12.039

    Article  CAS  Google Scholar 

  86. Wei, L., Zhang, J., Ruan, M.: Combined CdS/In2S3 heterostructures with cocatalyst for boosting carriers separation and photoelectrochemical water splitting. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.148431

    Article  Google Scholar 

  87. Han, B.S., Caliskan, S., Sohn, W., Kim, M., Lee, J.K., Jang, H.W.: Room temperature deposition of crystalline nanoporous ZnO nanostructures for direct use as flexible DSSC photoanode. Nanosc. Res. Lett. 11(1), 221 (2016). https://doi.org/10.1186/s11671-016-1437-2

    Article  CAS  Google Scholar 

  88. Lee, S.A., Park, I.J., Yang, J.W., Park, J., Lee, T.H., Kim, C., Moon, J., Kim, J.Y., Jang, H.W.: Electrodeposited heterogeneous nickel-based catalysts on silicon for efficient sunlight-assisted water splitting. Cell Rep. Phys. Sci. (2020). https://doi.org/10.1016/j.xcrp.2020.100219

    Article  Google Scholar 

  89. Kim, C., Choi, S., Choi, M.-J., Lee, S.A., Ahn, S.H., Kim, S.Y., Jang, H.W.: Photoelectrochemical reduction of CO2 to syngas by reduced Ag catalysts on Si photocathodes. Appl. Sci. (2020). https://doi.org/10.3390/app10103487

    Article  Google Scholar 

  90. Kim, T.L., Choi, M.-J., Jang, H.W.: Boosting interfacial charge transfer for efficient water-splitting photoelectrodes: progress in bismuth vanadate photoanodes using various strategies. MRS Commun. 8(03), 809–822 (2018). https://doi.org/10.1557/mrc.2018.106

    Article  CAS  Google Scholar 

  91. Ho, P., Van, T.N., Lee, J.H., Jang, Y.J., Cheruku, R., Park, C., Ahn, K.-S., Kim, J.H.: Shape control iron pyrite synthesized by hot injection method: counter electrode for efficient dye-sensitized solar cells. Electron. Mater. Lett. 15(3), 350–356 (2019)

    Article  CAS  Google Scholar 

  92. Li, M., Chen, L., Zhou, C., Jin, C., Su, Y., Zhang, Y.: 3D highly efficient photonic micro concave-pit arrays for enhanced solar water splitting. Nanoscale 11(39), 18071–18080 (2019). https://doi.org/10.1039/c9nr05778a

    Article  CAS  Google Scholar 

  93. Zuo, Y., Chen, J., Yang, H., Zhang, M., Wang, Y., He, G., Sun, Z.: Facile synthesis of TiO2/In2S3/CdS ternary porous heterostructure arrays with enhanced photoelectrochemical and visible-light photocatalytic properties. J. Mater. Chem. C 7(29), 9065–9074 (2019). https://doi.org/10.1039/c9tc02434d

    Article  CAS  Google Scholar 

  94. Xia, W., Dai, L., Yu, P., Tong, X., Song, W., Zhang, G., Wang, Z.: Recent progress in van der Waals heterojunctions. Nanoscale 9(13), 4324–4365 (2017). https://doi.org/10.1039/c7nr00844a

    Article  CAS  Google Scholar 

  95. Lee, S.A., Lee, T.H., Kim, C., Lee, M.G., Choi, M.-J., Park, H., Choi, S., Oh, J., Jang, H.W.: Tailored NiOx/Ni cocatalysts on silicon for highly efficient water splitting photoanodes via pulsed electrodeposition. ACS Catal. 8(8), 7261–7269 (2018). https://doi.org/10.1021/acscatal.8b01999

    Article  CAS  Google Scholar 

  96. Moon, C.W., Lee, S.Y., Sohn, W., Andoshe, D.M., Kim, D.H., Hong, K., Jang, H.W.: Plasmonic octahedral gold nanoparticles of maximized near electromagnetic fields for enhancing catalytic hole transfer in solar water splitting. Particle Particle Syst. Charact. (2017). https://doi.org/10.1002/ppsc.201600340

    Article  Google Scholar 

  97. Hou, J., Cao, S., Sun, Y., Wu, Y., Liang, F., Lin, Z., Sun, L.: Atomically thin mesoporous In2O3-x/In2S3 lateral heterostructures enabling robust broadband-light photo-electrochemical water splitting. Adv. Energy Mater. 8, 9 (2018). https://doi.org/10.1002/aenm.201701114

    Article  CAS  Google Scholar 

  98. Gao, Y., Zhang, S., Wu, Y., Tian, Y., Fu, H., Zhan, S.: P-doped In2S3 nanosheets coupled with InPOx overlayer: charge-transfer pathways and highly enhanced photoelectrochemical water splitting. J. Catal. 375, 389–398 (2019). https://doi.org/10.1016/j.jcat.2019.06.017

    Article  CAS  Google Scholar 

  99. Lee, T.H., Lee, S.A., Park, H., Choi, M.-J., Lee, D., Jang, H.W.: Understanding the enhancement of the catalytic properties of goethite by transition metal doping: critical role of O* formation energy relative to OH* and OOH*. ACS Appl, Energy Mater. 3(2), 1634–1643 (2020). https://doi.org/10.1021/acsaem.9b02140

    Article  CAS  Google Scholar 

  100. Wang, L., Xia, L., Wu, Y., Tian, Y.: Zr-doped β-In2S3 ultrathin nanoflakes as photoanodes: enhanced visible-light-driven photoelectrochemical water splitting. ACS Sustain. Chem. Eng. 4(5), 2606–2614 (2016). https://doi.org/10.1021/acssuschemeng.6b00090

    Article  CAS  Google Scholar 

  101. Lei, F., Zhang, L., Sun, Y., Liang, L., Liu, K., Xu, J., Zhang, Q., Pan, B., Luo, Y., Xie, Y.: Atomic-layer-confined doping for atomic-level insights into visible-light water splitting. Angew. Chem. Int. Ed. Engl. 54(32), 9266–9270 (2015). https://doi.org/10.1002/anie.201503410

    Article  CAS  Google Scholar 

  102. Feng, J., Yang, Z., He, S., Niu, X., Zhang, T., Ding, A., Liang, H., Feng, X.: Photocatalytic reduction of Uranium(VI) under visible light with Sn-doped In2S3 microspheres. Chemosphere 212, 114–123 (2018). https://doi.org/10.1016/j.chemosphere.2018.08.070

    Article  CAS  Google Scholar 

  103. Tapia, C., Berglund, S.P., Friedrich, D., Dittrich, T., Bogdanoff, P., Liu, Y., Levcenko, S., Unold, T., Conesa, J.C., De Lacey, A.L., Pita, M., Fiechter, S.: Synthesis and characterization of V-doped β-In2S3 thin films on FTO substrates. J. Phys. Chem. C 120(50), 28753–28761 (2016). https://doi.org/10.1021/acs.jpcc.6b09601

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Research Foundation of Korea (NRF) funded by the Basic Science Research Program (2017R1A2B3009135) and the Ministry of Science and ICT (2020M2D8A206983011).

Author information

Authors and Affiliations

Authors

Contributions

BRL and HWJ conceived of the outline of the manuscript and wrote the manuscript.

Corresponding author

Correspondence to Ho Won Jang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B.R., Jang, H.W. β-In2S3 as Water Splitting Photoanodes: Promise and Challenges. Electron. Mater. Lett. 17, 119–135 (2021). https://doi.org/10.1007/s13391-020-00266-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00266-5

Keywords

Navigation