Skip to main content

Spectrum and Population Dynamics of Bacterial Root Endophytes

  • Chapter
Microbial Root Endophytes

Part of the book series: Soil Biology ((SOILBIOL,volume 9))

2.8 Conclusions

In conclusion, of the plants thus far studied, the spectrum and diversity of endophytic bacteria in the roots varies greatly. What about the endophytic bacterial spectrum of plants growing under extreme climatic conditions, such as halophytes and xerophytes? Survival mechanisms developed by those bacteria may have some interesting industrial or pharmaceutical applications. Newly developed cultivation-independent methods have made clear that there is much more diversity among endophytic bacteria than at first expected. The major factors influencing bacterial diversity and colonisation have been discussed and their potential to manage endophytic communities towards increased benefits for plants and human health have been outlined. However, the potential risks of endophytic bacteria, especially of those strains known also to be potential human pathogens, need further exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhikari TB, Joseph CM, Yang G, Phillips DA, Nelson LM (2001) Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can J Microbiol 47:916–924

    Article  PubMed  CAS  Google Scholar 

  • Araújo WL, Marcon J, Maccheroni W Jr, Van Elsas JD, Van Vuurde JW, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914

    Article  PubMed  CAS  Google Scholar 

  • Azacón-Aguilar C, Barea JM (1992) Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapmann & Hall, New York, pp 163–198

    Google Scholar 

  • Bacilio-Jiménez M, Aguilar-Flores S, del Valle MV, Pérez A, Zapeda A, Zenteno E (2001) Endophytic bacteria in rice seeds inhibit early colonization of roots by Azospirillum brasilense. Soil Biol Biochem 33:167–172

    Article  Google Scholar 

  • Bai Y, D’aoust F, Smith DL, Driscoll BT (2002) Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol 48:230–238

    Article  PubMed  CAS  Google Scholar 

  • Bell CR, Dickie GA, Harvey WLG, Chan JWYF (1995) Endophytic bacteria in grapevine. Can J Microbiol 41:46–53

    Article  CAS  Google Scholar 

  • Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2006) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ. Microbiol. 71:4203–4213

    Google Scholar 

  • Bird LS, Leverman C, Thaxaton R, Percy RG (1980) Evidence that microorganisms in and on tissues have a role in a mechanism of multi-adversity resistance in cotton. In: Brown JM (ed) Proceedings of Beltville Cotton Production Research Conferences. Nationals Cotton Council, Memphis, TN, pp 283–285

    Google Scholar 

  • Cavalcante VA, Döbereiner J (1988) Anewacid-tolerantnitrogen fixing bacterium associated with sugarcane. Plant Soil 108:23–31

    Article  Google Scholar 

  • Chen C, Bauske EM, Musson G, RodrÍguez-Kábana R, Kloepper JW (1995) Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biol Control 5:83–91

    Article  Google Scholar 

  • Cho JC, Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66:5448–5456

    Article  PubMed  CAS  Google Scholar 

  • Conn, VM, Franco CMM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing on 16S rRNA clones. Appl Envrion Microbiol 70:1787–1794

    Article  CAS  Google Scholar 

  • Conn KL, Nowak J, Lazorovita G (1997) A gnotobiotic bioassay for studying interactions between potatoes and plant growth-promoting rhizobacteria. Can J Microbiol 43:801–808

    Article  CAS  Google Scholar 

  • Coombs JT, Franco CMM (2003) Isolation and identification of actinobacteria from surfacesterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    Article  PubMed  CAS  Google Scholar 

  • Dimock MB, Beach RM, Carlson PS (1988) Endophytic bacteria for delivery of crop protection agents. In: Roberts DW, Granados RR (eds) Biotechnology, biological pesticides and novel plant-pest resistance for pest management. Boyce Thompson Institute for Plant Research, Ithaca, NY, pp 88–92

    Google Scholar 

  • Dong Y, Iniguez AL, Ahmer BM, Triplett EW (2003) Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula. Appl Environ Microbiol 69:1783–1790

    Article  PubMed  CAS  Google Scholar 

  • Eberl L (1999) N-acyl homoserinelactone-mediated gene regulation in Gram-negative bacteria. Syst Appl Microbiol 22:493–506

    PubMed  CAS  Google Scholar 

  • Frommel MI, Nowak J, Lazarovits G (1991) Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum ssp. tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol 96:928–936

    Article  PubMed  CAS  Google Scholar 

  • Fuentes-Ramírez LE, Caballero-Melado J, Sepúlveda J, Martínez-Romero E (1999) Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Ecol 29:117–128

    Google Scholar 

  • Gagné S, Richard C, Rousseau H, Antoun H (1987) Xylem-residing bacteria in alfalfa roots. Can J Microbiol 33:996–1000

    Article  Google Scholar 

  • Gandhi MS, Golding S, Yaron S, Matthews KR (2001) Use of green fluorescent protein expressing Salmonella Stanley to investigate survival, spatial location, and control on alfalfa sprouts. J Food Prot 64:1891–1898

    PubMed  CAS  Google Scholar 

  • Gardner JM, Feldman AW, Zablotowicz RM (1982) Identity and behavior of xylem-residing bacteria in rough lemon roots of Florida citrus trees. Appl Environ Microbiol 43:1335–1342

    PubMed  CAS  Google Scholar 

  • Germida JJ, Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fertil Soils 33:410–415

    Article  Google Scholar 

  • Germida JJ, Siciliano SD, Freitas JR de, Seib AM (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Tricicum aestivum L.). FEMS Microbiol Ecol 26:43–50

    Article  CAS  Google Scholar 

  • Graner G, Persson P, Meijer J, Alstrom S (2003) A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiol Lett 29:269–276

    Article  CAS  Google Scholar 

  • Grimault V, Prior P (1994) Invasiveness of Pseudomonas solanacearum in tomato, eggplant, and pepper: a comparative study. Eur J Plant Pathol 100:259–267

    Article  Google Scholar 

  • Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645

    Article  PubMed  CAS  Google Scholar 

  • Hallmann J (2001) Plant interactions with endophytic bacteria. In: Jeger MJ, Spence NJ (eds) Biotic interactions in plant-pathogen associations. CABI, Wallingford, UK, pp 87–119

    Chapter  Google Scholar 

  • Hallmann J (2003) Biologische Bekämpfung pflanzenparasitärer Nematoden mit antagonistischen Bakterien, vol 392. Mitt Biol Bundesanst Land Forstwirtsch, Berlin

    Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997a) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hallmann J, Kloepper JW, Rodríguez-Kábana R (1997b) Application of the Scholander pressure bomb to studies on endophytic bacteria of plants. Can J Microbiol 43:411–416

    Article  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Rodríguez-Kábana R, Kloepper JW (1998) Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol Biochem 30:925–937

    Article  CAS  Google Scholar 

  • Hallmann J, Rodríguez-Kábana R, Kloepper JW (1999) Chitin-mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biol Biochem 31:551–560

    Article  CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B, van Montagu M, Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. Strain BH72 in grasses. J Bacteriol 176:1913–1923

    PubMed  CAS  Google Scholar 

  • Jacobs MJ, Bugbee WM, Gabrielson DA (1985) Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can J Bot 63:1362–1365

    Article  Google Scholar 

  • Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G (2002) Potato-associatedbacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48:772–786

    Article  PubMed  CAS  Google Scholar 

  • Lalande R, Bissonnette N, Coutlée D, Antoun H (1989) Identification of rhizobacteria from maize and determination of their plant-growth promoting potential. Plant Soil 115:7–11

    Article  Google Scholar 

  • LiPuma JJ (2003) Burkholderia cepacia complex as human pathogens. J Nematol 35:213–217

    Google Scholar 

  • Ludwig JA, Reynolds JF (1988) Statistical ecology. Wiley, New York

    Google Scholar 

  • Mahaffee WF, Kloepper JW (1997a) Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microb Ecol 34:210–223

    Article  PubMed  Google Scholar 

  • Mahaffee WF, Kloepper JW (1997b) Bacterial communities of the rhizosphere and endorhiza associated with field-grown cucumber plants inoculated with a plant growth-promoting rhizobacterium or its genetically modified derivative. Can J Microbiol 43:34–35

    Article  Google Scholar 

  • McInroy JA, Kloepper JW (1994) Studies on indigenous endophytic bacteria of sweetcorn and cotton. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms. VCH, Weinheim, pp 19–28

    Chapter  Google Scholar 

  • McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342

    Article  CAS  Google Scholar 

  • Minkwitz A, Berg G (2001) Comparison of antifungal activities and 16S ribosomal DNA sequences of clinical and environmental isolates of Stenotrophomonasmaltophilia. J Clin Microbiol 39:139–145

    Article  PubMed  CAS  Google Scholar 

  • Misaghi IJ, Donndelinger CR (1990) Endophytic bacteria in symptom-free cotton plants. Phytopathology 80:808–811

    Article  Google Scholar 

  • Misko AL, Germida JJ (2002) Taxonomic and functional diversity of pseudomonads isolated from the roots of field-grown canola. FEMS Microbiol Ecol 42:399–407

    Article  CAS  PubMed  Google Scholar 

  • Munif A (2001) Studies on the importance of endophytic bacteria for the biological control of the root-knot nematode Meloidogyne incognita on tomato. PhD thesis, University of Bonn, Germany

    Google Scholar 

  • Petratis PS, Latham RE, Niesenbaum RA (1989) The maintenance of species diversity by disturbance. Q Rev Biol 64:393–418

    Article  Google Scholar 

  • Philipson MN, Blair ID (1957) Bacteria in clover root tissue. Can J Microbiol 3:135–139

    Article  Google Scholar 

  • Preston GM, Bertrand N, Rainey PB (2001) Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol Microbiol 41:999–1014

    Article  PubMed  CAS  Google Scholar 

  • Reis Junior dos FB, Silva da LG, Reis VM, Dobereiner J (2000) Occurrence of diazotrophic bacteria in different sugar cane genotypes. Pesqui Agropecu Bras 35:985–994

    Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68:2261–2268

    Article  PubMed  CAS  Google Scholar 

  • Sardi P, Sarachhi M, Quaroni S, Petrolini B, Borgonovi GE, Merli S (1992) Isolation of endophytic Streptomyces strains from surface-sterilized roots. Appl Environ Microbiol 58:2691–2693

    PubMed  CAS  Google Scholar 

  • Sasser M (1990) Identification of bacteria through fatty acid analysis. In: Klement Z, Rudolph K, Sands D (eds) Methods in phytobacteriology. Akademiai Kiado, Budapest, pp 199–204

    Google Scholar 

  • Seghers D, Wittebolle L, Top EM, Verstraete W, Siciliano SD (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70:1475–1482

    Article  PubMed  CAS  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant growth-promoting abilities. Can J Microbiol 50:239–249

    Article  PubMed  CAS  Google Scholar 

  • Shishido M, Loeb BM, Chanway CP (1995) External and internal root colonization of lodgepole pine seedlings by two growth-promoting Bacillus strains originated from different root microsites. Can J Microbiol 41:707–713

    Article  CAS  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant dependent enrichment and seasonal shifts. Appl Envrion Microbiol 67:4742–4751

    Article  CAS  Google Scholar 

  • Sturz AV (1995) The role of endophytic bacteria during seed piece decay and potato tuberization. Plant Soil 175:257–263

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25:13–19

    Article  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Arsenault WJ, Buchanan NA (1999) Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathol 48:360–369

    Article  Google Scholar 

  • Suckstorff I, Berg G (2003) Evidence of dose-dependent effects on plant growth by Stenotrophomonas strains from different origins. J Appl Microbiol 95:656–663

    Article  PubMed  CAS  Google Scholar 

  • Surette MA, Sturz AV, Lada RR, Nowak J (2003) Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant Soil 253:381–390

    Article  CAS  Google Scholar 

  • Trevet IW, Hollis JP (1948) Bacteria in storage organs of healthy plants. Phytopathology 38:960–967

    Google Scholar 

  • Tsiantos J, Stevens WA (1986) The population dynamics of Corynebacterium michiganense pv. michiganensis and other selected bacteria in tomato leaves. Phytopathol Mediterr 25:160–162

    Google Scholar 

  • Van Beneden CA, Keene WE, Strang RA, Werker DH, King AS, Mahon B, Hedberg K, Bell A, Kelly MT, Balan VK, MacKenzie WR, Fleming D (1999) Multinational outbreak of Salmonella enterica serotype Newport infections due to contaminated alfalfa sprouts. JAMA 281:158–162

    Article  PubMed  Google Scholar 

  • Vandamme P, Mahenthiralingam E (2003) Strains from the Burkholderia cepacia complex: Relationship to opportunistic pathogens. J Nematol 35:208–211

    PubMed  Google Scholar 

  • Wolf A, Fritze A, Hagemann M, Berg G (2002) Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties. Int J Evol Syst Microbiol 52:1937–1944

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hallmann, J., Berg, G. (2006). Spectrum and Population Dynamics of Bacterial Root Endophytes. In: Schulz, B.J.E., Boyle, C.J.C., Sieber, T.N. (eds) Microbial Root Endophytes. Soil Biology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33526-9_2

Download citation

Publish with us

Policies and ethics