Skip to main content
Log in

Suppression of soleus H-reflex amplitude is graded with frequency of rhythmic arm cycling

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In humans, rhythmic arm cycling has been shown to significantly suppress the soleus H-reflex amplitude in stationary legs. The specific nature of the relationship between frequency of arm cycling and H-reflex modulation in the legs has not been explored. We speculated that the effect of arm cycling on reflexes in leg muscles is related to the neural control of arm movement; therefore, we hypothesized that a graded increase in arm cycling frequency would produce a graded suppression of the soleus H-reflex amplitude. We also hypothesized that a threshold frequency of arm cycling would be identified at which the H-reflex amplitude significantly differed from static control trials (i.e., the arms were stationary). Soleus H-reflexes were evoked in stationary legs with tibial nerve stimulation during both control and rhythmic arm cycling (0.03–2.0 Hz) trials. The results show a significant inverse linear relation between arm cycling frequency and soleus H-reflex amplitude (P < 0.05). Soleus H-reflex amplitude significantly differed from control at an average threshold cycling frequency of 0.8 Hz. The results demonstrate that increased frequency of upper limb movement increases the intensity of interlimb influences on the neural activity in stationary legs. Further, a minimum threshold frequency of arm cycling is required to produce a significant effect. This suggests that achieving a threshold frequency of rhythmic arm movement may be important to incorporate in rehabilitation strategies to engage the appropriate interlimb neural pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akay T, McVea DA, Tachibana A, Pearson KG (2006) Coordination of fore and hind leg stepping in cats on a transversely-split treadmill. Exp Brain Res 175(2):211–222

    Article  PubMed  CAS  Google Scholar 

  • Baldissera F, Cavallari L, Leocani L (1998) Cyclic modulation of the H-reflex in a wrist flexor during rhythmic flexion–extension movements of the ipsilateral foot. Exp Brain Res 118:427–430

    Article  PubMed  CAS  Google Scholar 

  • Ballion B, Morin D, Viala D (2001) Forelimb locomotor generators and quadrupedal locomotion in the neonatal rat. Eur J Neurosci 14:1727–1738

    Article  PubMed  CAS  Google Scholar 

  • Balter JE, Zehr EP (2007) Neural coupling between the arms and legs during locomotion: evidence from cutaneous reflex modulation in a leg muscle. J Neurophysiol 97(2):1809–1818

    Article  PubMed  Google Scholar 

  • Brooke JD, Cheng J, Collins DF, McIlroy WE, Misiaszek JE, Staines WR (1997) Sensori-sensory afferent conditioning with leg movement: gain control in spinal reflex and ascending paths. Prog Neurobiol 51:393–421

    Article  PubMed  CAS  Google Scholar 

  • Burke D, Adams RW, Skuse NF (1989) The effects of voluntary contraction on the H reflex of human limb muscles. Brain 112:417–433

    Article  PubMed  Google Scholar 

  • Cabelguen JM, Bourcier-Lucas C, Dubuc R (2003) Bimodal locomotion elicited by electrical stimulation of the midbrain in the salamander Notophthalmus viridescens. J Neurosci 23:2434–2439

    PubMed  CAS  Google Scholar 

  • Cerri G, Borroni P, Baldissera F (2003) Cyclic H-reflex modulation in resting forearm related to contractions of foot movers, not to foot movement. J Neurophysiol 90(1):81–88

    Article  PubMed  Google Scholar 

  • Crone C, Nielsen J (1994) Central control of disynaptic reciprocal inhibition in humans. Acta Physiol Scand 152:351–363

    Article  PubMed  CAS  Google Scholar 

  • Crone C, Hultborn H, Jespersen B, Nielsen J (1987) Reciprocal Ia inhibition between ankle flexors and extensors in man. J Physiol (Lond) 389:163–185

    CAS  Google Scholar 

  • Dietz V (2002) Do human bipeds use quadrupedal coordination? Trends Neurosci 25:462–467

    Article  PubMed  Google Scholar 

  • Dietz V (2003) Spinal cord pattern generators for locomotion. Clin Neurophysiol 114:1379–1389

    Article  PubMed  CAS  Google Scholar 

  • Dietz V, Fouad K, Bastiaanse CM (2001) Neuronal coordination of arm and leg movements during human locomotion. Eur J Neurosci 14:1906–1914

    Article  PubMed  CAS  Google Scholar 

  • Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998) Evidence for a spinal central pattern generator in humans. Ann NY Acad Sci 860:360–376

    Article  PubMed  CAS  Google Scholar 

  • Ferris DP, Huang HJ, Kao PC (2006) Moving the arms to activate the legs. Exerc Sport Sci Rev 34(3):113–120

    Article  PubMed  Google Scholar 

  • Frigon A, Collins DF, Zehr EP (2004) Effect of rhythmic arm movement on reflexes in the legs: modulation of soleus H-reflexes and somatosensory conditioning. J Neurophysiol 91:1516–1523

    Article  PubMed  Google Scholar 

  • Funase K, Miles TS (1999) Observations on the variability of the H reflex in human soleus. Muscle Nerve 22:341–346

    Article  PubMed  CAS  Google Scholar 

  • Gosgnach S, Quevedo B, Fedirchuk B, McCrea DA (2000) Depression of group Ia monosynaptic EPSPs in cat hindlimb motoneurones during fictive locomotion. J Physiol 526:639–652

    PubMed  CAS  Google Scholar 

  • Grillon C, Zarifian E (1985) Hoffmann reflex variations produced by task demand characteristics. Physiol Behav 34:213–216

    Article  PubMed  CAS  Google Scholar 

  • Grillner S, Georgopoulos AP, Jordan LM (1997) In: Stein PSG, Grillner S, Selverstom A, Stuart DG (eds) Neurons, networks and motor behavior. MIT Press Cambridge, MA, pp 3–19

  • Guadagnoli MA, Etnyre B, Rodrigue ML (2000) A test of a dual central pattern generator hypothesis for subcortical control of locomotion. J Electromyogr Kinesiol 10:241–247

    Article  PubMed  CAS  Google Scholar 

  • Haridas C, Zehr EP (2003) Coordinated interlimb compensatory responses to electrical stimulation of cutaneous nerves in the hand and foot during walking. J Neurophysiol 90:2850–2861

    Article  PubMed  Google Scholar 

  • Honore J, Demaire C, Coquery JM (1983) Effects of spatially oriented attention on the facilitation of the H reflex by a cutaneous stimulus. Electroencephalogr Clin Neurophysiol 55:156–161

    Article  PubMed  CAS  Google Scholar 

  • Hultborn H, Meunier S, Pierrot-Deseilligny E, Shindo M (1987) Changes in presynaptic inhibition of Ia fibres at the onset of voluntary contraction in man. J Physiol (Lond) 389:757–772

    CAS  Google Scholar 

  • Hundza SR, Zehr EP (2006) Cutaneous reflexes during rhythmic arm cycling are insensitive to asymmetrical changes in crank length. Exp Brain Res 168(1–2):165–177

    Article  PubMed  Google Scholar 

  • Iles JF, Roberts RC (1986) Presynaptic inhibition of monosynaptic reflexes in the lower limbs of subjects with upper motoneuron disease. J Neurol Neurosurg Psychiatry 49:937–944

    Article  PubMed  CAS  Google Scholar 

  • Jahn K, Deutschländer A, Stephan T, Kalla R, Wiesmann M, Strupp M, Brandt T (2008) Imaging human supraspinal locomotor centers in brainstem and cerebellum. Neuroimage 39(2):786–792

    Article  PubMed  Google Scholar 

  • Javan B, Zehr EP (2008) Short-term plasticity of spinal reflex excitability induced by rhythmic arm movement. J Neurophysiol 99(4):2000–2005

    Article  PubMed  Google Scholar 

  • Juvin L, Simmers J, Morin D (2005) Propriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion. J Neurosci 25:6025–6035

    Article  PubMed  CAS  Google Scholar 

  • Kao PC, Ferris DP (2005) The effect of movement frequency on interlimb coupling during recumbent stepping. Motor Control 9:144–163

    PubMed  Google Scholar 

  • Levin MF, Hui-Chan C (1993) Are H and stretch reflexes in hemiparesis reproducible and correlated with spasticity? J Neurol 240:63–71

    Article  PubMed  CAS  Google Scholar 

  • Llewellyn M, Yang JF, Prochazka A (1990) Human H-reflexes are smaller in difficult beam walking than in normal treadmill walking. Exp Brain Res 83:22–28

    Article  PubMed  CAS  Google Scholar 

  • Loadman PM, Zehr EP (2007) Rhythmic arm cycling produces a non-specific signal that suppresses Soleus H-reflex amplitude in stationary legs. Exp Brain Res 179:199–208

    Article  PubMed  Google Scholar 

  • Mazzocchio R, Kitago T, Liuzzi G, Wolpaw JR, Cohen LG (2006) Plastic changes in the human H-reflex pathway at rest following skillful cycling training. Clin Neurophysiol 117(8):1682–1691

    Article  PubMed  Google Scholar 

  • Meunier S, Kwon J, Russmann H, Ravindran S, Mazzocchio R, Cohen L (2007) Spinal use-dependent plasticity of synaptic transmission in humans after a single cycling session. J Physiol 579(2):375–388

    Article  PubMed  CAS  Google Scholar 

  • Morita H, Petersen N, Christensen LO, Sinkjaer T, Nielsen J (1998) Sensitivity of H-reflexes and stretch reflexes to presynaptic inhibition in humans. J Neurophysiol 80:610–620

    PubMed  CAS  Google Scholar 

  • Nathan PW, Smith M, Deacon P (1996) Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man. Brain 119:1809–1833

    Article  PubMed  Google Scholar 

  • Perez MA, Lungholt BK, Nielsen JB (2005) Presynaptic control of group Ia afferents in relation to acquisition of a visuo-motor skill in healthy humans. J Physiol 568:343–354

    Article  PubMed  CAS  Google Scholar 

  • Petersen N, Morita H, Nielsen J (1998) Evaluation of reciprocal inhibition of the soleus H-reflex during tonic plantar flexion in man. J Neurosci Methods 84:1–8

    Article  PubMed  CAS  Google Scholar 

  • Pierrot-Deseilligny E, Burke D (2005) The circuitry of the human spinal cord: its role in motor control and movement disorders. Cambridge University Press, Cambridge

    Google Scholar 

  • Pierrot-Deseilligny E, Mazevet D (2000) The monosynaptic reflex: a tool to investigate motor control in humans. Interest and limits. Neurophysiol Clin 30:67–80

    Article  PubMed  CAS  Google Scholar 

  • Rudomin P, Schmidt RF (1999) Presynaptic inhibition in the vertebrate spinal cord revisited. Exp Brain Res 129:1–37

    Article  PubMed  CAS  Google Scholar 

  • Schneider C, Lavoie BA, Capaday C (2000) On the origin of the soleus H-reflex modulation pattern during human walking and its task-dependent differences. J Neurophysiol 83:2881–2890

    PubMed  CAS  Google Scholar 

  • Shik ML, Severin FV, Orlovskii GN (1966) Control of walking and running by means of electric stimulation of the midbrain. Biofizika 11:659–666

    PubMed  CAS  Google Scholar 

  • Stein RB (1995) Presynaptic inhibition in humans. Prog Neurobiol 47:533–544

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R (1974) Reciprocal Ia inhibition during voluntary movements in man. Exp Brain Res 21:529–540

    Article  PubMed  CAS  Google Scholar 

  • Whelan PJ (1996) Control of locomotion in the decerebrate cat. Prog Neurobiol 49(5):481–515

    Article  PubMed  CAS  Google Scholar 

  • Zaporozhets E, Cowley KC, Schmidt BJ (2006) Propriospinal neurons contribute to bulbospinal transmission of the locomotor command signal in the neonatal rat spinal cord. J Physiol 572:443–458

    Article  PubMed  CAS  Google Scholar 

  • Zehr EP (2002) Considerations for use of the Hoffmann reflex in exercise studies. Eur J Appl Physiol 86:455–468

    Article  PubMed  Google Scholar 

  • Zehr EP, Duysens J (2004) Regulation of arm and leg movement during human locomotion. Neuroscientist 10:347–361

    Article  PubMed  Google Scholar 

  • Zehr EP, Haridas C (2003) Modulation of cutaneous reflexes in arm muscles during walking: further evidence of similar control mechanisms for rhythmic human arm and leg movements. Exp Brain Res 149:260–266

    PubMed  Google Scholar 

  • Zehr EP, Hundza SR (2005) Forward and backward arm cycling are regulated by equivalent neural mechanisms. J Neurophysiol 98(3):1810–1814

    Article  Google Scholar 

  • Zehr EP, Carroll TJ, Chua R, Collins DF, Frigon A, Haridas C, Hundza SR, Kido A (2004) Possible contributions of spinal CPG activity to rhythmic human arm movement. Can J Physiol Pharmacol 82:556–568

    Article  PubMed  CAS  Google Scholar 

  • Zehr EP, Balter J, Ferris DP, Hundza SR, Loadman PM, Stolaff RH (2007a) Neural regulation of rhythmic arm and leg movement is conserved across human locomotor tasks. J Physiol 582(Pt1):209–227

    Article  PubMed  CAS  Google Scholar 

  • Zehr EP, Klimstra M, Dragert K, Barzi Y, Bowden MG, Javan B, Phadke C (2007b) Enhancement of arm and leg locomotor coupling with augmented cutaneous feedback from the hand. J Neurophysiol 98(3):1810–1814

    Article  PubMed  Google Scholar 

  • Zehr EP, Klimstra M, Johnson EA, Carroll TJ (2007c) Rhythmic leg cycling modulates forearm muscle H-reflex amplitude and corticospinal tract excitability. Neurosci Lett 419:10–14

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to S.R.H. from the Michael Smith Foundation for Health Research, Heart and Stroke Foundation of Canada, Canadian Institute for Health Research, Astra Zeneca, and Canadian Stroke Network. Work was also supported by grants to E.P.Z. from Natural Sciences and Engineering Research Council of Canada, Michael Smith Foundation for Health Research, and Heart and Stroke Foundation of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra R. Hundza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hundza, S.R., Zehr, E.P. Suppression of soleus H-reflex amplitude is graded with frequency of rhythmic arm cycling. Exp Brain Res 193, 297–306 (2009). https://doi.org/10.1007/s00221-008-1625-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1625-0

Keywords

Navigation