Skip to main content
Log in

Development of genome-specific SSR markers for the identification of introgressed segments of Sinapis alba in the Brassica juncea background

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Sinapis alba L. (white mustard) is recognized for carrying host resistance against several biotic stresses including, Alternaria brassicae, which is responsible for blight disease in cultivated Brassica. However, another cultivated Brassica has a dearth for genetic resistance for these stresses due to its narrow genetic base. Therefore, we performed introgression of the genomic regions of S. alba into backcross progenies of B. juncea + S. alba somatic hybrids. These advanced generations with S. alba chromosomal segments are named B. juncea-S. alba introgression lines (ILs). In the present study, we developed the S. alba genome-specific microsatellites from the draft genome to track the S. alba genome introgressions and responsible regions for resistance to A. brassicae. For developing these SSR markers, the unique contigs of S. alba draft genome were identified through BLASTN with B. juncea, B. rapa, B. nigra, and B. oleracea reference genome assemblies, including mitochondrial and chloroplast genomes, and further used for marker development. Out of 403,423 contigs, we have identified 65,343 non-hit contigs of S. alba that yielded a total of 1231 genome-specific microsatellites, out of which 1107 were expected to produce a single allele upon amplification. Out of the total SSRs, 234 primer pairs were randomly picked from whole-genome and validated between B. juncea and S. alba genomes for their specificity. In the validation experiment, these markers gave a single amplicon into S. alba, while they did not amplify in B. juncea genome. Of these, 59 microsatellites were used to track S. alba introgressions in 80 BC2F3 lines. To the best of our knowledge, this is the first time that these two genetic resources are developed in the form of B. juncea-S. alba ILs and S. alba-specific markers. Therefore, both the resources unlock a new avenue of Brassica breeding for biotic and abiotic stresses along with quality traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  • Atri C, Kumar B, Kumar H et al (2012) Development and characterization of Brassica juncea – fruticulosa introgression lines exhibiting resistance to mustard aphid (Lipaphis erysimi Kalt). BMC Genet 13:104. https://doi.org/10.1186/1471-2156-13-104

    Article  PubMed  PubMed Central  Google Scholar 

  • Bi YH, Wu YY, Zhou ZG (2014) Genetic diversity of wild population of Pyropia haitanensis based on SSR analysis. Biochem Syst Ecol 54:307–312

    Article  CAS  Google Scholar 

  • Bodnaryk RP, Lamb RJ (1991) Mechanisms of resistance to the flea beetle, Phyllotreta cruciferae (Goeze), in yellow mustard seedlings, Sinapis alba L. Can J Plant Sci 71:13–20

    Article  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Brown J, Brown AP, Davis JB, Erickson D (1997) Intergeneric hybridization between Sinapis alba and Brassica napus. Euphytica 93:163–168. https://doi.org/10.1023/A:1002905816887

    Article  Google Scholar 

  • Brown J, McCaffrey JP, Brown DA, Harmon DA, Harmon BL, Davis JB (2004) Yield reduction in Brassica napus, B. rapa, B. juncea, and Sinapis alba caused by flea beetle (Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae)) infestation in northern Idaho. J Econ Entomol 97:1642–1647

    Article  PubMed  Google Scholar 

  • Buschiazzo E, Gemmell NJ (2006) The rise, fall and renaissance of microsatellites in eukaryotic genomes. BioEssays 28:1040–1050

    Article  CAS  PubMed  Google Scholar 

  • Cai G, Yang Q, Yang Q et al (2012) Identification of candidate genes of QTLs for seed weight in Brassica napus through comparative mapping among Arabidopsis and Brassica species. BMC Genet 13:105. https://doi.org/10.1186/1471-2156-13-105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Liu L, Wang L, Wang S, Wang ML, Cheng X (2015) Development of SSR markers and assessment of genetic diversity of adzuki bean in the Chinese germplasm collection. Mol Breed 35:191

    Article  Google Scholar 

  • Cheng J, Zhao Z, Li B, Qin C et al (2016) A comprehensive characterization of simple sequence repeats in pepper genomes provides valuable resources for marker development in Capsicum. Sci Rep 6:18919. https://doi.org/10.1038/srep18919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary BR, Joshi P, Singh K (2000) Synthesis, morphology and cytogenetics of Raphanofortii (TTRR, 2n = 38): a new amphidiploid of hybrid Brassica tournefortii (TT, 2n = 20) x Raphanus caudatus (RR, 2n=18). Theor Appl Genet 101(5):990–999. https://doi.org/10.1007/s001220051572

    Article  Google Scholar 

  • Downey RK, Stringham GR, McGregor DI, Steffanson S (1975) Breeding rapeseed and mustard crops. In: Harapiak JT (ed) Oilseed and pulse crops in Western Canada. Western Cooperative Fertilize Ltd., Calgary, pp 157–183

    Google Scholar 

  • Durand J, Bodénès C, Chancerel E, et al (2010) A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genom 11:570. http://www.biomedcentral.com/1471-2164/11/570

  • Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Gaikwad K, Kirti PB, Prakash S, Chopra VL (1996) Cytological and molecular investigations on somatic hybrids of Sinapis alba and Brassica juncea and their backcross progeny. Plant Breed 115:480–483. https://doi.org/10.1111/j.1439-0523.1996.tb00961.x

    Article  CAS  Google Scholar 

  • Gur-Arie R, Cohen CJ, Eitan Y, Shelef L, Hallerman EM, Kashi Y (2000) Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism. Genome Res 10:62–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen LN, Earle ED (1997) Somatic hybrids between Brassica oleracea and Sinapis alba L. with resistance to Alternaria brassicae (Berk.) Sacc. Theor Appl Genet 94:1078–1085

    Article  Google Scholar 

  • Hashemi FSG, Rafii MY, Ismail MR, Mohamed MTM, Rahim HA, Latif MA et al (2015) Opportunities of marker-assisted selection for rice fragrance through marker-trait association analysis of microsatellites and gene-based markers. Plant Biol 17:953–961

    Article  Google Scholar 

  • He Y, Fu Y, Hu D, Wei D, Qian W (2018) QTL mapping of seed Glucosinolate content responsible for environment in Brassica napus. Front Plant Sci 9:891. https://doi.org/10.3389/fpls.2018.00891

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemingway J (1995) The mustard species: condiment and food ingredient use and potential as oilseed crops. In: Kimber D, McGregor DI (eds) Brassica oilseeds—production and utilization. CAB International, Wallingford, pp 373–383

    Google Scholar 

  • Hoff KJ, Stanke M (2019) Predicting genes in single genome with AUGUSTUS. Curr Protoc Bioinform 65:e57. https://doi.org/10.1002/cpbi.57

    Article  CAS  Google Scholar 

  • Innan H, Terauchi R, Miyashita NT (1997) Microsatellite polymorphism in natural populations of the wild plant Arabidopsis thaliana. Genetics 146:1441–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inomata N (2003) Production of intergeneric hybrids between Brassica juncea and Diplotaxis virgata through ovary culture, and the cytology and crossability of their progenies. Euphytica 133:57–64

    Article  CAS  Google Scholar 

  • Jiang G-L (2013) Molecular markers and marker-assisted breeding in plants, plant breeding from laboratories to fields, Sven Bode Andersen. Intech Open. https://doi.org/10.5772/52583

    Article  Google Scholar 

  • Kirti PB, Mohapatra T, Khanna H, Prakash S, Chopra VL (1995) Diplotaxis catholica+ Brassica juncea somatic hybrids: molecular and cytogenetic characterization. Plant Cell Rep 14:593–597

    Article  CAS  PubMed  Google Scholar 

  • Kresovich S, Szewc-McFadden AK, Bliek SM, McFerson JR (1995) Abundance and characterization of simple-sequence repeats (SSRs) isolated from a size-fractionated genomic library of Brassica napus L. (rapeseed). Theor Appl Genet 91:206–211

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Choi J-Y, Kumari N, Pareek A, Kim S-R (2015) Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica. Front Plant Sci 6:688. https://doi.org/10.3389/fpls.2015.00688

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari P, Bhat SR (2019) Allohexaploid H2 (IC0626000;INGR18031), an Indian mustard (Brassica juncea) germplasms with heat tolerance, resistant to Alternaria brassicae. Indian J Plant Genet Resource 32:439

    Google Scholar 

  • Kumari P, Singh KP (2019) Characterization of stable somatic hybrids of Sinapis alba and Brassica juncea for Alternaria blight, Sclerotinia sclerotiurum resistance and heat tolerance. Indian Res J Ext Edu 19(2&3):99–103

    Google Scholar 

  • Kumari P, Bisht DS, Bhat SR (2018) Stable, fertile somatic hybrids between Sinapis alba and Brassica juncea show resistance to Alternaria brassicae and heat stress. Plant Cell Tiss Organ Cult 133:77–86. https://doi.org/10.1007/s11240-017-1362-9

    Article  Google Scholar 

  • Kumari P, Singh KP, Bisht D, Kumar S (2020a) Somatic hybrids of Sinapis alba + Brassica juncea: study of backcross progenies for morphological variations, chromosome constitution and reaction to Alternaria brassicae. Euphytica 216:93. https://doi.org/10.1007/s10681-020-02629-3

    Article  CAS  Google Scholar 

  • Kumari P, Singh KP, Kumar S, Yadava DK (2020b) Development of a yellow-seeded stable allohexaploid brassica through inter-generic somatic hybridization with a high degree of fertility and resistance to Sclerotinia sclerotiorum. Front Plant Sci 11:575591. https://doi.org/10.3389/fpls.2020.575591

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari P, Singh KP, Rai PK (2020c) Draft genome of multiple resistance donor plant Sinapis alba: an insight into SSRs, annotations and phylogenetics. PLoS One 15(4):e0231002. https://doi.org/10.1371/journal.pone.0231002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagercrantz U, Ellegren H, Andersson L (1993) The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acid Res 21(5):1111–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagercrantz U, Putterill J, Coupland G, Lydiate D (1996) Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J 9:13–20. https://doi.org/10.1046/j.1365-313X.1996.09010013.x

    Article  CAS  PubMed  Google Scholar 

  • Lee RW, Malchev IT, Rajcan I, Kott LS (2014) Identification of putative quantitative trait loci associated with a flavonoid related to resistance to cabbage seedpod weevil (Ceutorhynchus obstrictus) in canola derived from an intergeneric cross, Sinapis alba x Brassica napus. Theor Appl Genet 127:419–428. https://doi.org/10.1007/s00122-013-2228-0

    Article  CAS  Google Scholar 

  • Lelivelt CLC, Leunissen EHM, Frederiks HJ, Helsper JPFG, Krens FA (1993) Transfer of resistance to the beet cyst nematode (Heterodera schachtii Schm.) from Sinapis alba L. (white mustard) to the Brassica napus L. gene pool by means of sexual and somatic hybridization. Theor Appl Genet 85:688–696

    Article  CAS  PubMed  Google Scholar 

  • Li AM, Wei CX, Jiang JJ, Zhang YT, Snowdon RJ (2009) Phenotypic variation in the progenies of somatic hybrids between Brassica napus and Sinapis alba. Euphytica 170:289–296

    Article  CAS  Google Scholar 

  • Li AM, Jiang J, Zhang Y, Snowdon RJ, Liang G (2012) Molecular and cytological characterization of introgression lines with yellow seed derived from somatic hybrids between Brassica napus and Sinapis alba. Mol Breed 29:209–219. https://doi.org/10.1007/s11032-010-9540-z

    Article  CAS  Google Scholar 

  • Li H, Younas M, Wang X, Li X, Chen L et al (2013) Development of a core set of single-locus SSR markers for allotetraploid rapeseed (Brassica napus L.). Theor Appl Genet 126:937–947. https://doi.org/10.1007/s00122-012-2027-z

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhang G, Li X, Wang L, Yuan J, Deng C, Gao W (2016) Genome-wide identification and validation of simple sequence repeats (SSRs) from Asparagus officinalis. Mol Cell Probes 30:153–160

    Article  CAS  PubMed  Google Scholar 

  • Liu JH, Dixelius C, Eriksson I, Glimelius K (1995) Brassica napus + B. tournefortii, a somatic hybrid containing traits of agronomic importance for rapeseed breeding. Plant Sci 109:75–86. https://doi.org/10.1016/0168-9452(95)04150-S

    Article  CAS  Google Scholar 

  • Lu Q, Hong Y, Li S, Liu H et al (2019) Genome-wide identification of microsatellite markers from cultivated peanut (Arachis hypogaea L.). BMC Genomics 20:799. https://doi.org/10.1186/s12864-019-6148-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525. https://doi.org/10.1101/gr.3531105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mario S, Burkhard M (2005) AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33(Web Server issue):W465–W467. https://doi.org/10.1093/nar/gki458

    Article  CAS  Google Scholar 

  • Masih P, Luhariya RK, Das R, Gupta A, Mohindra V, Singh RK et al (2014) Cross priming of microsatellite loci in subfamily cyprininae (family Cyprinidae): their utility in finding markers for population genetic analysis in three Indian major carps. Mol Biol Rep 41:5187–5197

    Article  CAS  PubMed  Google Scholar 

  • McCaffrey J, Harmon B, Brown J, Brown A, Davis J (1999) Assessment of Sinapis alba, Brassica napus and S. alba x B. napus hybrids for resistance to cabbage seedpod weevil, Ceutorhynchus assimilis (Coleoptera: Curculionidae). J Agric Sci 132(3):289–295. https://doi.org/10.1017/S0021859699006425

    Article  CAS  Google Scholar 

  • Mei J, Ding Y, Lu K, Wei D, Liu Y, Disi JO, Li J, Liu L, Liu S, McKay J, Qian W (2013) Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild species Brassica oleracea. Theor Appl Genet 126:549–556. https://doi.org/10.1007/s00122-2000-x

    Article  CAS  PubMed  Google Scholar 

  • Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182

    Article  CAS  PubMed  Google Scholar 

  • Musammilu KK, Abdul-Muneer PM, Gopalakrishnan A, Basheer VS, Gupta H, Mohindra V et al (2014) Identification and characterization of microsatellite markers for the population genetic structure in endemic red-tailed barb. Gonoproktopterus curmuca. Mol Biol Rep 41:3051–3062

    Article  CAS  PubMed  Google Scholar 

  • Neik TX, Barbetti MJ, Batley J (2017) Current status and challenges in identifying disease resistance genes in Brassica napus. Front Plant Sci 8:1788. https://doi.org/10.3389/fpls.2017.01788

    Article  PubMed  PubMed Central  Google Scholar 

  • Pallavi JK, Anupam S, Usha RI, Prabhu KV (2015) Identification, validation of a SSR marker and marker-assisted selection for the goatgrass derived seedling resistance gene Lr28 in wheat. J Plant Pathol Microb 6:277

    Google Scholar 

  • Pinto MV, Poornima HS, Sivaprasad V, Naik VG (2018) A new set of mulberry-specific SSR markers for application in cultivar identification and DUS testing. J Genet 97(1):31–37. https://doi.org/10.1007/s12041-018-0900-5

    Article  Google Scholar 

  • Plieske J, Struss D (2001) STS markers linked to Phoma resistance genes of the Brassica B-genome revealed sequence homology between Brassica nigra and Brassica napus. Theor Appl Genet 102:483–488

    Article  CAS  Google Scholar 

  • Pritchard JK, Wen W (2007) Documentation for Structure software, version 2.1. University of Chicago, Chicago

    Google Scholar 

  • Pritchard FM, Eagles HA, Norton RM, Salisbury PA, Nicolas M (2000) Environmental effects on seed composition of Victorian canola. Aust J Exp Agric 40:679–685

    Article  Google Scholar 

  • Prohens J, Gramazio P, Plazas M, Dempewolf H et al (2017) Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 213(2017):158. https://doi.org/10.1007/s10681-017-1938-9

    Article  Google Scholar 

  • Rajarammohan S, Kumar A, Gupta V, Pental D, Pradhan AK, Kaur S (2018) Genetic architecture of resistance to Alternaria brassicae in Arabidopsis thaliana: QTL mapping reveals two major resistance-conferring loci. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00260

    Article  Google Scholar 

  • Rana K, Atri C, Gupta M et al (2017) Mapping resistance responses to Sclerotinia infestation in introgression lines of Brassica juncea carrying genomic segments from wild Brassicaceae B. fruticulosa. Sci Rep 7:5904. https://doi.org/10.1038/s41598-017-05992-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana K, Atri C, Akhatar J, Kaur R, Goyal A, Singh MP et al (2019) Detection of first marker trait associations for resistance against Sclerotinia sclerotiorum in Brassica junceaErucastrum cardaminoides introgression lines. Front Plant Sci 10:1015. https://doi.org/10.3389/fpls.2019.01015

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Wu J, Zhao J, Hao L, Zhang L (2017) Identification of SSR markers closely linked to the yellow seed coat color gene in heading Chinese cabbage (Brassica rapa L. ssp. pekinensis). Biol Open 6(2):278–282. https://doi.org/10.1242/bio.021592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ripley VL, Arnison PG (1990) Hybridization of Sinapis alba L. and Brassica napus L. via embryo rescue. Plant Breed 104:26–33

    Article  Google Scholar 

  • Saal B, Brun H, Glais I, Struss D (2004) Identification of a Brassica juncea-derived recessive gene conferring resistance to Leptosphaeria maculans in oilseed rape. Plant Breed 123:505–511. https://doi.org/10.1111/j.1439-0523.2004.01052.x

    Article  CAS  Google Scholar 

  • Schelfhout CJ, Snowdon R, Cowling WA, Wroth JM (2007) Tracing B-genome chromatin in Brassica napus × B. juncea interspecific progeny. Genome. https://doi.org/10.1139/g06-103

    Article  Google Scholar 

  • Schlautman B, Fajardo D, Bougie T et al (2015) Development and validation of 697 novel polymorphic genomic and EST-SSR markers in the American cranberry (Vaccinium macrocarpon Ait.). Molecules 20:2001–2013. https://doi.org/10.3390/molecules20022001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma TR, Singh BM (1992) Transfer of resistance to Alternaria brassicae in Brassica juncea through interspecific hybridization among Brassica juncea. J Genet Breed 46:373–378

    Google Scholar 

  • Sharma BB, Kalia P, Yadava DK, Singh D, Sharma TR (2016) Genetics and molecular mapping of black rot resistance locus Xca1bc on chromosome B-7 in Ethiopian mustard (Brassica carinata A. Braun). PLoS ONE 11(3):e0152290

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi J, Huang S, Zhan J, Yu J, Wang X, Hua W, Liu S, Liu G, Wang H (2014) Genome-wide microsatellite characterization and marker development in the sequenced brassica crop species. DNA Res 21(1):53–68. https://doi.org/10.1093/dnares/dst040

    Article  CAS  PubMed  Google Scholar 

  • Singh KP, Kumari P, Rai PK (2021) Current status of the disease-resistant genes/QTLs, and strategies for improvement in Brassica juncea. Front Plant Sci 12:617405. https://doi.org/10.3389/fpls.2021.617405

    Article  PubMed  PubMed Central  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114. https://doi.org/10.1371/journal.pone.0152290

    Article  CAS  PubMed  Google Scholar 

  • Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M et al (2006) Simple Sequence Repeat—based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetc origin of clubroot resistance. Genetics 173(1):309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szewc-McFadden AK, Kresovich S, Bliek SM, Mitchel SE, McFerson JR (1996) Identification of polymorphic, conserved simple sequence repeats (SSRs) in cultivated Brassica species. Theor Appl Genet 93:534–538. https://doi.org/10.1007/BF00417944

    Article  CAS  PubMed  Google Scholar 

  • Uzunova MI, Ecke W (1999) Abundance, polymorphism and genetic mapping of microsatellites in oilseed rape (Brassica nupus L.). Plant Breeding 118:323–326

    Article  CAS  Google Scholar 

  • Vasupalli N, Rao M, Chamola R, Pant U, Bhattacharya RC, Bhat SR (2017) Development and validation of donor-specific STS markers for tracking alien introgressions into Brassica juncea (L.) Czern. Mol Breed 37:110

    Article  Google Scholar 

  • Wang YP, Zhao XX, Sonntag K, Wehling P, Snowdon RJ (2005a) Behaviour of Sinapis alba chromosomes in a Brassica napus background revealed by genomic in-situ hybridization. Chromosome Res 13:819–826

    Article  CAS  PubMed  Google Scholar 

  • Wang YP, Zhao XX, Sonntag K, Wehling P, Snowdon RJ (2005b) Behaviour of Sinapis alba chromosomes in a Brassica napus background revealed by genomic in-situ hybridization. Chromosome Res 13:819–826. https://doi.org/10.1007/s10577-005-1017-2

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Gao Y, Kong Y, Jiang J, Li A, Zhang Y, Wang Y (2014) Abortive process of a novel rapeseed cytoplasmic male sterility line derived from somatic hybrids between Brassica napus and Sinapis alba. J Integr Agric 13(4):741–748

    Article  Google Scholar 

  • Wang X, Yang S, Chen Y, Zhang S et al (2018) Comparative genome-wide characterization leading to simple sequence repeat marker development for Nicotiana. BMC Genom 19:500. https://doi.org/10.1186/s12864-018-4878-4

    Article  CAS  Google Scholar 

  • Zhou WJ, Zhang GQ, Tuvesson S, Dayteg C, Gertsson B (2006) Genetic survey of Chinese and Swedish oilseed rape (Brassica napus L.) by simple sequence repeats (SSRs). Genet Resour Crop Evol 53:443–447

    Article  CAS  Google Scholar 

  • Zielniok K, Szkoda K, Gajewska M, Wilczak J (2015) Effect of biologically active substances present in water extracts of white mustard and coriander on antioxidant status and lipid peroxidation of mouse C2C12 skeletal muscle cells. J Anim Physiol Anim Nutr. https://doi.org/10.1111/jpn.12412

    Article  Google Scholar 

Download references

Acknowledgements

Research was carried out with financial assistance received from the Science Engineering Research Board (SERB) and Department of Science and Technology (DST) New Delhi, India received by Dr. Preetesh Kumari with three consecutive grants under the Young Scientist Scheme (YSS/2015/001849) followed by Women Scientist Scheme (WOS-A) (File No. SR/WOS-A/LS-373/2018); KPS acknowledges fellowship support received from CSIR, under EMR-I grant (file no. 09/1247(0001)/2019-EMR-I). We are also acknowledged to the Director IARI, New Delhi for providing field facility and Dr. Rajkumar (Ex-head) IARI, regional station Katrain, (Kullu valley) for providing Field facilities for generation advancement and phenotyping.

Funding

1. Preetesh Kumari: (File No. YSS/2015/001849), Science and Engineering Research Board, Ministry of Science & Technology, New Delhi, India for funding the research work; (file no. SR/WOS-A/LS-373/2018), Department of Science and Technology, Ministry of Science and Technology, New Delhi, Govt. of India, India for fellowship; 2. Kaushal Pratap Singh, received Research Associateship (file no. 09/1247(0001)/2019-EMR-I) from HRDG-Council of Scientific and Industrial Research, New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

KPS: Developed species-specific SSRs primers, run the software and analyzed data, disease screening for Alternaria blight disease, draft, edited, and finalized manuscript; PK: Conception and design of work, recorded morphological data, harvesting, developed plant material, validated markers, genotyping, raised funds of the study, editing, and finalization of the manuscript; RKR: Did genotyping of all 80 ILs with few markers; PKR: Provided resources to develop markers used in the present study, edited and finalized manuscript. All authors read and approved the final manuscript for submission.

Corresponding author

Correspondence to Preetesh Kumari.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material. Fig. S1 and S2. Allelic configuration of 80 ILs with the marker Sa194342 and Sa25102, respectively.

Supplementary file1 (XLS 1068 KB)

Supplementary file2 (XLSX 720 KB)

Supplementary file3 (XLSX 44 KB)

Supplementary file4 (TXT 0 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K.P., Kumari, P., Raipuria, R.K. et al. Development of genome-specific SSR markers for the identification of introgressed segments of Sinapis alba in the Brassica juncea background. 3 Biotech 12, 332 (2022). https://doi.org/10.1007/s13205-022-03402-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-022-03402-0

Keywords

Navigation