Skip to main content
Log in

Identification and characterization of the part of the bacterial community associated with field-grown tall fescue (Festuca arundinacea) cv. SFRO Don Tomás in Uruguay

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The aims of this study were to isolate, characterize and identify the native culturable putative endophytic bacterial community associated with tall fescue (Festuca arundinacea) cv. SFRO Don Tomás, cultivated in Uruguay, and to study the effects of inoculation on cv. SFRO Don Tomás and the commercial cv. Tacuabé. A total of 342 isolates were collected from surface-sterilized roots, stems and seeds of healthy cv. SFRO Don Tomás. The functional ability of the isolates to produce indole, to solubilize minerals (P, Fe, K) and to biologically fix molecular nitrogen (N2) was determined. Several infection traits, such as the ability to produce proteases, peroxidases, cellulases and hemicellulases, were identified in the isolates. Selected bacterial isolates were identified by 16S rRNA sequencing and shown to belong to a broad spectrum of genera, including Bacillus, Microbacterium, Curtobacterium, Streptomyces, Acidovorax, Variovorax, Acinetobacter, Pseudomonas, Pantoea, Rhanella and Xanthomonas. Plant growth promotion assays shown that ten isolates were able to promote the growth of cv. SFRO Don Tomás under gnotobiotic conditions, thereby highlighting the potential of these isolates in biotechnological applications as inoculant for this cultivar which is highly adapted to dry and cold seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmed E, Holmström SJM (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7:196–208. doi:10.1111/1751-7915.12117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Araújo WL, Maccheroni W Jr, Aguilar-Vildoso CI, Barroso PAV, Saridakis HO, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236. doi:10.1139/cjm-47-3-229

    Article  PubMed  Google Scholar 

  • Avakyan Z, Pivovarova T, Shinner F (1986) Properties of a new species, Bacillus mucilaginosus. Mikrobiologiya 55:477–482

    CAS  Google Scholar 

  • Baldani JI, Reis VM, Videira SS, Boddey LH, Baldani VLD (2014) The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil 384:413–431. doi:10.1007/s11104-014-2186-6

    Article  CAS  Google Scholar 

  • Bell CR, Dickie GA, Harvey WLG, Chan JWYF (1995) Endophytic bacteria in grapevine. Can J Microbiol 41:46–53. doi:10.1139/m95-006

    Article  CAS  Google Scholar 

  • Calvo J, Calvente V, de Orellano ME, Benuzzi D, de Tosetti MI (2007) Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Int J Food Microbiol 113:251–257

    Article  PubMed  Google Scholar 

  • Carambula M (2000) Producción y manejo de pasturas. Editorial Hemisferio Sur, Montevideo

  • Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MA, Teplow DB, Stevens D, Yaver D (2002) Munumbicins, wide-spectrum antibiotics produced by NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148:2675–2685

  • Cavalcante V, Dobereiner J (1988) A new acid-tolerant nitrogen fixing bacterium associated with sugarcane. Plant Soil 108:23–31

    Article  Google Scholar 

  • Chanway CP, Shishido M, Nairn J, Jungwirth S, Markham J, Xiao G, Holl F (2000) Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria. For Ecol Manag 133:81–88

    Article  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. doi:10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  • Coombs JT, Franco CM (2003) Visualization of an endophytic Streptomyces species in wheat seed. Appl Environ Microbiol 69:4260–4262. doi:10.1128/AEM.69.7.4260-4262.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Melo Pereira GV, Teixeira Magalhães K, Rainildes Lorenzetii E, Pereira Souza T, Freitas Schwan R (2012) A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microb Ecol 63:405–417

    Article  PubMed  Google Scholar 

  • Dodd IC, Jiang F, Teijeiro RG, Belimov AA, Hartung W (2009) The rhizosphere bacterium Variovorax paradoxus 5C-2 containing ACC deaminase does not increase systemic ABA signaling in maize (Zea mays L.). Plant Signal Behav 4:519–521. doi:10.1111/j.1469-8137.2008.02657.x.plant

  • García Préchac F, Ernst O, Siri G, Terra JA (2002) Integrating no-till into livestock pastures and crops rotations in Uruguay. In: 25th Annu Souther Conserv Tillage Conf Sustain Agric, pp 74–80

  • Germida JJ, Siciliano SD, Renato de Freitas J, Seib AM (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26:43–50. doi:10.1111/j.1574-6941.1998.tb01560.x

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Pande S, Sharma M, Humayun P, Kiran BK, Sandeep D, Vidya MS, Deepthi K, Rupela O (2011) Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot 30:1070–1078. doi:10.1016/j.cropro.2011.03.006

    Article  CAS  Google Scholar 

  • Graner G, Persson P, Meijer J, Alstrom S (2003) A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiol Lett 29:269–276

    Article  Google Scholar 

  • Hallmann J, Berg G (2006) Spectrum and population dynamics of bacterial root endophytes. In: Schulz B, Boyle C, Sieber T (eds) Microbe root endophytes. Springer, Berlin Heidelberg, pp 15–31

    Chapter  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper J (1997) Bacterial endophytes in agricultural crops. Can J Micorbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471. doi:10.1016/j.tim.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  • Hoveland CS (2010) Origin and history. In: Hannaway DB, West CP (eds) Tall fescue for the twenty-first century. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 3–10

  • Karlidag H, Esitken A, Turan M, Sahin F (2007) Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci Hortic (Amsterdam) 114:16–20. doi:10.1016/j.scienta.2007.04.013

    Article  CAS  Google Scholar 

  • Kim S-J, Lee C-M, Han B-R, Kim M-Y, Yeo Y-S, Yoon S-H, Koo B-S, Jun H-K (2008) Characterization of a gene encoding cellulase from uncultured soil bacteria. FEMS Microbiol Lett 282:44–51

    Article  CAS  PubMed  Google Scholar 

  • Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS ONE 3:e2702. doi:10.1371/journal.pone.0002702

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu M, Zhang Z-Z (2014) Phytoremediation of soil co-contaminated with heavy metals and deca-BDE by co-planting of Sedum alfredii with tall fescue associated with Bacillus cereus JP12. Plant Soil 382:89–102. doi:10.1007/s11104-014-2147-0

    Article  CAS  Google Scholar 

  • Lu M, Zhang Z-Z, Wu X-J, Xu Y-X, Su X-L, Zhang M, Wang J-X (2013) Biodegradation of decabromodiphenyl ether (BDE-209) by a metal resistant strain, Bacillus cereus JP12. Bioresour Technol 149:8–15. doi:10.1016/j.biortech.2013.09.040

    Article  CAS  PubMed  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mareque C, Taulé C, Beracochea M, Battistoni F (2015) Isolation, characterization and plant growth promotion effects of putative bacterial endophytes associated with sweet sorghum (Sorghum bicolor (L) Moench). Ann Microbiol 65:1057–1067. doi:10.1007/s13213-014-0951-7

  • Martinez-Rosales C, Castro-Sowinsky S (2011) Antartic bacterial isolates that produce cold-active extracellular proteases at low temperature but are active and stable at high temperature. Polar Res 30:1–8

    Article  Google Scholar 

  • McInroy JA, Kloepper J (1994) Novel bacterial taxa inhabiting internal tissues of sweet corn and cotton. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. CSIRO, Melbourne

    Google Scholar 

  • Mei C, Flinn BS (2010) The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Pat Biotechnol 4:81–95

    Article  CAS  PubMed  Google Scholar 

  • Mercado-Blanco J, Lugtenberg B (2014) Biotechnological applications of bacterial endophytes. Curr Biotechnol 3:60–75. doi:10.2174/22115501113026660038

    Article  CAS  Google Scholar 

  • Milne G (2010) Management in New Zealand, Australia and South America. In: Hannaway DB, West CP (eds) Tall fescue in the twenty-first century. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 101–117

  • Mirza BS, Rodrigues JLM (2012) Development of a direct isolation procedure for free living diazotrophs under controlled hypoxic conditions. Appl Environ Microbiol 78:5542–5549. doi:10.1128/AEM.00714-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Misko AL, Germida JJ (2002) Taxonomic and functional diversity of pseudomonads isolated from the roots of field-grown canola. FEMS Microbiol Ecol 42:399–407

    Article  CAS  PubMed  Google Scholar 

  • Monk J, Gerard E, Young S, Widdup K, Callaghan MO (2009) Isolation and identification of plant growth-promoting bacteria associated with tall fescue. Proc N Z Grassl Assoc 71:211–216

    Google Scholar 

  • Montañez A, Blanco AR, Barlocco C, Beracochea M, Sicardi M (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol 58:21–28. doi:10.1016/j.apsoil.2012.02.009

    Article  Google Scholar 

  • Nassar AH, El-tarabily KA, Sivasithamparam K (2003) Growth promotion of bean (Phaseolus vulgaris L .) by a polyamine-producing isolate of Streptomyces griseoluteus. Plant Growth Reg 40:97–106

  • Peeters E, Nelis HJ, Coenye T (2008) Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods 72:157–165

    Article  CAS  PubMed  Google Scholar 

  • Poly F, Ranjard L, Nazaret S, Gourbiére F, Monrozier LJ (2001) Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Appl Environ Microbiol 67:2255–2262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Procópio REL, Araújo WL, Maccheroni W Jr, Azevedo JL (2009) Characterization of an endophytic bacterial community associated with Eucalyptus spp. Genet Mol Res 8:1408–1422

    Article  PubMed  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Jorg P, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Puente M, Li C, Bashan Y (2009) Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ Exp Bot 66:402–408

    Article  CAS  Google Scholar 

  • Quecine MC, Araújo WL, Rossetto PB, Ferreira A, Tsui S, Lacava PT, Mondin M, Azevedo JL, Pizzirani-Kleiner AA (2012) Sugarcane growth promotion by the endophytic bacterium Pantoea agglomerans 33.1. Appl Environ Microbiol 78:7511–7518. doi:10.1128/AEM.00836-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11. doi:10.1016/S0261-2194(00)00056-9

    Article  CAS  Google Scholar 

  • Ran LX, Li ZN, Wu GJ, van Loon LC, Bakker PHM (2005) Induction of systemic resistance against bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. Eur J Plant Pathol 113:59–70. doi:10.1007/s10658-005-0623-3

    Article  CAS  Google Scholar 

  • Raupach GS, Kloepper JW (1998) Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164

    Article  CAS  PubMed  Google Scholar 

  • Reis VMM, Olivares FLL, Dobereiner J (1994) Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotechnol 10:401–405

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. doi:10.1007/s11104-009-9895-2

    Article  CAS  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9. doi:10.1111/j.1574-6968.2007.00918.x

    Article  CAS  PubMed  Google Scholar 

  • Sack U, Hofrichter M, Fritsche W (1997) Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardi. FEMS Microbiol Lett 152:227–234

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28:1503–1509. doi:10.1007/s11274-011-0952-7

    Article  CAS  PubMed  Google Scholar 

  • Sarwar M, Kremer RJ (1995) Determination of bacterially derived auxins using a microplate method. Lett Appl Microbiol 20:282–285

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C, Schulz BJE, Boyle CJC, Sieber TN (2006) What are endophytes? Soil Biol 9:1–13. doi:10.1007/3-540-33526-9

    Article  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for detection and determination of siderophores. Anal Biochem 160:47–56

  • Sergeeva E, Hirkala DLM, Nelson LM (2007) Production of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolates. Plant Soil 297:1–13. doi:10.1007/s11104-007-9314-5

    Article  CAS  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249. doi:10.1139/w03-118

    Article  CAS  PubMed  Google Scholar 

  • Shaharoona B, Jamro G, Zahir Z, Arshad M, Memon K (2007) Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L). J Microbiol Biotechnol 1300:1300–1307

    Google Scholar 

  • Shokri D, Emtiazi G (2010) Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by Taguchi design. Curr Microbiol 61:217–225. doi:10.1007/s00284-010-9600-y

    Article  CAS  PubMed  Google Scholar 

  • Sturz A, Kimpinski J (2004) Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant Soil 262:241–249

    Article  CAS  Google Scholar 

  • Sturz A, Christie B, Matheson B, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25:13–19

    Article  Google Scholar 

  • Surette MA, Sturz AV, Lada RR, Nowak J (2003) Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant Soil 253:381–390

    Article  CAS  Google Scholar 

  • Sylvester-Bradley R, Askawa N, Latorraca S, Magalhães F, Oliveira L, Pereira R (1982) Levantamento quantitativo de microrganismos solubilizadores de fosfatos na rizosfera de gramíneas e leguminosas forrageiras na Amazônia. Acta Amaz 12:15–22

    Google Scholar 

  • Taulé C, Mareque C, Barlocco C, Hackembruch F, Reis VM, Sicardi M, Battistoni F (2012) The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 356:35–49

    Article  Google Scholar 

  • Verma SC, Ladha JK, Tripathi K (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    Article  CAS  PubMed  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodule bacteria. Blackwell Scientific, Oxford

    Google Scholar 

  • Vyas P, Joshi R, Sharma KC, Rahi P, Gulati A, Gulati A (2010) Cold-adapted and rhizosphere-competent strain of Rahnella sp. with broad-spectrum plant growth-promotion potential. J Microbiol Biotechnol 20:1724–1734

    CAS  PubMed  Google Scholar 

  • Zhang H, Hanada S, Shigematsu T, Shibuya K, Kamagata Y, Kanagawa T, Kurane R (2000) Burkholderia kururiensis sp. nov., a trichloroethylene (TCE) -degrading bacterium isolated from an aquifer polluted with TCE. Int J Syst Evol Microbiol 50:743–749

    Article  CAS  PubMed  Google Scholar 

  • Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208. doi:10.1128/AEM.68.5.2198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Alianza para el desarrollo fund (Project ALI-1-2012-1-3269) of the Uruguayan National Agency for Innovation and Research (ANII), and the Uruguayan Program for the Development of the Basic Science (PEDECIBA). The authors are very grateful to the members of the Rural Promotion Society Ortiz (SFRO) Ing. Agr. Santiago Larghero and José Mesa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Battistoni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de los Santos, M.C., Taulé, C., Mareque, C. et al. Identification and characterization of the part of the bacterial community associated with field-grown tall fescue (Festuca arundinacea) cv. SFRO Don Tomás in Uruguay. Ann Microbiol 66, 329–342 (2016). https://doi.org/10.1007/s13213-015-1113-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1113-2

Keywords

Navigation