Skip to main content

Advertisement

Log in

Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The need to boost agricultural production in the coming decades in a climate change scenario requires new approaches for the development of new crop varieties that are more resilient and more efficient in the use of resources. Crop wild relatives (CWRs) are a source of variation for many traits of interest in breeding, in particular tolerance to abiotic and biotic stresses. However, their potential in plant breeding has largely remained unexploited. CWRs can make an effective contribution to broadening the genetic base of crops and to introgressing traits of interest, but their direct use by breeders in breeding programs is usually not feasible due to the presence of undesirable traits in CWRs (linkage drag) and frequent breeding barriers with the crop. Here we call for a new approach, which we tentatively call ‘introgressiomics’, which consists of mass scale development of plant materials and populations with introgressions from CWRs into the genetic background of crops. Introgressiomics is a form of pre-emptive breeding and can be focused, when looking for specific phenotypes, or un-focused, when it is aimed at creating highly diverse introgressed populations. Exploring germplasm collections and identifying adequate species and accessions from different genepools encompassing a high diversity, using different strategies like the creation of germplasm diversity sets, Focused identification of germplasm strategy (FIGS) or gap analysis, is a first step in introgressiomics. Interspecific hybridization and backcrossing is often a major barrier for introgressiomics, but a number of techniques can be used to potentially overcome these and produce introgression populations. The generation of chromosome substitution lines (CSLs), introgression lines (ILs), or multi-parent advanced inter-cross (MAGIC) populations by means of marker-assisted selection allows not only the genetic analysis of traits present in CWRs, but also developing genetically characterized elite materials that can be easily incorporated in breeding programs. Genomic tools, in particular high-throughput molecular markers, facilitate the characterization and development of introgressiomics populations, while new plant breeding techniques (NPBTs) can enhance the introgression and use of genes from CWRs in the genetic background of crops. An efficient use of introgressiomics populations requires moving the materials into breeding pipelines. In this respect public–private partnerships (PPPs) can contribute to an increased use of introgressed materials by breeders. We hope that the introgressiomics approach will contribute to the development of a new generation of cultivars with dramatically improved yield and performance that may allow coping with the environmental changes caused by climate change while at the same time contributing to a more efficient and sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abberton M, Batley J, Bentley A, Bryant J, Cai H, Cockram J, Costa de Oliveira A, Cseke LJ, Dempewolf H, De Pace C, Edwards D, Gepts P, Greenland A, Hall A, Henry J, Hori K, Howe GT, Hughes S, Humphreys M, Lightfoot D, Marshall A, Mayes S, Nguyen HT, Ogbonnaya FC, Ortiz R, Paterson AH, Tuberosa R, Valliyodan B, Varshney RK, Yano M (2016) Global agricultural intensification during climate change: a role for genomics. Plant Biotechnol J 14:1095–1098. doi:10.1111/pbi.12467

    Article  PubMed  Google Scholar 

  • Aflitos S, Schiljen E, de Jong H, de Ridder D, Smit S, Finkers R, Wang J, Zhang G, Li N, Mao L, Bakker F, Dirks R, Breit T, Gravendeel B, Huits H, Struss D, Swanson-Wagner R, van Leeuwen H, van Ham RCHJ, Fito L, Guignier L, Sevilla M, Ellul P, Ganko E, Kapur A, Reclus M, de Geus B, van de Geest H, te Lintel Hekkert B, van Haarst J, Smits L, Koops A, Sanchez-Perez G, van Heusden AW, Visser R, Quan Z, Min J, Liao L, Wang X, Wang G, Yue Z, Yang X, Xu N, Schranz E, Smets E, Vos R, Rauwerda J, Ursem R, Schuit C, Kerns M, van den Berg J, Vriezen W, Janssen A, Datema E, Jahrman T, Moquet F, Bonnet J, Peters S (2014) Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J 80:136–148. doi:10.1111/tpj.12616

    Article  PubMed  Google Scholar 

  • Alexander LJ (1963) Transfer of a dominant type of resistance to the four known Ohio pathogenic strains of tobacco mosaic virus (TMV) from Lycopersicon peruvianum to L. esculentum. Phytopathology 53:869

    Google Scholar 

  • Alfares W, Bouguennec A, Balfourier F, Gay G, Bergès H, Vautrin S, Sourdille P, Bernard M, Feuillet C (2009) Fine mapping and marker development for the crossability gene SKr on chromosome 5BS of hexaploid wheat (Triticum aestivum L.). Genetics 183:469–481. doi:10.1534/genetics.109.107706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alseekh S, Ofner I, Pleban T, Tripodi P, Di Dato F, Cammareri M, Mohammad A, Grandillo S, Fernie AR, Zamir D (2013) Resolution by recombination: breaking up Solanum pennellii introgressions. Trends Plant Sci 18:536–538. doi:10.1016/j.tplants.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  • Bari A, Street K, Mackay M, Endresen DTF, De Pauw E, Amri A (2012) Focused Identification of Germplasm Strategy (FIGS) detects wheat stem rust resistance linked to environmental variables. Genet Resour Crop Evol 59:1465–1481. doi:10.1007/s10722-011-9775-5

    Article  Google Scholar 

  • Baute GJ, Dempewolf H, Rieseberg L (2015) Using genomic approaches to unlock the potential of CWR for crop adaptation to climate change. In: Redden R, Yadav S, Maxted N, Dulloo ME, Guarino L, Smith P (eds) Crop wild relatives and climate change. Wiley, Hoboken, pp 268–280. doi:10.1002/9781118854396.ch15

    Chapter  Google Scholar 

  • Bebber DP, Ramotowski MAT, Gurr SJ (2013) Crop pests and pathogens move polewards in a warming world. Nat Clim Change 3:985–988. doi:10.1038/nclimate1990

    Article  Google Scholar 

  • Bedő Z, Láng L (2015) Wheat breeding: current status and bottlenecks. In: Molnár-Láng M, Ceoloni C, Doležel J (eds) Alien introgression in wheat. Springer, Berlin Heidelberg, pp 77–101. doi:10.1007/978-3-319-23494-6_3

    Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39. doi:10.1186/1746-4811-9-39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bessey CE (1906) Crop improvement by utilizing wild species. J Hered os-2:112–118. doi:10.1093/jhered/os-2.1.112

    Article  Google Scholar 

  • Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotech J 14:1070–1085. doi:10.1111/pbi.12454

    Article  CAS  Google Scholar 

  • Campi M, Nuvolari A (2015) Intellectual property protection in plant varieties: a worldwide index (1961-2011). Res Policy 44:951–964. doi:10.1016/j.respol.2014.11.003

    Article  Google Scholar 

  • Cardi T (2016) Cisgenesis and genome editing: combining concepts and efforts for a smarter use of genetic resources in crop breeding. Plant Breed 135:139–147. doi:10.1111/pbr.12345

    Article  CAS  Google Scholar 

  • Castañeda-Alvarez NP, Khoury C, Achicanoy HA, Bernau V, Dempewolf H, Eastwood RJ, Guarino L, Harker RH, Jarvis A, Maxted N, Müller JV, Ramirez-Villegas J, Sosa CC, Struik PC, Vincent H, Toll J (2016) Global conservation priorities for crop wild relatives. Nat Plants 2:16022. doi:10.1038/nplants.2016.22

    Article  PubMed  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14. doi:10.1016/j.fcr.2007.07.004

    Article  Google Scholar 

  • Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opinion Plant Biol 11:215–221. doi:10.1016/j.pbi.2008.01.002

    Article  CAS  Google Scholar 

  • Centro Internacional de Agricultura Tropical (2017) A global database for the distributions of crop wild relatives. doi: 10.15468/jyrthk. Accessed via http://www.gbif.org/dataset/07044577-bd82-4089-9f3a-f4a9d2170b2e on 2017-03-03

  • Cowling WA, Buirchell BJ, Falk DE (2009) A model for incorporating novel alleles from the primary gene pool into elite crop breeding programs while reselecting major genes for domestication or adaptation. Crop Pasture Sci 60:1009–1015. doi:10.1071/CP08223

    Article  CAS  Google Scholar 

  • De Storme N, Mason A (2014) Plant speciation through chromosome instability and ploidy change: cellular mechanisms, molecular factors and evolutionary relevance. Curr Plant Biol 1:10–33. doi:10.1016/j.cpb.2014.09.002

    Article  Google Scholar 

  • de Van Wouw M, Kik C, van Hintum T, van Treuren R, Visser B (2009) Genetic erosion in crops: concept, research results and challenges. Plant Genet Resour C 8:1–15. doi:10.1017/S1479262109990062

    Google Scholar 

  • Dempewolf H, Hodgkins KA, Rummell SE, Ellstrand NC, Rieseberg LH (2012) Reproductive isolation during domestication. Plant Cell 24:2710–2717. doi:10.1105/tpc.112.100115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dempewolf H, Eastwood RJ, Guarino L, Khoury C, Müller JV, Toll J (2014) Adapting agriculture to climate change: a global initiative to collect, conserve, and use crop wild relatives. Agrocecol Sust Food Syst 38:369–377. doi:10.1080/21683565.870629

    Google Scholar 

  • Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and future use of wild relatives in crop breeding. Crop Sci. doi:10.2135/cropsci2016.10.0885

    Google Scholar 

  • Dhaliwal HS (1992) Unilateral incompatibility. In: Kalloo G, Chowdhury JB (eds) Distant hybridization of crop plants. Springer, Berlin, pp 32–46. doi:10.1007/978-3-642-84306-8_3

    Chapter  Google Scholar 

  • Díez MJ, Nuez F (2008) Tomato. In: Prohens J, Nuez F (eds) Vegetables II: Fabaceae, Liliaceae, Solanaceae, and Umbelliferae. Springer, New York, pp 249–323. doi:10.1007/978-0-387-74110-9

    Chapter  Google Scholar 

  • Dodsworth S, Chase MW, Särkinen T, Knapp S, Leitch AR (2016) Using genomic repeats for phylogenomics: a case study in wild tomatoes (Solanum section Lycopersicon: Solanaceae). Bot J Linn Soc 117:96–105. doi:10.1111/bij.12612

    Article  Google Scholar 

  • Dwivedi SL, Upadhyaya HD, Stalker HT, Blair MW, Bertioli DJ, Nielen S, Ortiz R (2008) Enhancing crop gene pools with beneficial traits using wild relatives. Plant Breed Rev 30:179–230. doi:10.1002/9780470380130.ch3

    Article  CAS  Google Scholar 

  • Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O (2015) Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front Plant Sci 6:978. doi:10.3389/fpls.2015.00978

    Article  PubMed  PubMed Central  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests. Euphytica 91:59–87. doi:10.1007/BF00035277

    Article  Google Scholar 

  • Friebe B, Qi L, Liu C, Liu W, Gill BS (2012) Registration of a hard red winter wheat genetic stock homozygous for ph1b for facilitating alien introgression for crop improvement. J Plant Regist 6:121–123. doi:10.3198/jpr2011.05.0273crgs

    Article  Google Scholar 

  • Furini A, Wunder J (2004) Analysis of eggplant (Solanum melongena)-related germplasm: morphological and AFLP data contribute to phylogenetic interpretations and germplasm utilization. Theor Appl Genet 108:197–208. doi:10.1007/s00122-003-1439-1

    Article  CAS  PubMed  Google Scholar 

  • Gerstetter C, Görlach B, Neumann K, Schaffrin D (2007) The International Treaty on Plant Genetic Resources for Food and Agriculture within the current legal regime complex on plant genetic resources. J World Intellect Prop 10:259–283. doi:10.1111/j.1747-1796.2007.00323.x

    Article  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–817. doi:10.1126/science.1185383

    Article  CAS  PubMed  Google Scholar 

  • Guerrero RF, Posto AL, Moyle LC, Hahn MW (2016) Genome-wide patterns of regulatory divergence revealed by introgression lines. Evolution 70:696–706. doi:10.1111/evo.12875

    Article  PubMed  Google Scholar 

  • Gupta M, Mason AS, Batley J, Bharti S, Banga S, Banga SS (2016) Molecular-cytogenetic characterization of C-genome chromosome substitution lines in Brassica juncea (L.) Czern and Coss. Theor Appl Genet 129:1153–1166. doi:10.1007/s00122-016-2692-4

    Article  PubMed  Google Scholar 

  • Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2:e245. doi:10.1371/journal.pbio.0020245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gur A, Zamir D (2015) Mendelizing all components of a pyramid of three yield QTL in tomato. Front Plant Sci 6:1096. doi:10.3389/fpls.2015.01096

    Article  PubMed  PubMed Central  Google Scholar 

  • Haghighi KR, Ascher PD (1998) Fertile, intermediate hybrids between Phaseolus vulgaris and P. acutifolius hybrids from congruity backcrossing. Sex Plant Reprod 1:51–58. doi:10.1007/BF00227023

    Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of crop wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13. doi:10.1007/s10681-007-9363-0

    Article  Google Scholar 

  • Hammer K (1984) Das Domestikationssyndrom. Kulturpfl 32:11–34. doi:10.1007/BF02098682

    Article  Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517. doi:10.2307/1218252

    Article  Google Scholar 

  • Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78:742–752. doi:10.1111/tpj.12413

    Article  CAS  PubMed  Google Scholar 

  • Herzog E, Falke KC, Presteri T, Scheuermann Ouzunova M, Frisch M (2014) Selection strategies for the development of maize introgression populations. PLoS ONE 9:e92429. doi:10.1371/journal.pone.0092429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Clim 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Jacobsen E, Schouten HJ (2007) Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants. Trends Biotech 25:219–223. doi:10.1016/j.tibtech.2007.03.008

    Article  CAS  Google Scholar 

  • Jarvis DI, Hodgkin T (1999) Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agroecosystems. Mol Ecol 8:S159–S173. doi:10.1046/j.1365-294X.1999.00799.x

    Article  Google Scholar 

  • Jarvis A, Lane A, Hijmans RI (2008) The effect of climate change on crop wild relatives. Agric Ecosyst Environ 126:13–23. doi:10.1016/j.agee.2008.01.013

    Article  Google Scholar 

  • Jo KR, Kim CJ, Kim SJ, Kim TY, Bergervoet M, Jongsma MA, Visser RGF, Jacobsen E, Vossen JH (2014) Development of late blight resistant potatoes by cisgene stacking. BMC Biotech 14:50. doi:10.1186/1472-6750-14-50

    Article  Google Scholar 

  • Johnson AAT, Veilleux RE (2000) Somatic hybridization and applications in plant breeding. Plant Breed Rev 20:167–225. doi:10.1002/9780470650189.ch6

    Google Scholar 

  • Jones TA (2003) The restoration gene pool concept: beyond the native versus non-native debate. Restor Ecol 11:281–290. doi:10.1046/j.1526-100X.2003.00064.x

    Article  Google Scholar 

  • Kantar MB, Sosa CS, Khoury CK, Castañeda-Álvarez NP, Achicanoy HA, Bernau V, Kane NC, Marek L, Seiler G, Rieseberg LH (2015) Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.). Front. Plant Sci 6:841. doi:10.3389/fpls.2015.00841

    Google Scholar 

  • Khan MMR, Hasnunnahar M, Iwayoshi M, Ogura-Tsujira Y, Isshiki S (2015) Pollen degeneration in three functional male-sterile lines of eggplant with the wild Solanum cytoplasms. Hortic Environ Biotech 56:350–357. doi:10.1007/s13580-015-0015-3

    Article  CAS  Google Scholar 

  • Khazaei H, Street K, Bari A, Mackay M, Stoddard FL (2013) The FIGS (Focused Identification of Germplasm Strategy) approach identifies traits related to drought adaptation in Vicia faba genetic resources. PLoS ONE 8:e63107. doi:10.1371/journal.pone.0063107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khlestkina EK (2014) Current applications of wheat and wheat-alien precise genetic stocks. Mol Breed 34:273–281. doi:10.1007/s11032-014-0049-8

    Article  CAS  Google Scholar 

  • Khoury C, Laliberté B, Guarino L (2010) Trends in ex situ conservation of plant genetic resources: a review of global crop and regional conservation strategies. Genet Resour Crop Evol 57:625–639. doi:10.1007/s10722-010-9534-z

    Article  Google Scholar 

  • Khush GS, Brar DS (1992) Overcoming the barriers in hybridization. In: Kalloo G, Chowdhury JB (eds) Distant hybridization of crop plants. Springer, Berlin, pp 47–61. doi:10.1007/978-3-642-84306-8_4

    Chapter  Google Scholar 

  • Kilian B, Mammen K, Millet E, Sharma R, Graner A, Salamini F, Hammer K, Özkan H (2011) Aegilops. In: Kole C (ed) Wild Crop Relatives: genomic and breeding resources, cereals. Springer, Berlin Heidelberg, pp 1–76. doi:10.1007/978-3-642-14228-4_1

    Google Scholar 

  • King J, Grewal S, Yang C, Hubbart S, Scholefield D, Ashling S, Edwards KJ, Allen AM, Burridge A, Bloor C, Davassi A, da Silva GJ, Chalmers K, King IP (2016) A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum. Plant Biotech. doi:10.1111/pbi.12606

    Google Scholar 

  • Knox J, Hess T, Daccache A, Wheeler T (2012) Climate change impacts on crop productivity in Africa and South Asia. Environ Res Lett 7:034032. doi:10.1088/1748-9326/7/3/034032

    Article  Google Scholar 

  • Kole C, Muthamilarasan M, Henry R, Edwards D, Sharma R, Abberton M, Batley J, Bentley A, Blakeney M, Bryant J, Cai H, Cakir M, Cseke LJ, Cockram J, de Oliveira AC, De Pace C, Dempewolf H, Ellison S, Gepts P, Greenland A, Hall A, Hori K, Highes S, Humphreys MW, Iorizzo M, Ismail AB, Marshall A, Mayes S, Nguyen HT, Ogbonnaya FC, Ortiz R, Paterson AH, Simon PW, Tohme J, Tuberosa R, Valliyodan B, Varshney RK, Wullschleger SD, Yano M, Prasad M (2015) Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front Plant Sci 6:563. doi:10.3389/fpls.2015.00563

    Article  PubMed  PubMed Central  Google Scholar 

  • Lippman ZB, Semel Y, Zamir D (2007) An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev 17:545–552. doi:10.1016/j.gde.2007.07.007

    Article  CAS  PubMed  Google Scholar 

  • Longin CFH, Reif JC (2014) Redesigning the exploitation of wheat genetic resources. Trends Plant Sci 19:631–636. doi:10.1016/j.tplants.2014.06.012

    Article  CAS  PubMed  Google Scholar 

  • Lusser M (2014) Workshop on public-private partnerships in plant breeding. Science and Policy Report by the Joint Research Centre of the European Commission. Publications Office of the European Union, Luxembourg. doi:10.2791/80891

    Google Scholar 

  • Lusser M, Parisi C, Plan D, Rodríguez-Cerezo E (2011) New plant breeding techniques: state-of-the –art and prospects for commercial development. Reference Report by the Joint Research Centre of the European Commission. Publications Office of the European Union, Luxembourg. doi:10.2791/60346

    Google Scholar 

  • Martín A, Alvarez JB, Martín LM, Barro F, Ballesteros J (1999) The development of tritordeum: a novel cereal for food processing. J Cereal Sci 30:85–95. doi:10.1006/jcrs.1998.0235

    Article  Google Scholar 

  • Maxted N, Kell S (2009) Establishment of a global network for the in situ conservation of crop wild relatives: Status and needs. Commission on Genetic Resources for Food and Agriculture. FAO, Rome

    Google Scholar 

  • Maxted N, Ford-Lloyd BV, Jury S, Kell S, Scholten M (2006) Towards a definition of a crop wild relative. Biodivers Conserv 15:2673–2685. doi:10.1007/s10531-005-5409-6

    Article  Google Scholar 

  • Maxted N, Dulloo E, Ford-Lloyd BV, Iriondo JM, Jarvis A (2008) Gap analysis: a tool for complementary genetic conservation assessment. Divers Distrib 14:1018–1030. doi:10.1111/j.1472-4642.2008.00512.x

    Article  Google Scholar 

  • McIntosh RA (1992) Pre-emptive breeding to control wheat rusts. Euphytica 63:103–113. doi:10.1007/BF00023916

    Article  Google Scholar 

  • McKhann HI, Camilleri C, Bérard A, Bataillon T, David JL, Reboud X, Le Corre V, Caloustian C, Gut IG, Brunel D (2004) Nested core collections maximizing genetic diversity in Arabidopsis thaliana. Plant J 38:193–202. doi:10.1011/j.1365-313X.2004.02034.x

    Article  CAS  PubMed  Google Scholar 

  • Menda N, Strickler SR, Edwards JD, Bombarely A, Dunham DM, Martin GB, Mejia L, Hutton SF, Havey MJ, Maxwell DP, Mueller LA (2014) Analysis of wild-species introgressions in tomato inbreds uncover ancestrals origins. BMC Plant Biol 14:287. doi:10.1186/s12870-014-0287-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meyer RS (2015) Encouraging metadata curation in the diversity seek initiative. Nat Plants 1:15099. doi:10.1038/nplants.2015.99

    Article  PubMed  Google Scholar 

  • Meyer RS, Purugganan MD (2013) Evolution of crop species: genetics of domestication and diversification. Nature Rev Genet 14:840–852. doi:10.1038/nrg3605

    Article  CAS  PubMed  Google Scholar 

  • Meyer RS, DuVal AE, Jensen HR (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196:29–48. doi:10.1111/j.1469-8137.2012.04253.x

    Article  PubMed  Google Scholar 

  • Moore G (2015) Strategic pre-breeding for wheat improvement. Nature Plants 1:15018. doi:10.1038/nplants.2015.18

    Article  CAS  PubMed  Google Scholar 

  • Muñoz LC, Blair MW, Duque MC, Tohme J, Roca W (2004) Introgression in common bean × tepary bean interspecific congruity-backcross lines as measured by AFLP markers. Crop Sci 44:637–645. doi:10.2135/cropsci2004.6370

    Article  Google Scholar 

  • Pascual L, Albert E, Sauvage C, Duangjit J, Bouchet JP, Bitton F, Desplat N, Brunel D, Le Paslier MC, Ranc N, Bruguier L, Chauchard B, Verschave P, Causse M (2016) Dissecting quantitative trait variation in the resequencing era: complementarity of bi-parental, multi-parental and association panels. Plant Sci 242:120–130. doi:10.1016/j.plantsci.2015.06.017

    Article  CAS  PubMed  Google Scholar 

  • Peleg Z, Fahima T, Krugman T, Abbo S, Yakir D, Korol AB, Saranga Y (2009) Genomic dissection of drought resistance in durum wheat × wild emmer wheat recombinant inbreed line population. Plant Cell Environ 32:758–779. doi:10.1111/j.1365-3040.2009.01956.x

    Article  CAS  PubMed  Google Scholar 

  • Peleman JD, van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334. doi:10.1016/S1360-1385(03)00134-1

    Article  CAS  PubMed  Google Scholar 

  • Pérez-de-Castro AM, Vilanova S, Cañizares J, Pascual L, Blanca JM, Díez MJ, Prohens J, Picó B (2012) Application of genomic tools in plant breeding. Curr Genom 13:179–195. doi:10.2174/138920212800543084

    Article  Google Scholar 

  • Plazas M, Vilanova S, Gramazio P, Rodríguez-Burruezo A, Fita A, Herraiz FJ, Ranil R, Fonseka R, Niran L, Fonseka H, Kouassi B, Kouassi A, Kouassi A, Prohens J (2016) Interspecific hybridization between eggplant and wild relatives from different genepools. J Am Soc Hortic Sci 141:34–44

    Google Scholar 

  • Porch TG, Beaver JS, Debouck DG, Jackson SA, Kelly JD, Dempewolf H (2013) Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy 3:433–461. doi:10.3390/agronomy3020433

    Article  Google Scholar 

  • Prakash S, Ahuja I, Upreti HC, Kumar VD, Bhat SR, Kirti PB, Chopra VL (2001) Expression of male sterility in alloplasmic Brassica juncea with Erucastrum canariense cytoplasm and the development of a fertility restoration system. Plant Breed 120:479–482. doi:10.1046/j.1439-0523.2001.00627_x

    Article  Google Scholar 

  • Ramírez-Villegas J, Khoury C, Jarvis A, Debouck DG, Guarino L (2010) A gap analysis methodology for collecting crop genepools: a case study with Phaseolus beans. PLoS ONE 5:e13497. doi:10.1371/journal.pone.0013497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramkumar G, Madhav MS, Rama Devi SJS, Umakanth B, Pandey MK, Prasad MS, Sundaram RM, Viraktamath BC, Ravindra Babu V (2016) Identification and validation of novel alleles of rice blast resistant gene Pi54, and analysis of their nucleotide diversity in landraces and wild Oryza species. Euphytica 209:725–737. doi:10.1007/s10681-016-1666-6

    Article  CAS  Google Scholar 

  • Ranil RHG, Niran HML, Plazas M, Fonseka RM, Fonseka HH, Vilanova S, Andújar I, Gramazio P, Fita A, Prohens J (2015) Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Sci Hort 193:174–181. doi:10.1016/j.scienta.2015.07.030

    Article  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8:e66428. doi:10.1371/journal.pone.0066428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieseberg LH, Carney SE (1998) Plant hybridization. New Phytol 140:599–624. doi:10.1046/j.1469-8137.1998.00315.x

    Article  Google Scholar 

  • Rieseberg LH, Arias DM, Ungerer MC, Linder CR, Sinervo B (1996) The effects of mating designs on introgression between chromosomally divergent sunflower species. Theor Appl Genet 93:633–644. doi:10.1007/BF00417959

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N, Neumann K, Piontek F, Pugh TAM, Schmid E, Stehfest E, Yang H, Jones JW (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci USA 111:3268–3273. doi:10.1073/pnas.1222463110

    Article  CAS  PubMed  Google Scholar 

  • Salamini F, Özkan H, Brandolini A, Schäfer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the Near East. Nat Rev Genet 3:429–441. doi:10.1038/nrg817

    CAS  PubMed  Google Scholar 

  • Salinas M, Capel C, Alba JM, Mora B, Cuartero J, Fernández-Muñoz R, Lozano R, Capel J (2013) Genetic mapping of two QTL from the wild tomato Solanum pimpinellifolium L. controlling resistance against two-spotted spider mite (Tetranychus urticae Koch). Theor Appl Genet 126:83–92. doi:10.1007/s00122-012-1961-0

    Article  CAS  PubMed  Google Scholar 

  • Savage JA, Haines DF, Holbrook NM (2015) The making of giant pumpkins: how selective breeding changed the phloem of Cucurbita maxima from source to sink. Plant Cell Environ 38:1543–1554. doi:10.1111/pce.12502

    Article  CAS  PubMed  Google Scholar 

  • Schwarz D, Rouphael Y, Colla G, Venema JH (2010) Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Sci Hort 127:162–171. doi:10.1016/j.scienta.2010.09.016

    Article  CAS  Google Scholar 

  • Sharma D, Knott DR (1966) The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol 8:137–143. doi:10.1139/g66-018

    Article  Google Scholar 

  • Sharma DR, Kaur R, Kumar K (1996) Embryo rescue in plants—a review. Euphytica 99:325–337. doi:10.1007/BF00022289

    Google Scholar 

  • Shivanna KR, Bahadur B (2015) Efficacy of biotechnological approaches to raise wide sexual hybrids. In: Bahadur B, Rajam MV, Sahijram L, Krishnamurthy KV (eds) Plant Biology and biotechnology, vol II. Plant genomics and biotechnology. Springer, New Delhi, pp 347–362. doi:10.1007/978-81-322-2283-5_17

    Chapter  Google Scholar 

  • Sim SC, Van Deynze A, Stoffel K, Douches DS, Zarka D, Ganal MW, Chetelat RT, Hutton SF, Scott JW, Gardner RG, Panthee DR, Mutschler M, Myers JR, Francis DM (2012) High density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding. PLoS ONE 7:e45520. doi:10.1371/journal.pone.0045520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PG (1944) Embryo culture of a tomato species hybrid. Proc Am Soc Hort Sci 44:413–416

    Google Scholar 

  • Street K, Bari A, Mackay M, Amri A (2016) How the Focused Identification of Germplasm Strategy (FIGS) is used to mine plant genetic resources for adaptive traits. In: Maxted N, Dulloo ME, Ford-Lloyd BV (eds) Enhancing crop genepool use: capturing wild relative and landrace diversity for crop improvement. CABI, Wallingford, pp 54–65. doi:10.1079/9781780646138.0054

    Chapter  Google Scholar 

  • Syfert M, Castañeda-Álvarez NP, Khoury C, Särkinen T, Sosa CC, Achicanoy HA, Bernau V, Prohens J, Daunay MC, Knapp S (2016) Crop wild relatives of the brinjal eggplant (Solanum melongena): poorly represented in genebanks and many species at risk of extinction. Am J Bot 103:635–651. doi:10.3732/ajb.1500539

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066. doi:10.1126/science.277.5329.1063

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadpated germplasm into elite breeding lines. Theor Appl Genet 92:191–203. doi:10.1007/BF00223376

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108:20260–20264. doi:10.1073/pnas.1116437108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trethowan RM, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48:1255–1265. doi:10.2135/cropsci2007.08.0477

    Article  Google Scholar 

  • Valkoun JJ (2001) Wheat pre-breeding using wild progenitors. Euphytica 119:17–23. doi:10.1023/A:1017562909881

    Article  Google Scholar 

  • Verlaan MG, Szinay D, Hutton SF, de Jong H, Kormelink R, Visser RGF, Scott JW, Bai Y (2011) Chromosomal rearrangements between tomato and Solanum chilense hamper mapping and breeding of TYLCV resistance gene Ty-1. Plant J 68:1093–1103. doi:10.1111/j.1365-313X.2011.04762.x

    Article  CAS  PubMed  Google Scholar 

  • Villegas D, Casadesús J, Atienza SG, Martos V, Maalouf F, Karam F, Aranjuelo I, Nogués S (2010) Tritordeum, wheat and triticale yield components under multi-local Mediterranean drought conditions. Field Crops Res 116:68–74. doi:10.1016/j.fcr.2009.11.012

    Article  Google Scholar 

  • Vincent H, Wiersma J, Kell S, Fielder H, Dobbie S, Castañeda-Álvarez NP, Guarino L, Eastwood R, León B, Maxted N (2013) A prioritized crop wild relative inventory to help underpin global food security. Biol Conserv 167:265–275. doi:10.1016/j.biocon.2013.08.011

    Article  Google Scholar 

  • Vorontsova MS, Stern S, Bohs L, Knapp S (2013) African spiny Solanum (subgenus Leptostemonum, Solanaceae): a thorny phylogenetic tangle. Bot J Linn Soc 173:176–193. doi:10.1111/boj.12053

    Article  Google Scholar 

  • Wall JR (1970) Experimental introgression in the genus Phaseolus. I. Effect of mating systems on interspecific gene flow. Evolution 24:356–366

    Article  CAS  PubMed  Google Scholar 

  • Warburton ML, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, Pfeiffer W, Zhang P, Dreisigacker S, van Ginkel M (2006) Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149:289–301. doi:10.1007/s10681-005-9077-0

    Article  CAS  Google Scholar 

  • Warschefsky E, Penmetsa RV, Cook DR, von Wettberg EJB (2014) Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. Am J Bot 101:1791–1800. doi:10.3732/ajb.1400116

    Article  PubMed  Google Scholar 

  • Wendler N, Mascher M, Himmelbach A, Johnston P, Pickering R, Stein N (2015) Bulbosum to go: a toolbox to utilize Hordeum vulgare/bulbosum introgressions for breeding and beyond. Mol Plant 8:1507–1519. doi:10.1016/j.molp.2015.05.004

    Article  CAS  PubMed  Google Scholar 

  • Wulff BBH, Moscou MJ (2014) Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front Plant Sci 5:692. doi:10.3389/fpls.2014.00692

    Article  PubMed  PubMed Central  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nature Rev Genet 2:983–989. doi:10.1038/35103590

    Article  CAS  PubMed  Google Scholar 

  • Zamir D, Ekstein-Michelson I, Zakay Y, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Pleban T, van-Oss H, Kedar N, Rabinowitch HD, Czosnek H (1994) Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, TY-1. Theor Appl Genet 88:141–146. doi:10.1007/BF00225889

    Article  CAS  PubMed  Google Scholar 

  • Zenkteler M (1990) In vitro fertilization and wide hybridization in higher plants. Crit Rev Plant Sci 9:267–279. doi:10.1080/07352689009382290

    Article  Google Scholar 

Download references

Acknowledgements

This work was undertaken as part of the initiative “Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives”, which is supported by the Government of Norway. The Project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew and implemented in partnership with national and international gene banks and plant breeding institutes around the world. For further information see the project website: http://www.cwrdiversity.org/. This work has also been funded in part by European Union’s Horizon 2020 research and innovation programme under Grant agreement No 677379 (G2P-SOL) and from Spanish Ministerio de Economía y Competitividad and Fondo Europeo de Desarrollo Regional (Grant AGL2015-64755-R from MINECO/FEDER, EU). Pietro Gramazio is grateful to Universitat Politècnica de València for a pre-doctoral (Programa FPI de la UPV-Subprograma 1/2013 call) contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Prohens.

Additional information

This article is part of the Topical Collection on Plant Breeding: the Art of Bringing Science to Life. Highlights of the 20th EUCARPIA General Congress, Zurich, Switzerland, 29 August–1 September 2016

Edited by Roland Kölliker, Richard G. F. Visser, Achim Walter & Beat Boller

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prohens, J., Gramazio, P., Plazas, M. et al. Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 213, 158 (2017). https://doi.org/10.1007/s10681-017-1938-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1938-9

Keywords

Navigation