Skip to main content
Log in

Shape Control Iron Pyrite Synthesized by Hot Injection Method: Counter Electrode for Efficient Dye-Sensitized Solar Cells

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The cubic and spherical shaped iron pyrite (FeS2) nanocrystals were synthesized in a pure phase form by an efficient hot injection method. These FeS2 nanocrystals were used as a counter electrode (CE) alternative to the conventional Pt CE in dye-sensitized solar cells (DSSCs) owing to its tremendous optical properties and low-cost. The obtained FeS2 nanocrystalline materials with excellent shape and phase purity were confirmed through XRD and Raman spectroscopy data. From Tafel, and impedance spectroscopy studies, the catalytic activity FeS2 CEs are found to be comparable with that of Pt CE. Along with the I3/I electrolyte, photo-conversion efficiency is found to be 6.9% (spherical), 6.2% (cubic) for the FeS2 CE, and 7% for Pt CE. The excellent performance of the FeS2 CE in DSSCs makes it a distinctive choice among the various CE materials studied including low-cost photovoltaics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gratzel, M.: Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42, 1788 (2009)

    Article  Google Scholar 

  2. Gonga, J., Sumathya, K., Qiaob, Q., Zhoub, Z.: Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew. Sustain. Energy Rev. 68, 234 (2017)

    Article  Google Scholar 

  3. Yun, S., Liu, Y., Zhang, T., Ahmad, S.: Recent advances in alternative counter electrode materials for Co-mediated dye-sensitized solar cells. Nanoscale 7, 11877 (2015)

    Article  Google Scholar 

  4. O’Regan, B., Gratzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991)

    Article  Google Scholar 

  5. Yun, S., Lund, P.D., Hinsch, A.: Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energy Environ. Sci. 8, 3495 (2015)

    Article  Google Scholar 

  6. Hwang, S., Batmunkh, M., Nine, M.J., Chung, H., Jeong, H.: Dye-sensitized solar cell counter electrodes based on carbon nanotubes. Chem. Phys. Chem. 16, 53 (2015)

    Article  Google Scholar 

  7. Thomas, S., Deepak, T., Anjusree, G., Arun, T., Naira, S., Nair, A.: A review on counter electrode materials in dye-sensitized solar cells. J. Mater. Chem. A. 2, 4474 (2014)

    Article  Google Scholar 

  8. Yun, S., Hagfeldt, A., Ma, T.: Pt-free counter electrode for dye-sensitized solar cells with high efficiency. Adv. Mater. 26, 6210 (2014)

    Article  Google Scholar 

  9. Wang, L., Al-Mamun, M., Liu, P., Wang, Y., Yang, H., Wang, H., Zhao, H.: The search for efficient electrocatalysts as counter electrode materials for dye-sensitized solar cells: mechanistic study, material screening and experimental validation. NPG Asia Mater. 7, e226 (2015)

    Article  Google Scholar 

  10. Papageorgiou, N., Maier, W., Gratzel, M.: An iodine/triiodide reduction electrocatalyst for aqueous and organic media. J. Electrochem. Soc. 144, 876 (1997)

    Article  Google Scholar 

  11. Wu, J., Li, Y., Tang, Q., Yue, G., Lin, J., Huang, M., Meng, L.: Bifacial dye-sensitized solar cells: a strategy to enhance overall efficiency based on transparent polyaniline electrode. Sci. Rep. 4, 4028 (2014)

    Article  Google Scholar 

  12. Trancik, J., Barton, S., Hone, J.: Transparent and catalytic carbon nanotube films. Nano Lett. 8, 982 (2008)

    Article  Google Scholar 

  13. Liu, G., Li, X., Wang, H., Rong, Y., Ku, Z., Xu, M., Liu, L., Hu, M., Yang, Y., Han, H.: A class of carbon supported transition metal_nitrogen complex catalysts for dye-sensitized solar cells. J. Mater. Chem. A 1, 1475 (2013)

    Article  Google Scholar 

  14. Susac, D., Zhu, L., Teo, M., Sode, A., Wong, K.C., Wong, P.C., Parsons, R.R., Bizzotto, D., Mitchell, K.A.R., Campbell, S.A.: Characterization of FeS2-based thin films as model catalysts for the oxygen reduction reaction. J. Phys. Chem. C 111, 18715 (2007)

    Article  Google Scholar 

  15. Seefeld, S., Limpinsel, M., Liu, Y., Farhi, N., Weber, A., Zhang, Y., Berry, N., Kwon, Y.J., Perkins, C.L., Hemminger, J.C., Wu, R., Law, M.: Iron pyrite thin films synthesized from an Fe(acac)3 ink. J. Am. Chem. Soc. 135, 4412 (2013)

    Article  Google Scholar 

  16. Ennaoui, A., Fiechter, S., Pettenkofer, C., Alonso-Vante, N., Büker, K., Bronold, M., Höpfner, C., Tributsch, H.: Iron disulfide for solar energy conversion. Sol. Energy Mater. Sol. Cells 29, 289 (1993)

    Article  Google Scholar 

  17. Puthessery, J., Seefeld, S., Berry, N., Bibb, M., Law, M.: Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics. J. Am. Chem. Soc. 133, 716 (2011)

    Article  Google Scholar 

  18. Ge, H., Hai, L., Prabhakar, R.R., Ming, L.Y., Sritharan, T.: Evolution of nanoplate morphology, structure and chemistry during synthesis of pyrite by a hot injection method. RCS Adv. 4, 16489 (2014)

    Google Scholar 

  19. Zhu, L., Richardson, B.J., Yu, Q.: Controlled colloidal synthesis of iron pyrite FeS2 nanorods and quasi-cubic nanocrystal agglomerates. Nanoscale 6, 1029 (2014)

    Article  Google Scholar 

  20. Jiang, F., Peckler, L.T., Muscat, A.J.: Phase pure pyrite FeS2 nanocube synthesized using oleylamine as ligand, solvent, and reductant. Cryst. Growth Des. 15, 3565 (2015)

    Article  Google Scholar 

  21. Trinh, T.K., Pham, V.T.H., Truong, N.T.N., Kim, C.D., Park, C.: Iron pyrite: phase and shape control by facile hot injection method. J. Cryst. Growth 461, 53 (2017)

    Article  Google Scholar 

  22. Shukla, S., Loc, N.H., Boix, P.P., Koh, T.M., Prabhakar, R.R., Mulmudi, H.K., Zhang, J., Chen, S., Nf, C.F., Huan, C.H.A., Mathews, N., Sritharan, T., Xiong, Q.: Iron pyrite thin film counter electrodes for dye-sensitized solar cells: high efficiency for iodine and cobalt redox electrolyte cells. ACS Nano 8, 10597 (2014)

    Article  Google Scholar 

  23. Utyuzh, A.N.: Influence of temperature on raman spectra of the FeS2 single crystal with pyrite structure. Phys. Solid State 56, 2050 (2014)

    Article  Google Scholar 

  24. Kleppe, A.K., Jephcoat, A.P.: High-pressure Raman spectroscopic studies of FeS2 pyrite. Mineral. Mag. 68, 433 (2004)

    Article  Google Scholar 

  25. Gopel, W.: Chemisorption and charge transfer at ionic semiconductor surfaces: implications in designing gas sensors. Prog. Surf. Sci. 20, 9 (1985)

    Article  Google Scholar 

  26. Geistlinger, H., Eisele, I., Flietner, B., Winter, R.: Dipole-and charge transfer contributions to the work function change of semiconducting thin films: experiment and theory. Sens. Actuators B 34, 499 (1996)

    Article  Google Scholar 

  27. Otero, R., Parga, A.L.V.D., Gallego, J.M.: Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces. Surf. Sci. Rep. 72, 105 (2017)

    Article  Google Scholar 

  28. Kavan, L., Yum, J.-H., Gratzel, M.: Graphene nanoplatelets outperforming platinum as the electrocatalyst in co-bipyridine-mediated dye-sensitized solar cells. Nano Lett. 11, 5501 (2011)

    Article  Google Scholar 

  29. Ion, L., Enculescu, I., Antohe, S.: Physical properties of CdTe nanowires electrodeposited by a template method, for photovoltaic applications. J. Optoelectron. Adv. Mater. 10, 3241 (2008)

    Google Scholar 

  30. Song, C., Wang, S., Dong, W., Fang, X., Shao, J., Zhu, J., Pan, X.: Hydrothermal synthesis of iron pyrite (FeS2) as efficient counter electrodes for dye-sensitized solar cells. Sol. Energy 133, 429 (2016)

    Article  Google Scholar 

  31. Lee, Y.H., Park, J.Y., Thogiti, S., Cheruku, R., Kim, J.H.: Application of CBZ dimer, C343 and SQ dye as photosensitizers for pn-tandem DSCs. Electron. Mater. Lett. 12, 524 (2016)

    Article  Google Scholar 

  32. Ho, P., Bao, L.Q., Cheruku, R., Kim, J.H.: Improved performance of P-type DSCs with a compact blocking layer coated by different thicknesses. Electron. Mater. Lett. 12, 638 (2016)

    Article  Google Scholar 

  33. He, B., Meng, X., Tang, Q.: Low-cost counter electrodes from CoPt alloys for efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 6, 4812 (2014)

    Article  Google Scholar 

  34. Wang, W., Anghel, A.M., Marsan, B., Ha, N.L.C., Pootrakulchote, N., Zakeeruddin, S.M., Gratzel, M.: CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc. 131, 15976 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Fundamental R&D program for Core Technology of Materials (10050966) funded by the Ministry of Knowledge Economy, Republic of Korea. This work was supported by the “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20174030201760).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajesh Cheruku or Jae Hong Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, P., Van, T.N., Lee, J.H. et al. Shape Control Iron Pyrite Synthesized by Hot Injection Method: Counter Electrode for Efficient Dye-Sensitized Solar Cells. Electron. Mater. Lett. 15, 350–356 (2019). https://doi.org/10.1007/s13391-019-00140-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00140-z

Keywords

Navigation