Skip to main content

PGPR Characterization of Non-Nodulating Bacterial Endophytes from Root Nodules of Vigna unguiculata (L.) Walp.

  • Chapter
  • First Online:
Microbial Probiotics for Agricultural Systems

Abstract

Seventeen morphological groups of Non-Nodulating Endophytic Bacteria (NNEB) were isolated from the interior of healthy cowpea root nodules (Vigna unguiculata L. Walp.) growing in seven soils from three regions of Peru. The amplification and partial sequencing of the 16S rRNA ribosomal gene for representatives of each morphological group showed that they were closely related to members of genera Rhizobium, Agrobacterium, Phyllobacterium, Mesorhizobium, Bosea, Ochrobactrum, Bradyrhizobium, Labrys, Ensifer, Starkeya and Nordella (Proteobacteria), and of Mycobacterium (Actinobacteria). The plant growth promotion capacity of representative NNEB strains was examined. Agrobacterium radiobacter 5620I and 5722H isolates showed high IAA production (> 400 μg ml−1). Ochrobactrum haematophilum 5410F and Starkeya novella 5740O were the best isolates solubilizing tricalcium phosphate (> 300%). Agrobacterium radiobacter 5722H was the best isolate for production of siderophores (272.59%), whereas A. radiobacter 5620I showed the greatest antagonistic activity against Fusarium oxysporum (88.52%). The NNEB strains identified in this study showed that cowpea root nodules are a potential source of Plant Growth Promoting Bacteria (PGPB) which may be used for the development of new inoculants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beghalem, H., Aliliche, K., Chriki, A., et al. (2017). Molecular and phenotypic characterization of endophytic bacteria isolated from Sulla nodules. Microbial Pathogenesis, 111, 225–231.

    Article  CAS  Google Scholar 

  • Boukhatem, Z. F., Merabet, C., Bekki, A., et al. (2016). Nodular bacterial endophyte diversity associated with native Acacia spp. in desert region of Algeria. African Journal of Microbiology Research, 10, 634–645.

    Article  CAS  Google Scholar 

  • Carvalho, M., Muñoz-Amatriaín, M., Castro, I., et al. (2017). Genetic diversity and structure of Iberian Peninsula cowpeas compared to world-wide cowpea accessions using high density SNP markers. BMC Genomics, 18, 891.

    Article  Google Scholar 

  • Castellano-Hinojosa, A., & Bedmar, E. J. (2017). Methods for evaluating plant growth-promoting rhizobacteria traits. In H. B. Singh, B. K. Sarma, & C. Keswani (Eds.), Advances in PGPR research (pp. 255–274). Oxford: CABI international.

    Chapter  Google Scholar 

  • Chou, Y. J., Elliott, G. N., James, E. K., et al. (2007). Labrys neptuniae sp. nov., isolated from root nodules of the aquatic legume Neptunia oleracea. International Journal of Systematic and Evolutionary Microbiology, 57, 577–581.

    Article  CAS  Google Scholar 

  • Da Costa, E. M., Nóbrega, R. S. A., de Carvalho, F., et al. (2013). Promoção do crescimento vegetal e diversidade genética de bactérias isoladas de nódulos de feijão-caupi. Pesquisa Agropecuária Brasileira, 48, 1275–1284.

    Article  Google Scholar 

  • Da Costa, E. M. D., Carvalho, F. D., Nóbrega, R. S. A., et al. (2016). Bacterial strains from floodplain soils perform different plant-growth promoting processes and enhance cowpea growth. Scientia Agricola, 73, 301–310.

    Article  Google Scholar 

  • De Meyer, S. E., & Willems, A. (2012). Multilocus sequence analysis of Bosea species and description of Bosea lupini sp. nov., Bosea lathyri sp. nov. and Bosea robiniae sp. nov., isolated from legumes. International Journal of Systematic and Evolutionary Microbiology, 62, 2505–2510.

    Article  Google Scholar 

  • De Meyer, S. E., de Beuf, K., Vekeman, B., et al. (2015). A large diversity of non-rhizobial endophytes found in legume root nodules in Flanders (Belgium). Soil Biology and Biochemistry, 83, 1–11.

    Article  Google Scholar 

  • Egamberdieva, D., Wirth, S. J., Shurigin, V. V., et al. (2017). Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Frontiers in Microbiology, 8, 1887.

    Article  Google Scholar 

  • FAOSTAT. (2017). Agricultural database. Available in: http://faostat.fao.org/site/567/default.aspx#ancor

  • Flores-Félix, J. D., Carro, L., Velázquez, E., et al. (2013). Phyllobacterium endophyticum sp. nov., isolated from nodules of Phaseolus vulgaris. International Journal of Systematic and Evolutionary Microbiology, 63, 821–826.

    Article  Google Scholar 

  • Imran, A., Hafeez, F. Y., Frühling, A., et al. (2010). Ochrobactrum ciceri sp. nov., isolated from nodules of Cicer arietinum. International Journal of Systematic and Evolutionary Microbiology, 60, 1548–1553.

    Article  CAS  Google Scholar 

  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.

    Article  CAS  Google Scholar 

  • Legume Phylogeny Working Group. (2013). Towards a new classification system for legumes: Progress report from the 6th international legume conference. South African Journal of Botany, 89, 3–9.

    Article  Google Scholar 

  • Leite, J., Seido, S. L., & Passos, S. R. (2009). Biodiversity of rhizobia associated with cowpea cultivars in soils of the lower half of the São Francisco River valley. Revista Brasileira de Ciência do Solo, 33, 1215–1226.

    Article  Google Scholar 

  • Leite, J., Fischer, D., & Rouws, L. F. (2017). Cowpea nodules harbor non-rhizobial bacterial communities that are shaped by soil type rather than plant genotype. Frontiers in Plant Science, 7, 2064.

    Article  Google Scholar 

  • Martínez-Hidalgo, P., & Hirsch, A. M. (2017). The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes, 1, 70–82.

    Article  Google Scholar 

  • Martins, J. C. R., Freitas, A. D. S. D., & Menezes, R. S. C. (2015). Nitrogen symbiotically fixed by cowpea and Gliricidia in traditional and agroforestry systems under semiarid conditions. Pesquisa Agropecuaria Brasileira, 50, 178–184.

    Article  Google Scholar 

  • Palaniappan, P., Chauhan, P. S., & Saravanan, V. S. (2010). Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp. Biology and Fertility of Soils, 46, 807–816.

    Article  Google Scholar 

  • Pandya, M., Naresh Kumar, G., & Rajkumar, S. (2013). Invasion of rhizobial infection thread by non-rhizobia for colonization of Vigna radiata root nodules. FEMS Microbiology Letters, 348, 58–65.

    Article  CAS  Google Scholar 

  • Pandya, M., Rajput, M., & Rajkumar, S. (2015). Exploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiata. Microbiology, 84, 80–89.

    Article  CAS  Google Scholar 

  • Peix, A., Ramírez-Bahena, M. H., & Velázquez, E. (2015). Bacterial associations with legumes. Critical Reviews in Plant Sciences, 34, 17–42.

    Article  Google Scholar 

  • Rajendran, G., Patel, M. H., & Joshi, S. J. (2012). Isolation and characterization of nodule-associated Exiguobacterium sp. from the root nodules of fenugreek (Trigonella foenum-graecum) and their possible role in plant growth promotion. International Journal of Microbiology, 2012, 1–7.

    Article  Google Scholar 

  • Regensburger, B., & Hennecke, H. (1983). RNA polymerase from Rhizobium japonicum. Archives of Microbiology, 135, 103–109.

    Article  CAS  Google Scholar 

  • Rigaud, J., & Puppo, A. (1975). Indole-3-acetic acid catabolism by soybean bacteroids. Journal of General Microbiology, 88, 223–228.

    Article  Google Scholar 

  • Saitou, N., & Nei, M. A. (1987). Neighbour-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 44, 406–425.

    Google Scholar 

  • Shamsheldin, A., Abdelkhalek, A., & Sadowsky, M. J. (2016). Recent changes to the classification of symbiotic, nitrogen-fixing, legume-associating bacteria: A review. Symbiosis, 71, 91–109.

    Article  Google Scholar 

  • Soares, B. L., Ferreira, P. A. A., & de Oliveira-Longatti, S. M. (2014). Cowpea symbiotic efficiency, pH and aluminum tolerance in nitrogen-fixing bacteria. Scientia Agricola (Piracicaba, Braz.), 71, 171–180.

    Article  CAS  Google Scholar 

  • Soil Survey Staff. (2009). Soil survey field and laboratory methods manual. Soil survey investigations Report No. 51, Version 1.0. In R. Burt (Ed.). U.S. Department of Agriculture, Natural Resources Conservation Service.

    Google Scholar 

  • Somasegaran, P., & Hoben, H. J. (1994). Handbook for rhizobia: Methods in legume-rhizobium technology. New York: Springer.

    Book  Google Scholar 

  • Tariq, M., Hameed, S., & Yasmeen, T. (2014). Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World Journal of Microbiology and Biotechnology, 30, 719–725.

    Article  CAS  Google Scholar 

  • Valdez, R. A., Soriano, B., Prado, G., et al. (2016). Symbiotic and agronomic characterization of bradyrhizobial strains nodulating cowpea in Northern Peru. In F. González-Andrés & E. James (Eds.), Biological nitrogen fixation and beneficial plant-microbe interaction (pp. 195–212). Cham: Springer.

    Chapter  Google Scholar 

  • Van Insberghe, D., Maas, K. R., Cárdenas, E., et al. (2015). Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils. Int Soc Microb Ecol, 1–7.

    Google Scholar 

  • Velázquez, E., Martínez-Hidalgo, P., Carro, L., et al. (2013). Nodular endophytes: An untapped diversity. In M. B. Rodelas-González & J. González-López (Eds.), Beneficial plant-microbe interactions: Ecology and applications (pp. 214–236). Boca Raton: CRC Press.

    Google Scholar 

  • Velázquez, E., Carro, L., Flores-Félix, J. D., et al. (2017). The legume nodule microbiome: A source of plant growth-promoting bacteria. In V. Kumar et al. (Eds.), Probiotics and plant health (pp. 41–70). Singapore: Springer.

    Chapter  Google Scholar 

  • Vincent, J. (1970). A manual for the practical study of the root nodule bacteria international biological programme handbook (Vol. 15). Oxford: Blackwell.

    Google Scholar 

  • Weisburg, W. G., Barns, S. M., Pelletier, D. A., et al. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.

    Article  CAS  Google Scholar 

  • Yoon, S. H., Ha, S. M., Kwon, S., et al. (2017). Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67, 1613–1617.

    Article  CAS  Google Scholar 

  • Zakhia, F., Jeder, H., Willem, A., et al. (2006). Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microbiology Ecology, 51, 375–393.

    Article  Google Scholar 

  • Zgadzaj, R., James, E. K., Kelly, S., et al. (2015). A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. PLoS Genetics, 1–21.

    Google Scholar 

  • Zhao, L., Xu, Y., & Lai, X. (2017). Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Brazilian Journal of Microbiology, 49, 269–278.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the ERDF-cofinanced grant PEAGR2012-1968 from Consejería de Economía, Innovación y Ciencia (Junta de Andalucía, Spain) and funds from the National University of San Martín-Tarapoto-Peru.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renzo A. Valdez-Nuñez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valdez-Nuñez, R.A., Castro-Tuanama, R., Castellano-Hinojosa, A., Bedmar, E.J., Ríos-Ruiz, W.F. (2019). PGPR Characterization of Non-Nodulating Bacterial Endophytes from Root Nodules of Vigna unguiculata (L.) Walp.. In: Zúñiga-Dávila, D., González-Andrés, F., Ormeño-Orrillo, E. (eds) Microbial Probiotics for Agricultural Systems. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-17597-9_7

Download citation

Publish with us

Policies and ethics