Skip to main content
Log in

ZnO/In2S3/Co–Pi ternary composite photoanodes for enhanced photoelectrochemical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The photoelectrochemical (PEC) water splitting properties can be enhanced by broadening the light absorption region and improving the separation of photogenerated carriers. In this paper, a novel ZnO/In2S3/Co–Pi ternary composite photoanode system is provided, by building the ZnO/In2S3 heterojunction to broaden the light absorption region and improve the separation and transfer of photogenerated electron–hole pairs in bulk, and by using the Co–Pi cocatalyst to increase the separation of photogenerated electron–hole pairs between the ZnO/In2S3 heterojunction surface and electrolyte. This ternary composite photoanode system exhibits a negative shifted onset potential and a higher photocurrent density of about 2.4 mA/cm2 at 1.23 V (vs. RHE), which is 3 and 2.18 times compared with bare ZnO nanorod and ZnO/In2S3 heterojunction, respectively. The results show that the ZnO/In2S3/Co–Pi ternary composite photoanode has an excellent potential application for PEC water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Hijikata, Int. J. Hydrog. Energy. 27(2), 115–129 (2002)

    Article  CAS  Google Scholar 

  2. H.J. Neef, Energy. 34(3), 327–333 (2009)

    Article  CAS  Google Scholar 

  3. M. Momirlan, T.N. Veziroglu, Int. J. Hydrog. Energy. 30(7), 795–802 (2005)

    Article  CAS  Google Scholar 

  4. C.R. Jiang, S.J.A. Moniz, A.Q. Wang, T. Zhang, J.W. Tang, Chem. Soc. Rev. 46(15), 4645–4660 (2017)

    Article  CAS  Google Scholar 

  5. A. Fujishima, K. Honda, Nature 238(5358), 37–38 (1972)

    Article  CAS  Google Scholar 

  6. S.Q. Zhou, P.F. Yue, J.W. Huang, L. Wang, H.D. She, Q.Z. Wang, Chem. Eng. J. 371, 885–892 (2019)

    Article  CAS  Google Scholar 

  7. B.L. Phoon, C.W. Lai, G.T. Pan, T.C.K. Yang, J.C. Juan, Ceram. Int. 44(8), 9923–9933 (2018)

    Article  CAS  Google Scholar 

  8. Y.T. Li, Z.F. Liu, J. Zhang, Z.G. Guo, Y. Xin, L. Zhao, J. Alloys Compd. 790, 493–501 (2019)

    Article  CAS  Google Scholar 

  9. B.L. Phoon, G.T. Pan, T.C.K. Yang, K.M. Lee, C.W. Lai, J.C. Juan, J. Mater. Sci.-Mater. Electron. 28(21), 16244–16253 (2017)

    Article  CAS  Google Scholar 

  10. J.K. Sheu, P.H. Liao, H.Y. Cheng, M.L. Lee, J. Mater. Chem. A. 5(43), 22625–22630 (2017)

    Article  CAS  Google Scholar 

  11. Y.Y. Lan, Z.F. Liu, Z.G. Guo, X.F. Li, L. Zhao, L. Zhan, M. Zhang, Dalton Trans. 47(35), 12181–12187 (2018)

    Article  CAS  Google Scholar 

  12. Y.C. Chen, K.H. Yang, C.Y. Huang, Z.J. Wu, Y.K. Hsu, Chem. Eng. J. 368, 746–753 (2019)

    Article  CAS  Google Scholar 

  13. Y.K. Hsu, Y.G. Lin, Y.C. Chen, Electrochem. Commun. 13(12), 1383–1386 (2011)

    Article  CAS  Google Scholar 

  14. B. Zhang, Z.Y. Wang, B.B. Huang, X.Y. Zhang, X.Y. Qin, H.L. Li, Y. Dai, Y.J. Li, Chem. Mater. 28(18), 6613–6620 (2016)

    Article  CAS  Google Scholar 

  15. L. Roza, M.Y.A. Rahman, A.A. Umar, M.M. Salleh, J. Alloys Compd. 618, 153–158 (2015)

    Article  CAS  Google Scholar 

  16. X.Y. Yang, A. Wolcott, G.M. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, Y. Li, Nano Lett. 9(6), 2331–2336 (2009)

    Article  CAS  Google Scholar 

  17. J.G. Xiao, X.L. Zhang, Y.D. Li, Int. J. Hydrog. Energy. 40(30), 9080–9087 (2015)

    Article  CAS  Google Scholar 

  18. P.D. Wu, Z.F. Liu, M.N. Ruan, Z.G. Guo, L. Zhao, Appl. Surf. Sci. 476, 716–723 (2019)

    Article  CAS  Google Scholar 

  19. P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Nat. Mater. 2(10), 673–677 (2003)

    Article  CAS  Google Scholar 

  20. D. Chen, Z.F. Liu, Z.G. Guo, W.G. Yan, Y. Xin, J. Mater. Chem. A. 6(41), 20393–20401 (2018)

    Article  CAS  Google Scholar 

  21. R.M. Navarro, F. Del Valle, J.V. De La Mano, M.C. Álvarez-Galván, J.L.G. Fierro, Adv. Chem. Eng. 36, 111–143 (2009)

    Article  CAS  Google Scholar 

  22. C. Liu, F.L. Meng, L. Zhang, D.T. Zhang, S.T. Wei, K. Qi, J.C. Fan, H.Y. Zhang, X.Q. Cui, Appl. Surf. Sci. 469, 276–282 (2019)

    Article  CAS  Google Scholar 

  23. C.H. Ma, Z.F. Liu, Q.J. Cai, C.C. Han, Z.F. Tong, Inorg. Chem. Front. 5, 2571–2578 (2018)

    Article  CAS  Google Scholar 

  24. A. Zyoud, I. Saadeddin, S. Khurduj, M. Mari’e, Z.M. Hawash, M.I. Faroun, G. Campet, D.H. Park, H.S. Hilal, J. Electroanal. Chem. 707, 117–121 (2013)

    Article  CAS  Google Scholar 

  25. X.L. Zhang, N. Zhang, C.X. Gan, Y.F. Liu, L. Chen, C. Zhang, Y.Z. Fang, Mater. Sci. Semicond. Process. 91, 212–221 (2019)

    Article  CAS  Google Scholar 

  26. Z.F. Liu, X. Lu, D. Chen, ACS Sustain. Chem. Eng. 6(8), 10289–10294 (2018)

    Article  CAS  Google Scholar 

  27. S. Hoang, S.W. Guo, N.T. Hahn, A.J. Bard, C.B. Mullins, Nano Lett. 12(1), 26–32 (2012)

    Article  CAS  Google Scholar 

  28. F. Malara, A. Minguzzi, M. Marelli, S. Morandi, R. Psaro, V. Dal Santo, A. Naldoni, ACS Catal. 5(9), 5292–5300 (2015)

    Article  CAS  Google Scholar 

  29. R.S. Khnayzer, M.W. Mara, J. Huang, M.L. Shelby, L.X. Chen, F.N. Castellano, ACS Catal. 2(10), 2150–2160 (2012)

    Article  CAS  Google Scholar 

  30. C. Liu, P.C. Wu, K.H. Wu, G.H. Meng, J.N. Wu, J. Hou, Z.Y. Liu, X.H. Guo, Dalton Trans. 47(18), 6605–6614 (2018)

    Article  CAS  Google Scholar 

  31. T.H. Jeon, W. Choi, H. Park, Phys. Chem. Chem. Phys. 13(48), 21392–21401 (2011)

    Article  CAS  Google Scholar 

  32. Z.F. Liu, Q.J. Cai, C.H. Ma, J. Zhang, J.Q. Liu, New J. Chem. 41(16), 7947–7952 (2017)

    Article  CAS  Google Scholar 

  33. E. Turan, M. Zor, M. Kul, A.S. Aybek, T. Taskopru, Philos. Mag. 92(13), 1716–1726 (2012)

    Article  CAS  Google Scholar 

  34. I. Grigioni, K.G. Stamplecoskie, E. Selli, P.V. Kamat, J. Phys. Chem. C 119(36), 20792–20800 (2015)

    Article  CAS  Google Scholar 

  35. D. Chen, Z.F. Liu, M. Zhou, P.D. Wu, J.D. Wei, J. Alloys Compd. 742, 918–927 (2018)

    Article  CAS  Google Scholar 

  36. J.S. Luo, L. Ma, T.C. He, C.F. Ng, S.J. Wang, H.D. Sun, H.J. Fan, J. Phys. Chem. C 116(22), 11956–11963 (2012)

    Article  CAS  Google Scholar 

  37. Y.F. Yuan, J.W. Gu, K.H. Ye, Z.S. Chai, X. Yu, X.B. Chen, C.X. Zhao, Y.M. Zhang, W.J. Mai, ACS Appl. Mater. Interfaces. 8(25), 16071–16077 (2016)

    Article  CAS  Google Scholar 

  38. G.J. Ai, R. Mo, Q. Chen, H. Xu, S. Yang, H.X. Li, J.X. Zhong, RSC Adv. 5(18), 13544–13549 (2015)

    Article  CAS  Google Scholar 

  39. Z.F. Liu, X. Wang, Int. J. Hydrog. Energy. 43(29), 13276–13283 (2018)

    Article  CAS  Google Scholar 

  40. C. Von Klopmann, J. Djordjevic, E. Rudigier, R. Scheer, J. Cryst. Growth 289(1), 121–133 (2006)

    Article  CAS  Google Scholar 

  41. P. Wang, S.Q. Xu, Y. Xia, X.F. Wang, H.G. Yu, J.G. Yu, Phys. Chem. Chem. Phys. 19(16), 10309–10316 (2017)

    Article  CAS  Google Scholar 

  42. X.L. Fu, X.X. Wang, Z.X. Chen, Z.Z. Zhang, Z.H. Li, D.Y.C. Leung, Appl. Catal. B-Environ. 95(34), 393–399 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Open Foundation of Hubei Collaborative Innovation Center for High-efficient Utilization of Solar Energy (No. HBSKFZD2017001), the National Science Foundation of China (Grant No. 51702092), Hubei Provincial Natural Science Foundation of China (Grant No. 2018CFB282) and Science Foundation of Hubei University of Technology (Grant No. BSQD2017065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, G., Liu, Z., Han, C. et al. ZnO/In2S3/Co–Pi ternary composite photoanodes for enhanced photoelectrochemical properties. J Mater Sci: Mater Electron 30, 18943–18949 (2019). https://doi.org/10.1007/s10854-019-02251-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02251-7

Navigation