Skip to main content
Log in

Effects of Urea as an Additive in Fe2O3 Thin-Film Photoelectrodes

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this study, an Fe2O3 photoelectrode was grown on a fluorine-doped tin oxide substrate via microwave chemical bath deposition. We added various amounts of urea as an additive to the FeCl3 precursor for the fabrication of the Fe2O3 photoelectrode and investigated the effects of the concentration of the urea additive on the morphological, optical, structural, electrical, and photoelectrochemical properties of this photoelectrode. Among the different concentrations evaluated, the maximum photocurrent density (0.51 mA/cm2 at 0.6 V vs. SCE) was obtained using 0.05 M urea, as the resulting electrode had the greatest thickness, highest flat-band potential, and preferential growth along the (110) plane along with favorable electron transport characteristics. The maximum photocurrent density of the sample prepared with 0.05 M urea was approximately 60% greater than that obtained from the sample prepared in the absence of urea. This study showed that the photoelectrochemical properties of the Fe2O3 photoelectrode were substantially influenced by the changes in the morphological, optical, structural, and electrical properties caused by the addition of urea.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chiang, C.Y., Epstein, J., Brown, A., Munday, J.N., Culver, J.N., Ehrman, S.: Biological templates for antireflective current collectors for photoelectrochemical cell applications. Nano Lett. 12, 6005–6011 (2012)

    CAS  Google Scholar 

  2. Bak, T., Nowotny, J., Rekas, M., Sorrell, C.C.: Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrog. Energy 27, 991–1022 (2002)

    CAS  Google Scholar 

  3. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    CAS  Google Scholar 

  4. Zhao, D., Yang, C.F.: Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells. Renew. Sustain. Energy Rev. 54, 1048–1059 (2016)

    CAS  Google Scholar 

  5. Krbal, M., Sopha, H., Podzemna, V., Das, S., Prikryl, J., Macak, J.M.: TiO2 nanotube/chalcogenide-based photoelectrochemical cell: nanotube diameter dependence study. J. Phys. Chem. C 121, 6065–6071 (2017)

    CAS  Google Scholar 

  6. Yilmaza, C., Unal, U.: Effect of Zn(NO3)2 concentration in hydrothermal–electrochemical deposition on morphology and photoelectrochemical properties of ZnO nanorods. Appl. Surf. Sci. 368, 456–463 (2016)

    Google Scholar 

  7. Holi, A.M., Zainal, Z., Talib, Z.A., Lim, H.N., Yap, C.C., Chang, S.K., Ayal, A.K.: Hydrothermal deposition of CdS on vertically aligned ZnO nanorods for photoelectrochemical solar cell application. J. Mater. Sci. Mater. Electron. 27, 7353–7360 (2016)

    CAS  Google Scholar 

  8. Steier, L., Cardona, I.H., Gimenez, S., Santiago, F.F., Bisquert, J., Tilley, S.D., Grätzel, M.: Understanding the role of underlayers and overlayers in thin film hematite photoanodes. Adv. Funct. Mater. 24, 7681–7688 (2014)

    CAS  Google Scholar 

  9. Liu, S., Zheng, L., Yu, P., Han, S., Fang, X.: Novel composites of α-Fe2O3 tetrakaidecahedron and graphene oxide as an effective photoelectrode with enhanced photocurrent performances. Adv. Funct. Mater. 26, 3331–3339 (2016)

    CAS  Google Scholar 

  10. Brillet, J., Gratzel, M., Sivula, K.: Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. Nano Lett. 10, 4155–4160 (2010)

    CAS  Google Scholar 

  11. Taffa, D.H., Hamm, I., Dunkel, C., Sinev, I., Bahnemann, D., Wark, M.: Electrochemical deposition of Fe2O3 in the presence of organic additives: a route to enhanced photoactivity. RSC Adv. 5, 103512–103522 (2015)

    CAS  Google Scholar 

  12. Quinn, R.K., Nasby, R.D., Baughman, R.J.: Photoassisted electrolysis of water using single crystal α-Fe2O3 anodes. Mater. Res. Bull. 11, 1011–1017 (1976)

    CAS  Google Scholar 

  13. Bjorkstbn, U., Moser, J., Gratzel, M.: Photoelectrochemical studies on nanocrystalline hematite films. Chem. Mater. 6, 858–863 (1994)

    Google Scholar 

  14. Song, X.M., Zhou, X., Yuan, C., Zhang, Y., Tong, Q., Li, Y., Cui, L., Liu, D., Zhang, W.: One-dimensional Fe2O3/TiO2 photoelectrode and investigation of its photoelectric properties in photoelectrochemical cell. Appl. Surf. Sci. 397, 112–118 (2017)

    CAS  Google Scholar 

  15. Ng, K.H., Minggu, L.J., Mark-Lee, W.F., Arifin, K., Jumali, M.H.H., Kassim, M.B.: A new method for the fabrication of a bilayer WO3/Fe2O3 photoelectrode for enhanced photoelectrochemical performance. Mater. Res. Bull. 98, 47–52 (2018)

    CAS  Google Scholar 

  16. Katsuki, H., Komarneni, S.: Role of α-Fe2O3 morphology on the color of red pigment for porcelain. J. Am. Ceram. Soc. 86, 183–185 (2003)

    CAS  Google Scholar 

  17. Dong, Q., Yin, S., Guo, C.S., Li, H.H., Kumada, N., Takei, T., Yonesaki, Y., Kinomura, N., Sato, T.: Preparation of α-Fe2O3 particles with controlled shape and size via a facile hydrothermal route. J. Phys. Conf. Ser. 339, 012004 (2012)

    Google Scholar 

  18. Dutrizac, J.E., Riveros, P.A.: The precipitation of hematite from ferric chloride media at atmospheric pressure. Metall. Mater. Trans. B 30B, 993–1001 (1999)

    CAS  Google Scholar 

  19. Virtanen, S., Schmuki, P., Davenport, A.J., Vitus, C.M.: Dissolution of thin iron oxide films used as models for iron passive films studied by in situ X-ray absorption near-edge spectroscopy. J. Electrochem. Soc. 144, 198–204 (1997)

    CAS  Google Scholar 

  20. Liu, Q., Chen, C., Yuan, G., Huang, X., Lü, X., Cao, Y., Li, Y., Hu, A., Lu, X., Zhu, P.: Morphology-controlled α-Fe2O3 nanostructures on FTO substrates for photoelectrochemical water oxidation. J. Alloys Compd. 715, 230–236 (2017)

    CAS  Google Scholar 

  21. Einert, M., Ostermann, R., Weller, T., Zellmer, S., Garnweitner, G., Smarsly, B.M., Marschall, R.: Hollow α-Fe2O3 nanofibres for solar water oxidation: improving the photoelectrochemical performance by formation of α-Fe2O3/ITO-composite photoanodes. J. Mater. Chem. A 4, 18444–18456 (2016)

    CAS  Google Scholar 

  22. Ishaq, S., Sikora, A., Scheidler, N., Hambleton, C., Katz, J.E.: Enhancement of water oxidation photocurrent for hematite thin films electrodeposited with polyvinylpyrrolidone. J. Electrochem. Soc. 163, F1330–F1336 (2016)

    CAS  Google Scholar 

  23. Su, M., He, C., Shih, K.: Facile synthesis of morphology and size-controlled α-Fe2O3 and Fe3O4 nano-and microstructures by hydrothermal/solvothermal process: the roles of reaction medium and urea dose. Ceram. Int. 42, 14793–14804 (2016)

    CAS  Google Scholar 

  24. Singh, B.P., Sharma, N., Kumar, R., Kumar, A.: Simple hydrolysis synthesis of uniform rice-shaped β-FeOOH nanocrystals and their transformation to α-Fe2O3 microspheres. Indian J. Mater. Sci. 2015, 7 (2015)

    Google Scholar 

  25. Chaudhari, N.K., Kim, H.C., Sonc, D., Yu, J.S.: Easy synthesis and characterization of single-crystalline hexagonal prism-shaped hematite α-Fe2O3 in aqueous media. CrystEngComm 11, 2264–2267 (2009)

    CAS  Google Scholar 

  26. Su, J., Feng, X., Sloppy, J.D., Guo, L., Grimes, C.A.: Grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett. 11, 203–208 (2011)

    CAS  Google Scholar 

  27. Song, H., Li, N., Yu, S.: Template-free synthesis of α-Fe2O3 microcubes and their magnetic property. Micro Nano Lett. 5, 200–202 (2010)

    Google Scholar 

  28. Cheng, B., Wang, W., Shi, L., Zhang, J., Ran, J., Yu, H.: One-pot template-free hydrothermal synthesis of monoclinic BiVO4 hollow microspheres and their enhanced visible-light photocatalytic activity. Int. J. Photoenergy. 2012, 1–10 (2012)

    Google Scholar 

  29. Yu, J., Kudo, A.: Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Adv. Funct. Mater. 16, 2163–2169 (2006)

    CAS  Google Scholar 

  30. Zhang, X., Chen, Y., Liu, H., Wei, Y., Wei, W.: Facile synthesis of α-Fe2O3 hollow sub-microstructures, morphological control and magnetic properties. CrystEngComm 15, 6184–6190 (2013)

    CAS  Google Scholar 

  31. Deng, C., Hu, H., Ge, X., Han, C., Zhao, D., Shao, G.: One-pot sonochemical fabrication of hierarchical hollow CuO submicrospheres. Ultrason. Sonochem. 18, 5 (2011)

    CAS  Google Scholar 

  32. Yan, M., Qi, Z.F., Li, X.D., Chen, T., Lu, S.Y., Buekens, A.G., Olie, K., Yan, J.H.: Chlorobenzene formation from fly ash: effect of moisture, chlorine gas, cupric chloride, urea, ammonia, and ammonium sulfate. Environ. Eng. Sci. 29, 890–896 (2012)

    CAS  Google Scholar 

  33. Kmentova, H., Kment, S., Hubicka, Z., Remes, Z., Olejnicek, J., Cada, M., Krysa, J., Zboril, R.: Thermal sulfidation of α-Fe2O3 hematite to FeS2 pyrite thin electrodes: correlation between surface morphology and photoelectrochemical functionality. Catal. Today 313, 224–230 (2018)

    CAS  Google Scholar 

  34. Li, L., Liu, C., Qiu, Y., Mitsuzak, N., Chen, Z.: Convex-nanorods of α-Fe2O3/CQDs heterojunction photoanode synthesized by a facile hydrothermal method for highly efficient water oxidation. Int. J. Hydrog. Energy 42, 19654–19663 (2017)

    CAS  Google Scholar 

  35. Liu, Y., Yu, Y.X., Zhang, W.D.: Photoelectrochemical properties of Ni-doped Fe2O3 thin films prepared by electrodeposition. Electrochim. Acta 59, 121–127 (2012)

    Google Scholar 

  36. Ekwealor, A.B.C., Ezema, F.I.: Effects of precursor concentration on the optical and structural properties of Fe2O3 thin films synthesized in a polymer matrix by chemical bath deposition. J. Ovonic Res. 9, 35–43 (2013)

    CAS  Google Scholar 

  37. Li, Y., Li, H., Cao, R.: Facile fabrication of pure α-Fe2O3 nanoparticles via forced hydrolysis using microwave-assisted esterification and their sensing property. J. Am. Ceram. Soc. 92, 2188–2191 (2009)

    CAS  Google Scholar 

  38. Hu, X., Yu, J.C., Gong, J., Li, Q., Li, G.: α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv. Mater. 19, 2324–2329 (2007)

    CAS  Google Scholar 

  39. Liu, X., Chen, T., Chu, H., Niu, L., Sun, Z., Pan, L., Sun, C.Q.: Fe2O3-reduced graphene oxide composites synthesized via microwave-assisted method for sodium ion batteries. Electrochim. Acta 166, 12–16 (2015)

    CAS  Google Scholar 

  40. Youn, D.H., Jang, J.W., Kim, J.Y., Jang, J.S., Choi, S.H., Lee, J.S.: Fabrication of graphene-based electrode in less than a minute through hybrid microwave annealing. Sci. Rep. 4, 5492 (2014)

    CAS  Google Scholar 

  41. Hwang, J.Y., Shi, S., Xu, Z., Peterson, K.W.: Synthesis of monodispersed iron oxide particles by a large-scale microwave reactor. Chem. Eng. Commun. 193, 1586–1591 (2006)

    CAS  Google Scholar 

  42. Peiro, A.M., Ayllon, J.A., Peral, J., Domenech, X., Domingo, C.: Microwave activated chemical bath deposition (MW-CBD) of zinc oxide: influence of bath composition and substrate characteristics. J. Cryst. Growth 285, 6–16 (2005)

    CAS  Google Scholar 

  43. Mulmudi, H.K., Mathews, N., Dou, X.C., Xi, L.F., Pramana, S.S., Lam, Y.M., Mhaisalkar, S.G.: Controlled growth of hematite (α-Fe2O3) nanorod array on fluorine doped tin oxide: synthesis and photoelectrochemical properties. Electrochem. Commun. 13, 951–954 (2011)

    CAS  Google Scholar 

  44. Xiong, Q.Q., Tu, J.P., Ge, X., Wang, X.L., Gu, C.D.: One-step synthesis of hematite nanospindles from choline chloride/urea deep eutectic solvent with highly powerful storage versus lithium. J. Power Sources 274, 1–7 (2015)

    CAS  Google Scholar 

  45. Chirita, M., Banica, R., Ieta, A., Grozescu, I.: Fe-EDTA thermal decomposition, a route to highly crystalline hematite (Alpha Fe2O3) nanoparticle synthesis. Part. Sci. Technol. 28, 217–225 (2010)

    CAS  Google Scholar 

  46. Chen, M., Jiang, J., Zhou, X., Diao, G.: Preparation of akaganeite nanorods and their transformation to sphere shape hematite. J. Nanosci. Nanotechnol. 8, 3942–3948 (2008)

    CAS  Google Scholar 

  47. Kim, J., Choi, W.J.K., Choi, J., Hoffmann, M.R., Park, H.: Electrolysis of urea and urine for solar hydrogen. Catal. Today 199, 2–7 (2013)

    CAS  Google Scholar 

  48. Luan, J., Zheng, S., Hao, X., Luan, G., Wub, X., Zou, Z.: Photophysical and photocatalytic properties of novel M2BiNbO7 (M = In and Ga). J. Braz. Chem. Soc. 17, S1–S3 (2006)

    Google Scholar 

  49. Tauc, J., Grigorovic, R., Vancu, A.: Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627–637 (1966)

    CAS  Google Scholar 

  50. Wu, X.K., Huang, W.Q., Huang, Z.M., Qin, C.J., Dong, T.G., Wang, G., Tang, Y.L.: Fabrication of porous α-Fe2O3 nanoshuttles and their application for toluene sensors. Chin. Phys. B 26, 037302 (2017)

    Google Scholar 

  51. Lupan, O., Pauprte’, T., Chow, L., Viana, B., Pelle’, F., Ono, L.K., Cuenya, B.R., Heinrich, H.: Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl. Surf. Sci. 256, 1895–1907 (2010)

    CAS  Google Scholar 

  52. Shinde, P.S., Choi, S.H., Kim, Y., Ryu, J., Jang, J.S.: Onset potential behavior in α-Fe2O3 photoanodes: the influence of surface and diffusion Sn doping on the surface states. Phys. Chem. Chem. Phys. 18, 2495–2509 (2016)

    CAS  Google Scholar 

  53. Kumari, S., Tripathi, C., Singh, A.P., Chauhan, D., Shrivastav, R., Dass, S., Satsangi, V.R.: Characterization of Zn-doped hematite thin films for photoelectrochemical splitting of water. Curr. Sci. 91, 1062–1064 (2006)

    CAS  Google Scholar 

  54. Lee, P.Y., Chang, S.P., Chang, S.J.: Photoelectrochemical characterization of n-type and p-type thin-film nanocrystalline Cu2ZnSnSe4 photocathodes. J. Environ. Chem. Eng. 3, 297–303 (2015)

    CAS  Google Scholar 

  55. Choi, H., Hong, Y., Ryu, H., Lee, W.: Photoelectrochemical properties of hematite thin films grown by MW-CBD. Surf. Coat. Technol. 333, 259–266 (2018)

    CAS  Google Scholar 

  56. Li, F., Li, J., Li, F., Gao, L., Long, X., Hu, Y., Wang, C., Wei, S., Jin, J., Ma, J.: Facile regrowth of Mg–Fe2O3/P–Fe2O3 homojunction photoelectrode for efficient solar water oxidation. J. Mater. Chem. A 6, 13412–13418 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A3B01008959). This work was supported by the 2018 Inje University research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyukhyun Ryu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Ryu, H. & Lee, WJ. Effects of Urea as an Additive in Fe2O3 Thin-Film Photoelectrodes. Electron. Mater. Lett. 15, 733–742 (2019). https://doi.org/10.1007/s13391-019-00174-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00174-3

Keywords

Navigation