Advertisement

Neurotherapeutics

, Volume 15, Issue 3, pp 669–683 | Cite as

Retraining Reflexes: Clinical Translation of Spinal Reflex Operant Conditioning

  • Amir Eftekhar
  • James J. S. Norton
  • Christine M. McDonough
  • Jonathan R. Wolpaw
Review

Abstract

Neurological disorders, such as spinal cord injury, stroke, traumatic brain injury, cerebral palsy, and multiple sclerosis cause motor impairments that are a huge burden at the individual, family, and societal levels. Spinal reflex abnormalities contribute to these impairments. Spinal reflex measurements play important roles in characterizing and monitoring neurological disorders and their associated motor impairments, such as spasticity, which affects nearly half of those with neurological disorders. Spinal reflexes can also serve as therapeutic targets themselves. Operant conditioning protocols can target beneficial plasticity to key reflex pathways; they can thereby trigger wider plasticity that improves impaired motor skills, such as locomotion. These protocols may complement standard therapies such as locomotor training and enhance functional recovery. This paper reviews the value of spinal reflexes and the therapeutic promise of spinal reflex operant conditioning protocols; it also considers the complex process of translating this promise into clinical reality.

Key Words

Spinal reflex H-reflex clinical translation operant conditioning plasticity rehabilitation neurological disorders. 

Notes

Acknowledgments

The National Center for Adaptive Neurotechnologies (NCAN) of the Wadsworth Center is supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health (NIH) (Grant 1P41EB018783 (JRW)). The authors’ work at the Wadsworth Center has also been supported by NIH grants NS22189 (JRW), HD36020 (XYChen), NS061823 (JRW and XYChen), HD32571 (AWEnglish), VA Merit Award 1 I01 BX002550 (JRW), the New York State Spinal Cord Injury Research Board (SCIRB), and the the National Center of Neuromodulation for Rehabilitation (NC NM4R) NIH grant P2CHD086844 (SAKautz). In addition, we would like to acknowledge the invaluable assistance and guidance of the Center for Translation of Rehabilitation Advances and Technology (TREAT), a national rehabilitation research resource funded by the National Center for Medical Rehabilitation Research (NCMRR) of the NIH (Grants P2CHD086841 (RMGreenwald) and R24HD065703 (RMGreenwald)).

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Supplementary material

13311_2018_643_MOESM1_ESM.pdf (513 kb)
ESM 1 (PDF 513 kb)

References

  1. 1.
    Brashear A. Spasticity: Diagnosis and Management. Demos Medical Publishing; 2nd ed; 2016.Google Scholar
  2. 2.
    Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart Disease and Stroke Statistics’2017 Update: A report from the American Heart Association. Circulation. 2017.  https://doi.org/10.1161/CIR.0000000000000485
  3. 3.
    Ma VY, Chan L, Carruthers KJ. Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: Stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain. Arch Phys Med Rehabil [online]. Elsevier Ltd; 2014;95:986–995.e1.  https://doi.org/10.1016/j.apmr.2013.10.032
  4. 4.
    Bose P, Hou J. Chapter 14 Traumatic Brain Injury (TBI) -Induced Spasticity. 2015;1–15.Google Scholar
  5. 5.
    Maenner MJ, Blumberg SJ, Kogan MD, Christensen D, Yeargin-Allsopp M, Schieve LA. Prevalence of cerebral palsy and intellectual disability among children identified in two U.S. National Surveys, 2011-2013. Ann Epidemiol [online]. Elsevier Inc; 2016;26:222–6.  https://doi.org/10.1016/j.annepidem.2016.01.001
  6. 6.
    Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG. Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol. 2014;6:309–31.  https://doi.org/10.2147/CLEP.S68889
  7. 7.
    Adams MM, Hicks AL. Spasticity after spinal cord injury. Spinal Cord. 2005;43:577–86.  https://doi.org/10.1038/sj.sc.3101757 PubMedCrossRefGoogle Scholar
  8. 8.
    Simpson LA, Eng JJ, Hsieh JTC, Wolfe and the Spinal Cord Injury Re DL. The health and life priorities of individuals with spinal cord injury: A Systematic Review. J Neurotrauma [online]. 2012;29:1548–55.  https://doi.org/10.1089/neu.2011.2226
  9. 9.
    Thibaut A, Chatelle C, Ziegler E, Bruno MA, Laureys S, Gosseries O. Spasticity after stroke: Physiology, assessment and treatment. Brain Inj. 2013;27:1093–105.  https://doi.org/10.3109/02699052.2013.804202 PubMedCrossRefGoogle Scholar
  10. 10.
    Rizzo MA, Hadjimichael OC, Preiningerova J, Vollmer TL. Prevalence and treatment of spasticity reported by multiple sclerosis patients. Mult Scler J [online]. 2004;10:589–95.  https://doi.org/10.1191/1352458504ms1085oa CrossRefGoogle Scholar
  11. 11.
    Wedekind C, Lippert-Grüner M. Long-term outcome in severe traumatic brain injury is significantly influenced by brainstem involvement. Brain Inj [online]. Taylor & Francis; 2005;19:681–4.  https://doi.org/10.1080/02699050400025182 CrossRefGoogle Scholar
  12. 12.
    Yeargin-Allsopp M, Van Naarden Braun K, Doernberg NS, Benedict RE, Kirby RS, Durkin MS. Prevalence of Cerebral Palsy in 8-year-old children in three areas of the United States in 2002: A Multisite Collaboration. Pediatrics [online]. 2008;121:547–54.  https://doi.org/10.1542/peds.2007-1270
  13. 13.
    Holtz KA, Lipson R, Noonan VK, Kwon BK, Mills PB. Prevalence and effect of problematic spasticity after traumatic spinal cord injury. Arch Phys Med Rehabil [online]. Elsevier Inc; 2017;98:1132–8.  https://doi.org/10.1016/j.apmr.2016.09.124
  14. 14.
    Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol [online]. Elsevier Ltd; 2009;8:741–54.  https://doi.org/10.1016/S1474-4422(09)70150-4 CrossRefGoogle Scholar
  15. 15.
    Domingo A, Al-Yahya AA, Asiri Y, Eng JJ, Lam T. A systematic review of the effects of pharmacological agents on walking function in people with spinal cord injury. J Neurotrauma [online]. 2012;29:865–79.  https://doi.org/10.1089/neu.2011.2052
  16. 16.
    Rekand T. Clinical assessment and management of spasticity: A review. Acta Neurol Scand. 2010;122:62–6.  https://doi.org/10.1111/j.1600-0404.2010.01378.x CrossRefGoogle Scholar
  17. 17.
    Gupta AD, Chu WH, Howell S, et al. A systematic review: efficacy of botulinum toxin in walking and quality of life in post-stroke lower limb spasticity. Syst Rev [online]. Systematic Reviews; 2018;7:1.  https://doi.org/10.1186/s13643-017-0670-9 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Sheean G. Botulinum toxin treatment of adult spasticity. Drug Saf [online]. 2006;29:31–48.  https://doi.org/10.2165/00002018-200629010-00003
  19. 19.
    Ward AB. Spasticity treatment with botulinum toxins. J Neural Transm. 2008;115:607–16.  https://doi.org/10.1007/s00702-007-0833-2
  20. 20.
    Dario A, Tomei G. A benefit-risk assessment of baclofen in severe spinal spasticity. Drug Saf [online]. 2004;27:799–818.  https://doi.org/10.2165/00002018-200427110-00004
  21. 21.
    Martins A. The role of spasticity in functional neurorehabilitation-part II: Non- pharmacological and pharmacological management: A multidisciplinary approach. Arch Med. 2016;8:1–7.Google Scholar
  22. 22.
    Rekand T, Hagen E, Gronning M. Spasticity following spinal cord injury. Tidsskr Nor Legeforen [online]. 2012;132:970–3.CrossRefGoogle Scholar
  23. 23.
    Reier PJ, Howland DR, Mitchell G, Wolpaw JR, Hoh D, Lane MA. Spinal cord injury: Repair, plasticity and rehabilitation. eLS [online]. 2017;1–12.  https://doi.org/10.1002/9780470015902.a0021403.pub2
  24. 24.
    Harkema SJ, Schmidt-Read M, Lorenz DJ, Edgerton VR, Behrman AL. Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor trainingbased rehabilitation. Arch Phys Med Rehabil [online]. Elsevier Inc.; 2012;93:1508–17.  https://doi.org/10.1016/j.apmr.2011.01.024 CrossRefGoogle Scholar
  25. 25.
    Peurala SH, Karttunen AH, Sjigren T, Paltamaa J, Heinonen A. Evidence for the effectiveness of walking training on walking and self-care after stroke: A systematic review and meta-analysis of randomized controlled trials. J Rehabil Med. 2014;46:387–99.  https://doi.org/10.2340/16501977-1805 PubMedCrossRefGoogle Scholar
  26. 26.
    Fritz S, Lusardi M. White paper: “Walking speed: the sixth vital sign.” J Geriatr Phys Ther. 2016;32:1.  https://doi.org/10.1519/00139143-200932020-00002
  27. 27.
    Pierrot-Deseilligny E, Burke D. The Circuitry of the Human Spinal Cord of Movement. Pierrot-deseilligny E, Burke D, editors. Cambridge University Press; 2012.Google Scholar
  28. 28.
    Burke D. Clinical uses of H reflexes of upper and lower limb muscles. Clin Neurophysiol Pract [online]. International Federation of Clinical Neurophysiology; 2016;1:9–17. doi: https://doi.org/10.1016/j.cnp.2016.02.003
  29. 29.
    Knikou M. The H-reflex as a probe: Pathways and pitfalls. J Neurosci Methods. 2008;171:1–12.  https://doi.org/10.1016/j.jneumeth.2008.02.012 PubMedCrossRefGoogle Scholar
  30. 30.
    Zehr EP. Considerations for use of the Hoffmann reflex in exercise studies. Eur J Appl Physiol. 2002;86:455–68.  https://doi.org/10.1007/s00421-002-0577-5 PubMedCrossRefGoogle Scholar
  31. 31.
    Yang JF, Fung J, Edamura M, Blunt R, Stein RB, Barbeau H. H-Reflex modulation during walking in spastic paretic subjects. Can J Neurol Sci / J Can des Sci Neurol. 1991;18:443–52.  https://doi.org/10.1017/S0317167100032133
  32. 32.
    Hoffmann P. Über die Beziehungen der Sehnenreflexe zur willkür liehen Bewegung und zum Tonus. Z Biol. 1918;68:351–70.Google Scholar
  33. 33.
    Hoffmann P. Beiträge zur Kenntnis der menschlichen Reflexe mit besonderer Berücksichtigung. Arch Anat Physiol. 1910;1:223–46.Google Scholar
  34. 34.
    Palmieri RM, Ingersoll CD, Hoffman MA. The Hoffmann reflex: Methodologic considerations and applications for use in sports medicine and athletic training research. J Athl Train. 2004;39:268–77.  https://doi.org/10.1007/s00421-003-0967-3 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Misiaszek JE. The H-reflex as a tool in neurophysiology: Its limitations and uses in understanding nervous system function. Muscle and Nerve. 2003;28:144–60. doi: https://doi.org/10.1002/mus.10372 PubMedCrossRefGoogle Scholar
  36. 36.
    Boorman GI, Lee RG, Becker WJ, Windhorst UR. Impaired “natural reciprocal inhibition” in patients with spasticity due to incomplete spinal cord injury. Electroencephalogr Clin Neurophysiol - Electromyogr Mot Control. 1996;101:84–92.  https://doi.org/10.1016/0924-980X(95)00262-J CrossRefGoogle Scholar
  37. 37.
    Thompson AK, Chen XY, Wolpaw JR. Acquisition of a simple motor skill: Task-dependent adaptation plus long-term change in the human soleus H-reflex. J Neurosci [online]. 2009;29:5784–92.  https://doi.org/10.1523/JNEUROSCI.4326-08.2009
  38. 38.
    Mukherjee A, Chakravarty A. Spasticity mechanisms - for the clinician. Front Neurol. 2010;MAR:1–10. doi: https://doi.org/10.3389/fneur.2010.00149
  39. 39.
    Chen Y, Chen L, Liu R, Wang Y, Chen XY, Wolpaw JR. Locomotor impact of beneficial or nonbeneficial H-reflex conditioning after spinal cord injury. J Neurophysiol [online]. 2014;111:1249–58.  https://doi.org/10.1152/jn.00756.2013 PubMedCrossRefGoogle Scholar
  40. 40.
    Thompson AK, Chen XY, Wolpaw JR. Soleus H-reflex operant conditioning changes the H-reflex recruitment curve. Muscle and Nerve. 2013;47:539–44. doi: https://doi.org/10.1002/mus.23620 PubMedCrossRefGoogle Scholar
  41. 41.
    Thompson AK, Pomerantz FR, Wolpaw JR. Operant conditioning of a spinal reflex can improve locomotion after spinal cord injury in humans. J Neurosci [online]. 2013;33:2365–75.  https://doi.org/10.1523/JNEUROSCI.3968-12.2013
  42. 42.
    Thompson AK, Wolpaw JR. Operant conditioning of spinal reflexes: from basic science to clinical therapy. Front Integr Neurosci [online]. 2014;8:1–8.  https://doi.org/10.3389/fnint.2014.00025 CrossRefGoogle Scholar
  43. 43.
    Chen Y, Chen XY, Jakeman LB, Chen L, Stokes BT, Wolpaw JR. Operant conditioning of H-reflex can correct a locomotor abnormality after spinal cord injury in rats. J Neurosci [online]. 2006;26:12537–43.  https://doi.org/10.1523/JNEUROSCI.2198-06.2006
  44. 44.
    Manella KJ, Roach KE, Field-Fote EC. Operant conditioning to increase ankle control or decrease reflex excitability improves reflex modulation and walking function in chronic spinal cord injury. J Neurophysiol [online]. 2013;109:2666–79.  https://doi.org/10.1152/jn.01039.2011 PubMedCrossRefGoogle Scholar
  45. 45.
    Frontera WR, Bean JF, Damiano D, et al. Rehabilitation research at the national institutes of health moving the field forward (executive summary). Phys Ther. 2017;97:387–96.  https://doi.org/10.1093/ptj/pzx027
  46. 46.
    Thompson AK, Wolpaw JR. Targeted neuroplasticity for rehabilitation. Prog Brain Res. 2015;218:157–72.  https://doi.org/10.1016/bs.pbr.2015.02.002 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Morelli M, Sullivan SJ, Chapman CE. Inhibitory influence of soleus massage onto the medial gastrocnemius H-reflex. Electromyogr Clin Neurophysiol [online]. 1998;38:87–93.PubMedGoogle Scholar
  48. 48.
    Thompson CS, Schabrun S, Marshall PW. H-reflex excitability is inhibited in soleus, but not gastrocnemius, at the short-latency response of a horizontal jump-landing task. Hum Mov Sci [online]. Elsevier B.V.; 2016;47:1–8.  https://doi.org/10.1016/j.humov.2016.01.007
  49. 49.
    Friesenbichler B, Lepers R, Maffiuletti NA. Soleus and lateral gastrocnemius H-reflexes during standing with unstable footwear. Muscle and Nerve. 2015;51:764–6.  https://doi.org/10.1002/mus.24601 PubMedCrossRefGoogle Scholar
  50. 50.
    Jusic A, Baraba R, Bogunovic A. H-reflex and F-wave potentials in leg and arm muscles. Electromyogr Clin Neurophysiol. Belgium; 1995;35:471–8.Google Scholar
  51. 51.
    Abbruzzese M, Rubino V, Schieppati M. Task-dependent effects evoked by foot muscle afferents on leg muscle activity in humans. Electroencephalogr Clin Neurophysiol - Electromyogr Mot Control. 1996;101:339–48.  https://doi.org/10.1016/0924-980X(96)95682-9 CrossRefGoogle Scholar
  52. 52.
    Roujeau T, Decq P, Lefaucheur JP. Surface EMG recording of heteronymous reflex excitation of semitendinosus motoneurones by group II afferents. Clin Neurophysiol. 2004;115:1313–9. doi: https://doi.org/10.1016/j.clinph.2004.01.020 PubMedCrossRefGoogle Scholar
  53. 53.
    Ellrich J, Steffens H, Treede RD, Schomburg ED. The Hoffmann reflex of human plantar foot muscles. Muscle Nerve. United States; 1998;21:732–8.CrossRefGoogle Scholar
  54. 54.
    Versino M, Candeloro E, Tavazzi E, Moglia A, Sandrini G, Alfonsi E. The H reflex from the abductor brevis hallucis muscle in healthy subjects. Muscle and Nerve. 2007;36:39–46.  https://doi.org/10.1002/mus.20775 PubMedCrossRefGoogle Scholar
  55. 55.
    Hopkins JT, Ingersoll CD, Krause BA, Edwards JE, Cordova ML. Effect of knee joint effusion on quadriceps and soleus motoneuron pool excitability. Med Sci Sports Exerc [online]. 2001;33:123–6.  https://doi.org/10.1097/00005768-200101000-00019 CrossRefGoogle Scholar
  56. 56.
    Fahrer H, Rentsch HU, Gerber NJ, Beyeler C, Hess CW, Grünig B. Knee effusion and reflex inhibition of the quadriceps. A bar to effective retraining. J Bone Joint Surg Br. 1988;70:635–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Dietz V, Faist M, Pierrot-Deseilligny E. Amplitude modulation of the quadriceps H-reflex in the human during the early stance phase of gait. Exp Brain Res [online]. 1990;79:221–4.  https://doi.org/10.1007/BF00228893 PubMedCrossRefGoogle Scholar
  58. 58.
    Pazzinatto MF, de Oliveira Silva D, Pappas E, Magalhães FH, de Azevedo FM. Is quadriceps H-reflex excitability a risk factor for patellofemoral pain? Med Hypotheses [online]. Elsevier; 2017;108:124–7.  https://doi.org/10.1016/j.mehy.2017.08.019
  59. 59.
    de Oliveira Silva D, Magalhães FH, Faria NC, et al. Vastus medialis Hoffmann reflex excitability is associated with pain level, self-reported function, and chronicity in women with patellofemoral pain. Arch Phys Med Rehabil. 2017;98:114–9.  https://doi.org/10.1016/j.apmr.2016.06.011
  60. 60.
    Pierrot-Deseilligny E, Morin C, Bergego C, Tankov N. Pattern of group I fibre projections from ankle flexor and extensor muscles in man. Exp brain Res. Germany; 1981;42:337–50.Google Scholar
  61. 61.
    Zheng CJ, Zhu Y, Jin X, et al. Potential advantages of the H-reflex of the biceps femoris-long head in documenting S1 radiculopathy. J Clin Neurophysiol [online]. 2014;31.Google Scholar
  62. 62.
    Hall RC, Nyland J, Nitz AJ, Pinerola J, Johnson DL. Relationship between ankle invertor H-reflexes and acute swelling induced by inversion ankle sprain. J Orthop Sport Phys Ther [online]. 1999;29:339–44.  https://doi.org/10.2519/jospt.1999.29.6.339
  63. 63.
    Kim KM, Hart JM, Saliba SA, Hertel J. Modulation of the fibularis longus hoffmann reflex and postural instability associated with chronic ankle instability. J Athl Train. 2016;51:637–43.  https://doi.org/10.4085/1062-6050-51.10.05 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Nishikawa T, Ozaki T, Mizuno K, Grabiner MD. Increased reflex activation of the peroneus longus following application of an ankle brace declines over time. J Orthop Res. 2002;20:1323–6.  https://doi.org/10.1016/S0736-0266(02)00054-2 PubMedCrossRefGoogle Scholar
  65. 65.
    Sefton JM, Hicks-Little CA, Koceja DM, Cordova ML. Effect of inversion and ankle bracing on peroneus longus Hoffmann reflex. Scand J Med Sci Sport. 2007;17:539–46.  https://doi.org/10.1111/j.1600-0838.2006.00593.x CrossRefGoogle Scholar
  66. 66.
    Nishikawa T, Grabiner MD. Peroneal motoneuron excitability increases immediately following application of a semirigid ankle brace. J Orthop Sports Phys Ther [online]. 1999;29:168–73; discussion 174-6.  https://doi.org/10.2519/jospt.1999.29.3.168 PubMedCrossRefGoogle Scholar
  67. 67.
    Garcia HA, Fisher MA, Gilai A. H reflex analysis of segmental reflex excitability in flexor and extensor muscles. Neurology. United States; 1979;29:984–91.CrossRefGoogle Scholar
  68. 68.
    Burke D, Adams RW, Skuse NF. The effects of voluntary contraction on the H reflex of human limb muscles. Brain. England; 1989;112:417–33.CrossRefGoogle Scholar
  69. 69.
    Miyama S, Arimoto K, Kimiya S. H reflex in patients with spastic quadriplegia. No To Hattatsu. Japan; 2009;41:21–6.Google Scholar
  70. 70.
    Köster B, Lauk M, Timmer J, et al. Central mechanisms in human enhanced physiological tremor. Neurosci Lett. 1998;241:135–8.  https://doi.org/10.1016/S0304-3940(98)00015-9 PubMedCrossRefGoogle Scholar
  71. 71.
    Miller T, Newall AR, Jackson DA. H-reflexes in the upper extremity and the effects of voluntary contraction. Electromyogr Clin Neurophysiol. 1995;35:121–8.Google Scholar
  72. 72.
    Hopkins JT, Wagie NC. Intrasession and intersession reliability of the quadriceps Hoffmann reflex. Electromyogr Clin Neurophysiol [online]. 2003;43:85—89.PubMedGoogle Scholar
  73. 73.
    Eliaspour D, Sanati E, Hedayati-Moghaddam MR, Rayegani SM, Bahrami MH. Utility of flexor carpi radialis H-reflex in diagnosis of cervical radiculopathy. J Clin Neurophysiol. 2009;26:458–60.  https://doi.org/10.1097/WNP.0b013e3181c2bb00
  74. 74.
    Domingo A, Klimstra M, Nakajima T, Lam T, Hundza SR. Walking phase modulates H-reflex amplitude in flexor carpi radialis. J Mot Behav [online]. Routledge; 2014;46:49–57.  https://doi.org/10.1080/00222895.2013.854731
  75. 75.
    Skills M. Inhibitory effects of circumferential pressure on flexor carpi radialis h-reflex in adults with neurological deficits 1. 2010;89–103.  https://doi.org/10.2466/PMS.110.1.89-103
  76. 76.
    Cavallari P, Lalli S. Changes in excitability of the flexor carpi radialis H-reflex following tactile stimulation of the index fingertip. Exp Brain Res. 1998;120:345–51.  https://doi.org/10.1007/s002210050408 PubMedCrossRefGoogle Scholar
  77. 77.
    Schimsheimer RJ, Ongerboer de Visser BW, Kemp B, Bour LJ. The flexor carpi radialis H-reflex in polyneuropathy: relations to conduction velocities of the median nerve and the soleus H-reflex latency. J Neurol Neurosurg Psychiatry [online]. 1987;50:447–52.  https://doi.org/10.1136/jnnp.50.4.447 CrossRefGoogle Scholar
  78. 78.
    Stowe AM, Hughes-Zahner L, Stylianou AP, Schindler-Ivens S, Quaney BM. Between-day reliability of upper extremity H-reflexes. J Neurosci Methods. 2008;170:317–23.  https://doi.org/10.1016/j.jneumeth.2008.01.031 PubMedCrossRefGoogle Scholar
  79. 79.
    Cincotta M, Ziemann U. Neurophysiology of unimanual motor control and mirror movements. Clin Neurophysiol. 2008;119:744–62.  https://doi.org/10.1016/j.clinph.2007.11.047 PubMedCrossRefGoogle Scholar
  80. 80.
    Abbruzzese G, Trompetto C, Schieppati M. The excitability of the human motor cortex increases during execution and mental imagination of sequential but not repetitive finger movements. Exp Brain Res [online]. 1996;111:465–72.  https://doi.org/10.1007/BF00228736 PubMedCrossRefGoogle Scholar
  81. 81.
    Bodofsky EB. Contraction-induced upper extremity H reflexes: Normative values. Arch Phys Med Rehabil. 1999;80:562–5.  https://doi.org/10.1016/S0003-9993(99)90200-9 PubMedCrossRefGoogle Scholar
  82. 82.
    Phadke CP, Robertson CT, Condliffe EG, Patten C. Upper-extremity H-reflex measurement post-stroke: Reliability and inter-limb differences. Clin Neurophysiol [online]. International Federation of Clinical Neurophysiology; 2012;123:1606–15.  https://doi.org/10.1016/j.clinph.2011.12.012 CrossRefGoogle Scholar
  83. 83.
    Kao JT, Sharma S, Curtis CG, Clarke HM. The role of the brachioradialis H Reflex in the management and prognosis of obstetrical brachial plexus palsy. Handchir Mikrochir plast Chir. 2003;35:106–11.  https://doi.org/10.1055/s-2003-40768
  84. 84.
    Lee J, Park GJ, Doo HC, Park SG, Jeong YS, Hah JS. Utility of H-reflex in the diagnosis cervical radiculopathy. Yeungnam Univ J Med [online]. Yeungnam University College of Medicine; 1997;14:111–22.Google Scholar
  85. 85.
    Alexander CM, Harrison PJ. The bilateral reflex control of the trapezius muscle in humans. Exp Brain Res. 2002;142:418–24.  https://doi.org/10.1007/s00221-001-0951-2 PubMedCrossRefGoogle Scholar
  86. 86.
    Alexander CM, Stynes S, Thomas A, Lewis J, Harrison PJ. Does tape facilitate or inhibit the lower fibres of trapezius? Man Ther [online]. 2003;8:37–41.  https://doi.org/10.1054/math.2002.0485
  87. 87.
    Vangsgaard S, Taylor JL, Hansen EA, Madeleine P. Changes in H reflex and neuromechanical properties of the trapezius muscle after 5 weeks of eccentric training: a randomized controlled trial. J Appl Physiol [online]. 2014;116:1623–31.  https://doi.org/10.1152/japplphysiol.00164.2014
  88. 88.
    Miller TA, Mogyoros I, Kiernan M, Burke D. Reproducibility of a heteronymous monosynaptic reflex in biceps brachii. Electroencephalogr Clin Neurophysiol Electromyogr. 1995;97:318–25.  https://doi.org/10.1016/0924-980X(95)00121-Z CrossRefGoogle Scholar
  89. 89.
    Capaday C, Stein RB. Amplitude modulation of the soleus H-reflex in the human during walking and standing. J Neurosci. 1986;6:1308–13.PubMedCrossRefGoogle Scholar
  90. 90.
    Larsen B, Voigt M. Changes in the gain of the soleus H-reflex with changes in the motor recruitment level and/or movement speed. Eur J Appl Physiol. 2004;93:19–29.  https://doi.org/10.1007/s00421-004-1152-z PubMedCrossRefGoogle Scholar
  91. 91.
    Funase K, Imanaka K, Nishihira Y. Excitability of the soleus motoneuron pool revealed by the developmental slope of the H-reflex as reflex gain. Electromyogr Clin Neurophysiol [online]. 1994;34:477—489.Google Scholar
  92. 92.
    Mynark RG, Koceja DM. Comparison of soleus H-reflex gain from prone to standing in dancers and controls. Electroencephalogr Clin Neurophysiol - Electromyogr Mot Control. 1997;105:135–40.  https://doi.org/10.1016/S0924-980X(96)96096-8 CrossRefGoogle Scholar
  93. 93.
    Field-Fote EC, Brown KM, Lindley SD. Influence of posture and stimulus parameters on post-activation depression of the soleus H-reflex in individuals with chronic spinal cord injury. Neurosci Lett. 2006;410:37–41.  https://doi.org/10.1016/j.neulet.2006.09.058 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Goulart F, Valls-Solé J, Alvarez R. Posture-related changes of soleus H-reflex excitability. Muscle Nerve [online]. 2000;23:925–32.  https://doi.org/10.1002/(SICI)1097-4598(200006)23:6<925::AID-MUS13>3.0.CO;2-K CrossRefGoogle Scholar
  95. 95.
    Angulo-Kinzler RM, Mynark RG, Koceja DM. Soleus H-reflex gain in elderly and young adults: modulation due to body position. J Gerontol A Biol Sci Med Sci. 1998;53:M120–5.  https://doi.org/10.1093/gerona/53A.2.M120 PubMedCrossRefGoogle Scholar
  96. 96.
    Nielsen J, Crone C, Hultborn H. H-reflexes are smaller in dancers from The Royal Danish Ballet than in well-trained athletes. Eur J Appl Physiol Occup Physiol [online]. 1993;66:116–21. doi: https://doi.org/10.1007/BF01427051
  97. 97.
    CMS. Billing and Coding Guidelines: NEURO-005 Nerve Conduction Studies and Electromyography. 2012.Google Scholar
  98. 98.
    Millan-Guerrero RO, Trujillo-Hernandez B, Isais-Millan S, et al. H-reflex and clinical examination in the diagnosis of diabetic polyneuropathy. JIntMedRes [online]. 2012;40:694–700.  https://doi.org/10.1177/147323001204000233 CrossRefGoogle Scholar
  99. 99.
    Dillingham TR, Marin R, Belandres P V, Chang A. Extensor digitorum brevis reflex in normals and patients with radiculopathies. Muscle Nerve [online]. Wiley Subscription Services, Inc., A Wiley Company; 1995;18:52–9.  https://doi.org/10.1002/mus.880180108 CrossRefGoogle Scholar
  100. 100.
    Mazzocchio R, Scarfò GB, Mariottini A, Muzii VF, Palma L. Recruitment curve of the soleus H-reflex in chronic back pain and lumbosacral radiculopathy. BMC Musculoskelet Disord [online]. 2001;2:4.  https://doi.org/10.1186/1471-2474-2-4 CrossRefGoogle Scholar
  101. 101.
    Alrowayeh HN, Sabbahi MA. H-reflex amplitude asymmetry is an earlier sign of nerve root involvement than latency in patients with S1 radiculopathy. BMC Res Notes [online]. BioMed Central Ltd; 2011;4:102.  https://doi.org/10.1186/1756-0500-4-102 CrossRefGoogle Scholar
  102. 102.
    Jin X, Zhu Y, Lu FZ, et al. H-reflex to S1-root stimulation improves utility for diagnosing S1 radiculopathy. Clin Neurophysiol [online]. International Federation of Clinical Neurophysiology; 2010;121:1329–35.  https://doi.org/10.1016/j.clinph.2010.03.004 CrossRefGoogle Scholar
  103. 103.
    Zheng C, Zhu Y, Lu F, et al. Diagnostic advantage of S1 foramen-evoked H-reflex for S1 radiculopathy in patients with diabetes mellitus. Int J Neurosci [online]. Taylor & Francis; 2013;123:770–5.  https://doi.org/10.3109/00207454.2013.801843
  104. 104.
    Gordon PH, Wilbourn a J. Early electrodiagnostic findings in Guillain-Barré syndrome. Arch Neurol. 2001;58:913–7. doi: https://doi.org/10.1001/archneur.58.6.913 PubMedCrossRefGoogle Scholar
  105. 105.
    Yang Y, Xiao J, Song W. Post-activation depression of the lower extremities in stroke patients with spasticity and spastic equinovarus deformity. Arq Neuropsiquiatr [online]. 2015;73:493–8.  https://doi.org/10.1590/0004-282X20150052 PubMedCrossRefGoogle Scholar
  106. 106.
    Kawaishi Y, Matsumoto N, Nishiwaki T, Hirano T. Postactivation depression of soleus H-reflex increase with recovery of lower extremities motor functions in patients with subacute stroke. J Phys Ther Sci [online]. 2017;29:1539–42.  https://doi.org/10.1589/jpts.29.1539 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Okuyama K, Kawakami M, Hiramoto M, Muraoka K, Fujiwara T, Liu M. Relationship between spasticity and spinal neural circuits in patients with chronic hemiparetic stroke. Exp Brain Res [online]. Springer Berlin Heidelberg; 2017;0:1–7.  https://doi.org/10.1007/s00221-017-5119-9
  108. 108.
    Çakır T, Evcik FD, Subaşı V, Demirdal ÜS, Kavuncu V. Investigation of the H reflexes, F waves and sympathetic skin response with electromyography (EMG) in patients with stroke and the determination of the relationship with functional capacity. Acta Neurol Belg. 2015;115:295–301.  https://doi.org/10.1007/s13760-014-0397-5 PubMedCrossRefGoogle Scholar
  109. 109.
    Higashi T, Funase K, Kusano K, et al. Motoneuron pool excitability of hemiplegic patients: Assessing recovery stages by using H-reflex and M response. Arch Phys Med Rehabil. 2001;82:1604–10.  https://doi.org/10.1053/apmr.2001.25081 PubMedCrossRefGoogle Scholar
  110. 110.
    Nielsen J, Petersen N, Ballegaard M, Biering-Sørensen F, Kiehn O. H-reflexes are less depressed following muscle stretch in spastic spinal cord injured patients than in healthy subjects. Exp Brain Res [online]. 1993;97:173–6.  https://doi.org/10.1007/BF00228827 PubMedCrossRefGoogle Scholar
  111. 111.
    Koelman JHTM, Willemse RB, Bour LJ, Hilgevoord AAJ, Speelman JD, Ongerboer de Visser BW. Soleus H-reflex tests in dystonia. Mov Disord [online]. Wiley Subscription Services, Inc., A Wiley Company; 1995;10:44–50.  https://doi.org/10.1002/mds.870100109
  112. 112.
    Marchand-Pauvert V, Iglesias C. Properties of human spinal interneurones: normal and dystonic control. J Physiol. 2008;586:1247–56.  https://doi.org/10.1113/jphysiol.2007.145904 PubMedCrossRefGoogle Scholar
  113. 113.
    Rijsman RM, Stam CJ, De Weerd AW. Abnormal H-reflexes in periodic limb movement disorder; Impact on understanding the pathophysiology of the disorder. Clin Neurophysiol. 2005;116:204–10.  https://doi.org/10.1016/j.clinph.2004.07.022 PubMedCrossRefGoogle Scholar
  114. 114.
    Heide AC, Winkler T, Helms HJ, et al. Effects of transcutaneous spinal direct current stimulation in idiopathic restless legs patients. Brain Stimul [online]. Elsevier Ltd; 2014;7:636–42.  https://doi.org/10.1016/j.brs.2014.06.008
  115. 115.
    Sabbahi M, Etnyre B, Al-Jawayed IA, Hasson S, Jankovic J. Methods of H-reflex evaluation in the early stages of Parkinson’s disease. J Clin Neurophysiol. United States; 2002;19:67–72.CrossRefGoogle Scholar
  116. 116.
    Mahmud AS, Alwan BM, Mezaal MA. H-reflex excitability in children with spastic cerebral palsy. J Fac Med. 2011;53:11–4.Google Scholar
  117. 117.
    Hodapp M, Klisch C, Berger W, Mall V, Faist M. Modulation of soleus H-reflexes during gait in healthy children. Exp Brain Res. 2007;178:252–60.  https://doi.org/10.1007/s00221-006-0730-1 PubMedCrossRefGoogle Scholar
  118. 118.
    Futagi Y, Abe J. H-reflex study in normal children and patients with cerebral palsy. Brain Dev [online]. 1985;7:414–20. doi: https://doi.org/10.1016/S0387-7604(85)80139-X PubMedCrossRefGoogle Scholar
  119. 119.
    Leonard CT, Moritani T, Hirschfeld H, Forssberg H. Deficits in reciprocal inhibition of children with cerebral palsy as revealed by h reflex testing. Dev Med Child Neurol [online]. Blackwell Publishing Ltd; 1990;32:974–84.  https://doi.org/10.1111/j.1469-8749.1990.tb08120.x
  120. 120.
    Parvin S, Mansouri M, Amiri S, Marzbani H, Kharazi MR, Mirbagheri MM. Contribution of reflex hyper-excitability to muscle stiffness in children with cerebral palsy. 2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering (ICBME) 2016. Online. p. 89–92.  https://doi.org/10.1109/ICBME.2016.7890935
  121. 121.
    Ditunno JF, Little JW, Tessler A, Burns AS. Spinal shock revisited: A four-phase model. Spinal Cord. 2004;42:383–95.  https://doi.org/10.1038/sj.sc.3101603 PubMedCrossRefGoogle Scholar
  122. 122.
    Ko HY, Ditunno JF, Graziani V, Little JW. The pattern of reflex recovery during spinal shock. Spinal cord Off J Int Med Soc Paraplegia. 1999;37:402–9.  https://doi.org/10.1038/sj.sc.3100840 CrossRefGoogle Scholar
  123. 123.
    Cho SH, Lee JH. Comparison of the amplitudes of the H-reflex of post-stroke hemiplegia patients and normal adults during walking. J Phys Ther Sci. 2013;25:729–32.  https://doi.org/10.1589/jpts.25.729 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Ørsnes G, Crone C, Krarup C, Petersen N, Nielsen J. The effect of baclofen on the transmission in spinal pathways in spastic multiple sclerosis patients. Clin Neurophysiol. 2000;111:1372–9.  https://doi.org/10.1016/S1388-2457(00)00352-7 PubMedCrossRefGoogle Scholar
  125. 125.
    Macdonell RA, Talalla A, Swash M, Grundy D. Intrathecal baclofen and the H-reflex. J Neurol Neurosurg Psychiatry [online]. 1989;52:1110–2.  https://doi.org/10.1136/jnnp.52.9.1110
  126. 126.
    Hoving MA, van Kranen-Mastenbroek VH, van Raak EP, et al. Placebo controlled utility and feasibility study of the H-reflex and flexor reflex in spastic children treated with intrathecal baclofen. Clin Neurophysiol. 2006;117:1508–17.  https://doi.org/10.1016/j.clinph.2006.04.014
  127. 127.
    Stokic DS, Yablon SA, Hayes A, Vesovic-Potic V, Olivier J. Dose-response relationship between the H-reflex and continuous intrathecal baclofen administration for management of spasticity. Clin Neurophysiol. 2006;117:1283–9.  https://doi.org/10.1016/j.clinph.2006.02.018 PubMedCrossRefGoogle Scholar
  128. 128.
    Marchand-Pauvert V, Aymard C, Giboin LS, Dominici F, Rossi A, Mazzocchio R. Beyond muscular effects: Depression of spinal recurrent inhibition after botulinum neurotoxin A. J Physiol. 2013;591:1017–29.  https://doi.org/10.1113/jphysiol.2012.239178 PubMedCrossRefGoogle Scholar
  129. 129.
    Kerzoncuf M, Bensoussan L, Delarque A, Durand J, Viton JM, Rossi-Durand C. Plastic changes in spinal synaptic transmission following botulinum toxin a in patients with post-stroke spasticity. J Rehabil Med. 2015;47:910–6.  https://doi.org/10.2340/16501977-2014 PubMedCrossRefGoogle Scholar
  130. 130.
    Knikou M, Smith AC, Mummidisetty CK. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury. J Neurophysiol [online]. 2015;113:2447–60.  https://doi.org/10.1152/jn.00872.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Smith AC, Rymer WZ, Knikou M. Locomotor training modifies soleus monosynaptic motoneuron responses in human spinal cord injury. Exp brain Res [online]. 2015;233:89–103.  https://doi.org/10.1007/s00221-014-4094-7 PubMedCrossRefGoogle Scholar
  132. 132.
    Trimble MH, Kukulka CG, Behrman AL. The effect of treadmill gait training on low-frequency depression of the soleus H-reflex: Comparison of a spinal cord injured man to normal subjects. Neurosci Lett. 1998;246:186–8.  https://doi.org/10.1016/S0304-3940(98)00259-6 PubMedCrossRefGoogle Scholar
  133. 133.
    Caron G, Marqueste T, Decherchi P. Restoration of post-activation depression of the H-reflex by treadmill exercise in aged rats. Neurobiol Aging [online]. Elsevier Inc; 2016;42:61–8.  https://doi.org/10.1016/j.neurobiolaging.2016.02.022 CrossRefGoogle Scholar
  134. 134.
    Phadke CP, Flynn SM, Thompson FJ, Behrman AL, Trimble MH, Kukulka CG. Comparison of single bout effects of bicycle training versus locomotor training on paired reflex depression of the soleus H-reflex after motor incomplete spinal cord injury. Arch Phys Med Rehabil [online]. 2009;90:1218–28.  https://doi.org/10.1016/j.apmr.2009.01.022
  135. 135.
    Sosnoff JJ, Motl RW. Effect of acute unloaded arm versus leg cycling exercise on the soleus H-reflex in adults with multiple sclerosis. Neurosci Lett [online]. Elsevier Ireland Ltd; 2010;479:307–11. doi: https://doi.org/10.1016/j.neulet.2010.05.086 CrossRefGoogle Scholar
  136. 136.
    Mirbagheri MM, Alibiglou L, Thajchayapong M, Rymer WZ. Muscle and reflex changes with varying joint angle in hemiparetic stroke. J Neuroeng Rehabil [online]. 2008;5:6.  https://doi.org/10.1186/1743-0003-5-6 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Budini F, Tilp M. Changes in H-reflex amplitude to muscle stretch and lengthening in humans. Rev Neurosci. 2016;27:511–22.  https://doi.org/10.1515/revneuro-2016-0001 PubMedCrossRefGoogle Scholar
  138. 138.
    Mezzarane RA, Nakajima T, Zehr EP. After stroke bidirectional modulation of soleus stretch reflex amplitude emerges during rhythmic arm cycling. Front Hum Neurosci [online]. 2014;8:1–9.  https://doi.org/10.3389/fnhum.2014.00136 CrossRefGoogle Scholar
  139. 139.
    Jessop T, Depaola A, Casaletto L, Englard C, Knikou M. Short-term plasticity of human spinal inhibitory circuits after isometric and isotonic ankle training. Eur J Appl Physiol. 2013;113:273–84.  https://doi.org/10.1007/s00421-012-2438-1 PubMedCrossRefGoogle Scholar
  140. 140.
    Sefton JEM, Yarar C, Carpenter DM, Berry JW. Physiological and clinical changes after therapeutic massage of the neck and shoulders. Man Ther [online]. Elsevier Ltd; 2011;16:487–94.  https://doi.org/10.1016/j.math.2011.04.002
  141. 141.
    Goldberg J, Seaborne DE, Sullivan SJ, Leduc BE. The effect of therapeutic massage on H-reflex amplitude in persons with a spinal cord injury. Phys Ther. United States; 1994;74:728–37.CrossRefGoogle Scholar
  142. 142.
    Ji Q, He H, Zhang C, et al. Effects of whole-body vibration on neuromuscular performance in individuals with spinal cord injury: A systematic review. Clin Rehabil [online]. 2016;026921551667101.  https://doi.org/10.1177/0269215516671014
  143. 143.
    Winkler T, Hering P, Straube A. Spinal DC stimulation in humans modulates post-activation depression of the H-reflex depending on current polarity. Clin Neurophysiol [online]. International Federation of Clinical Neurophysiology; 2010;121:957–61.  https://doi.org/10.1016/j.clinph.2010.01.014 CrossRefGoogle Scholar
  144. 144.
    Hofstoetter US, McKay WB, Tansey KE, Mayr W, Kern H, Minassian K. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J Spinal Cord Med [online]. 2014;37:202–11.  https://doi.org/10.1179/2045772313Y.0000000149 PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Murray LM, Tahayori B, Knikou M. Transspinal direct current stimulation produces persistent plasticity in human motor pathways. Sci Rep [online]. Springer US; 2018;8.  https://doi.org/10.1038/s41598-017-18872-z
  146. 146.
    Ievins A, Moritz CT. Therapeutic stimulation for restoration of function after spinal cord injury. Physiology [online]. 2017;32:391–8.  https://doi.org/10.1152/physiol.00010.2017
  147. 147.
    Del Felice A, Daloli V, Masiero S, Manganotti P. Contralesional cathodal versus dual transcranial direct current stimulation for decreasing upper limb spasticity in chronic stroke individuals: A Clinical and Neurophysiological Study. J Stroke Cerebrovasc Dis [online]. Elsevier Inc.; 2016;25:2932–41.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.08.008
  148. 148.
    Chieffo R, Comi G, Leocani L. Noninvasive neuromodulation in poststroke gait disorders: Rationale, feasibility, and state of the art. Neurorehabil Neural Repair. 2016;30:71–82.  https://doi.org/10.1177/1545968315586464
  149. 149.
    Palm U, Ayache SS, Padberg F, Lefaucheur JP. Non-invasive brain stimulation therapy in multiple sclerosis: A review of tDCS, rTMS and ECT results. Brain Stimul [online]. Elsevier Inc.; 2014;7:849–54.  https://doi.org/10.1016/j.brs.2014.09.014 CrossRefGoogle Scholar
  150. 150.
    Tazoe T, Perez MA. Effects of repetitive transcranial magnetic stimulation on recovery of function after spinal cord injury. Arch Phys Med Rehabil [online]. Elsevier Ltd; 2015;96:S145–55.  https://doi.org/10.1016/j.apmr.2014.07.418 CrossRefGoogle Scholar
  151. 151.
    Kim DH, Shin JC, Jung S, Jung TM, Kim DY. Effects of intermittent theta burst stimulation on spasticity after stroke. Neuroreport. 2015;26:561–6.  https://doi.org/10.1097/WNR.0000000000000388
  152. 152.
    Christie AD, Inglis JG, Boucher JP, Gabriel DA. Reliability of the FCR H-Reflex. J Clin Neurophysiol [online]. 2005;22:204–9.PubMedGoogle Scholar
  153. 153.
    Hopkins JT, Ingersoll CD, Cordova ML, Edwards JE. Intrasession and intersession reliability of the soleus H-reflex in supine and standing positions. Electromyogr Clin Neurophysiol [online]. 2000;40:89—94.PubMedGoogle Scholar
  154. 154.
    Palmierie R, Hoffman M, Ingersoll C. Intersession reliability for h-reflex measurements arising from the soleus, peroneal, and tibialis anterior musculature. Int J Neurosci [online]. Taylor & Francis; 2002;112:841–50.  https://doi.org/10.1080/00207450290025851 CrossRefGoogle Scholar
  155. 155.
    Carp JS, Tennissen AM, Xiang YC, Wolpaw JR. Diurnal H-reflex variation in mice. Exp. Brain Res. 2006; 168:517–28.  https://doi.org/10.1007/s00221-005-0106-y PubMedCrossRefGoogle Scholar
  156. 156.
    Stegeman D, Hermens H. Standards for surface electromyography: The European project Surface EMG for non-invasive assessment of muscles (SENIAM) [online]. 2007. Available at: http://www.seniam.org/ Google Scholar
  157. 157.
    Miljković N, Malešević N, Kojić V, Bijelić G, Keller T, Popović DB. Recording and assessment of evoked potentials with electrode arrays. Med Biol Eng Comput. 2015;53:857–67.  https://doi.org/10.1007/s11517-015-1292-9 PubMedCrossRefGoogle Scholar
  158. 158.
    Andersen RE, Ranieri A. A novel sciatic nerve stimulation technique for assessing phase modulation of the H-reflex in the hamstrings during human gait [online]. Aalborg University; 2015.Google Scholar
  159. 159.
    Botter A, Vieira TM. Optimization of surface electrodes location for H-reflex recordings in soleus muscle. J Electromyogr Kinesiol [online]. Elsevier Ltd; 2017;34:14–23.  https://doi.org/10.1016/j.jelekin.2017.03.003 CrossRefGoogle Scholar
  160. 160.
    Kojic V, Miljkovic N, Maleševic N, Popovic DB. H-reflex recorded by multi-pad EMG electrodes. 11th Symposium on Neural Network Applications in Electrical Engineering (NEUREL) 2012. Online. p. 119–22.  https://doi.org/10.1109/NEUREL.2012.6419981
  161. 161.
    Racinais S, Cresswell AG. Temperature affects maximum H-reflex amplitude but not homosynaptic postactivation depression. Physiol Rep. 2013;1:1–7.  https://doi.org/10.1002/phy2.19 CrossRefGoogle Scholar
  162. 162.
    Krause BA, Hopkins JT, Ingersoll CD, Cordova ML, Edwards JE. The Relationship of Ankle Temperature During Cooling and Rewarming to the Human Soleus H Reflex. Sport Rehabil. 2000;9:253–62.CrossRefGoogle Scholar
  163. 163.
    Dewhurst S, Riches PE, Nimmo MA, De Vito G. Temperature dependence of soleus H-reflex and M wave in young and older women. Eur J Appl Physiol. 2005;94:491–9.  https://doi.org/10.1007/s00421-005-1384-6 PubMedCrossRefGoogle Scholar
  164. 164.
    Walton C, Kalmar J, Cafarelli E. Caffeine increases spinal excitability in humans. Muscle and Nerve. 2003;28:359–64.  https://doi.org/10.1002/mus.10457 PubMedCrossRefGoogle Scholar
  165. 165.
    Mori N, Horino H, Matsugi A, Kamata N, Hiraoka K. Tonic suppression of the soleus H-reflex during rhythmic movement of the contralateral ankle. J Phys Ther Sci [online]. 2015;27:1287–90.  https://doi.org/10.1589/jpts.27.1287 PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Lagerquist O, Zehr EP, Baldwin ERL, Klakowicz PM, Collins DF. Diurnal changes in the amplitude of the Hoffmann reflex in the human soleus but not in the flexor carpi radialis muscle. Exp Brain Res. 2006;170:1–6.  https://doi.org/10.1007/s00221-005-0172-1 PubMedCrossRefGoogle Scholar
  167. 167.
    Hundza SR, Zehr EP. Suppression of soleus H-reflex amplitude is graded with frequency of rhythmic arm cycling. Exp Brain Res. 2009;193:297–306.  https://doi.org/10.1007/s00221-008-1625-0 PubMedCrossRefGoogle Scholar
  168. 168.
    Zehr EP, Klimstra M, Johnson EA, Carroll TJ. Rhythmic leg cycling modulates forearm muscle H-reflex amplitude and corticospinal tract excitability. Neurosci Lett. 2007;419:10–4.  https://doi.org/10.1016/j.neulet.2007.03.045 PubMedCrossRefGoogle Scholar
  169. 169.
    Baldissera F, Cavallari P, Leocani L. Cyclic modulation of the H-reflex in a wrist flexor during rhythmic flexion-extension movements of the ipsilateral foot. Exp Brain Res. 1998;118:427–30.  https://doi.org/10.1007/s002210050297 PubMedCrossRefGoogle Scholar
  170. 170.
    Frigon A, Carroll TJ, Jones KE, Zehr EP, Collins DF. Ankle position and voluntary contraction alter maximal M waves in soleus and tibialis anterior. Muscle and Nerve. 2007;35:756–66.  https://doi.org/10.1002/mus.20747 PubMedCrossRefGoogle Scholar
  171. 171.
    Evatt ML, Wolf SL, Segal RL. Modification of human spinal stretch reflexes: Preliminary studies. Neurosci Lett. 1989;105:350–5.  https://doi.org/10.1016/0304-3940(89)90646-0 PubMedCrossRefGoogle Scholar
  172. 172.
    Wolpaw JR, Braitman DJ, Seegal RF. Adaptive plasticity in primate spinal stretch reflex: initial development. J Neurophysiol. 1983;50:1296–311.  https://doi.org/10.1152/jn.1983.50.6.1296 PubMedCrossRefGoogle Scholar
  173. 173.
    Carp JS. H-Reflex Operant conditioning in mice. J Neurophysiol [online]. 2006;96:1718–27.  https://doi.org/10.1152/jn.00470.2006
  174. 174.
    Chen XY, Wolpaw JR. Operant conditioning of H-reflex in freely moving rats. J Neurophysiol. 1995;73:411–5.Google Scholar
  175. 175.
    Wolpaw JR. The cerebellum in maintenance of a motor skill: A hierarchy of brain and spinal cord plasticity underlies H-reflex conditioning. Learn Mem [online]. 2006;13:208–15.  https://doi.org/10.1101/lm.92706 PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Chen XY, Wolpaw JR. Ablation of cerebellar nuclei prevents H-reflex down-conditioning in rats. Learn Mem [online]. 2005;12:248–54.  https://doi.org/10.1101/lm.91305 PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Wolpaw JR. What can the spinal cord teach us about learning and memory? Neuroscientist. 2010;16:532–49.  https://doi.org/10.1177/1073858410368314 PubMedCrossRefGoogle Scholar
  178. 178.
    Norton JJ, Wolpaw JR. Acquisition, maintenance, and therapeutic use of a simple motor skill. Curr Opin Behav Sci [online]. Elsevier; 2018;20:138–44.  https://doi.org/10.1016/j.cobeha.2017.12.021
  179. 179.
    Chen Y. The interaction of a new motor skill and an old one: H-reflex conditioning and locomotion in rats. J Neurosci [online]. 2005;25:6898–906.  https://doi.org/10.1523/JNEUROSCI.1684-05.2005
  180. 180.
    Chen Y, Chen L, Wang Y, Wolpaw JR, Chen XY. Operant conditioning of rat soleus H-reflex oppositely affects another H-reflex and changes locomotor kinematics. J Neurosci [online]. 2011;31:11370–5.  https://doi.org/10.1523/JNEUROSCI.1526-11.2011
  181. 181.
    Makihara Y, Segal RL, Wolpaw JR, Thompson AK. Operant conditioning of the soleus H-reflex does not induce long-term changes in the gastrocnemius H-reflexes and does not disturb normal locomotion in humans. J Neurophysiol [online]. 2014;112:1439–46.  https://doi.org/10.1152/jn.00225.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Wolpaw JR. The negotiated equilibrium model of spinal cord function. J Physiol. 2018;in press.Google Scholar
  183. 183.
    Chen Y, Chen L, Wang Y, Wolpaw JR, Chen XY. Persistent beneficial impact of H-reflex conditioning in spinal cord-injured rats. J Neurophysiol [online]. 2014;112:2374–81. doi: https://doi.org/10.1152/jn.00422.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Thompson AK, Gill CR, Cote RH, Wolpaw JR. A strategy to enhance the plasticity in the targeted pathway: Operant down-conditioning of the soleus H-reflex during walking in people with chronic incomplete spinal cord injury. Program No. 780.14. Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience 2017. Online.Google Scholar
  185. 185.
    Gill CR, Segal RL, Feng WW, Thompson AK. Operant down-conditioning of the soleus H-reflex in people after stroke. Program No. 780.15. Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience 2017. Online.Google Scholar
  186. 186.
    McCane LM, Heckman SM, Sullivan B, et al. Operant conditioning the soleus H-reflex in a person with traumatic brain injury improves mobility. Program No. 780.06. Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience 2017. Online.Google Scholar
  187. 187.
    Chen L, Chen Y, Yang X, Wang Y, Wolpaw JR, Chen XY. Impact of soleus H-reflex conditioning on soleus H-reflex and locomotor function in rats with sciatic nerve transection and regeneration. Program No. 780.04. Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience 2017. Online.Google Scholar
  188. 188.
    English AW, Chen Y, Carp JS, Wolpaw JR, Chen Y, Chen XY. Recovery of electromyographic activity after transection and surgical repair of the rat sciatic nerve recovery of electromyographic activity after transection and surgical repair of the rat Sciatic Nerve. J Neurophysiol. 2007;1127–34.  https://doi.org/10.1152/jn.01035.2006
  189. 189.
    Chen Y, Chen L, Yang X, Wang Y, Wolpaw JR, Chen XY. Effects of combining H-reflex conditioning and locomotor training on locomotor recovery in rats with lateral column transection: Initial study. Program No. 780.09. Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience 2017. Online.Google Scholar
  190. 190.
    Hani S, de Marcellis-warin N. Open innovation and involvement of end-users in the medical device technologies’ design & development process: End-users’ perspectives. Technol Invest [online]. 2016;7:73–85.  https://doi.org/10.4236/ti.2016.73010
  191. 191.
    Martin JL, Clark DJ, Morgan SP, Crowe JA, Murphy E. A user-centred approach to requirements elicitation in medical device development: A case study from an industry perspective. Appl Ergon [online]. Elsevier Ltd; 2012;43:184–90.  https://doi.org/10.1016/j.apergo.2011.05.002
  192. 192.
    Money AG, Barnett J, Kuljis J, Craven MP, Martin JL, Young T. The role of the user within the medical device design and development process: Medical device manufacturers’ perspectives. BMC Med Inform Decis Mak [online]. BioMed Central Ltd; 2011;11:15.  https://doi.org/10.1186/1472-6947-11-15
  193. 193.
    WebPT. The State of Rehab Therapy in 2017 [online]. 2017. Available at: https://www.webpt.com/resources/webinars/the-state-of-rehab-therapy-in-2017
  194. 194.
    Harris W and Co. Physical Therapy Market Overview [online]. 2014. Available at: https://www.harriswilliams.com/system/files/industry_update/2014.2.17_physical_therapy_overview.pdf
  195. 195.
    Diage T. Planning for Successful Medical Device Reimbursement: [online]. 2013. Available at: https://www.namsa.com/expertise/library/planning-for-successful-medical-device-reimbursement-so-your-device-is-cleared-now-what/
  196. 196.
    Tarricone R, Boscolo PR, Armeni P. What type of clinical evidence is needed to assess medical devices? Eur Respir Rev [online]. 2016;25:259–65.  https://doi.org/10.1183/16000617.0016-2016 PubMedCrossRefGoogle Scholar
  197. 197.
    Sherman RE, Anderson SA, Dal Pan GJ, et al. Real-world evidence—What is it and what can it tell us? N Engl J Med [online]. 2016;375:2293–7.  https://doi.org/10.1056/NEJMsb1609216
  198. 198.
    Cigna. Medical Coverage Policy (0160): Electrical Stimulation Therapy and Devices [online]. 2014. Available at: https://cignaforhcp.cigna.com/
  199. 199.
    Capital Blue. Neuromuscular and functional neuromuscular electrical stimulation [online]. 2017. Available at: https://www.capbluecross.com/

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2018

Authors and Affiliations

  1. 1.National Center for Adaptive Neurotechnologies, Wadsworth CenterNew York State Department of HealthAlbanyUSA
  2. 2.School of Health and Rehabilitation ServicesUniversity of PittsburghPittsburghUSA
  3. 3.Department of NeurologyStratton VA Medical CenterAlbanyUSA

Personalised recommendations